block: move dif_prepare/dif_complete functions to block layer
Currently these functions are implemented in the scsi layer, but their actual place should be the block layer since T10-PI is a general data integrity feature that is used in the nvme protocol as well. Also, use the tuple size from the integrity profile since it may vary between integrity types. Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Max Gurtovoy <maxg@mellanox.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
This commit is contained in:
parent
ddd0bc7569
commit
10c41ddd61
110
block/t10-pi.c
110
block/t10-pi.c
|
@ -184,3 +184,113 @@ const struct blk_integrity_profile t10_pi_type3_ip = {
|
|||
.verify_fn = t10_pi_type3_verify_ip,
|
||||
};
|
||||
EXPORT_SYMBOL(t10_pi_type3_ip);
|
||||
|
||||
/**
|
||||
* t10_pi_prepare - prepare PI prior submitting request to device
|
||||
* @rq: request with PI that should be prepared
|
||||
* @protection_type: PI type (Type 1/Type 2/Type 3)
|
||||
*
|
||||
* For Type 1/Type 2, the virtual start sector is the one that was
|
||||
* originally submitted by the block layer for the ref_tag usage. Due to
|
||||
* partitioning, MD/DM cloning, etc. the actual physical start sector is
|
||||
* likely to be different. Remap protection information to match the
|
||||
* physical LBA.
|
||||
*
|
||||
* Type 3 does not have a reference tag so no remapping is required.
|
||||
*/
|
||||
void t10_pi_prepare(struct request *rq, u8 protection_type)
|
||||
{
|
||||
const int tuple_sz = rq->q->integrity.tuple_size;
|
||||
u32 ref_tag = t10_pi_ref_tag(rq);
|
||||
struct bio *bio;
|
||||
|
||||
if (protection_type == T10_PI_TYPE3_PROTECTION)
|
||||
return;
|
||||
|
||||
__rq_for_each_bio(bio, rq) {
|
||||
struct bio_integrity_payload *bip = bio_integrity(bio);
|
||||
u32 virt = bip_get_seed(bip) & 0xffffffff;
|
||||
struct bio_vec iv;
|
||||
struct bvec_iter iter;
|
||||
|
||||
/* Already remapped? */
|
||||
if (bip->bip_flags & BIP_MAPPED_INTEGRITY)
|
||||
break;
|
||||
|
||||
bip_for_each_vec(iv, bip, iter) {
|
||||
void *p, *pmap;
|
||||
unsigned int j;
|
||||
|
||||
pmap = kmap_atomic(iv.bv_page);
|
||||
p = pmap + iv.bv_offset;
|
||||
for (j = 0; j < iv.bv_len; j += tuple_sz) {
|
||||
struct t10_pi_tuple *pi = p;
|
||||
|
||||
if (be32_to_cpu(pi->ref_tag) == virt)
|
||||
pi->ref_tag = cpu_to_be32(ref_tag);
|
||||
virt++;
|
||||
ref_tag++;
|
||||
p += tuple_sz;
|
||||
}
|
||||
|
||||
kunmap_atomic(pmap);
|
||||
}
|
||||
|
||||
bip->bip_flags |= BIP_MAPPED_INTEGRITY;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(t10_pi_prepare);
|
||||
|
||||
/**
|
||||
* t10_pi_complete - prepare PI prior returning request to the block layer
|
||||
* @rq: request with PI that should be prepared
|
||||
* @protection_type: PI type (Type 1/Type 2/Type 3)
|
||||
* @intervals: total elements to prepare
|
||||
*
|
||||
* For Type 1/Type 2, the virtual start sector is the one that was
|
||||
* originally submitted by the block layer for the ref_tag usage. Due to
|
||||
* partitioning, MD/DM cloning, etc. the actual physical start sector is
|
||||
* likely to be different. Since the physical start sector was submitted
|
||||
* to the device, we should remap it back to virtual values expected by the
|
||||
* block layer.
|
||||
*
|
||||
* Type 3 does not have a reference tag so no remapping is required.
|
||||
*/
|
||||
void t10_pi_complete(struct request *rq, u8 protection_type,
|
||||
unsigned int intervals)
|
||||
{
|
||||
const int tuple_sz = rq->q->integrity.tuple_size;
|
||||
u32 ref_tag = t10_pi_ref_tag(rq);
|
||||
struct bio *bio;
|
||||
|
||||
if (protection_type == T10_PI_TYPE3_PROTECTION)
|
||||
return;
|
||||
|
||||
__rq_for_each_bio(bio, rq) {
|
||||
struct bio_integrity_payload *bip = bio_integrity(bio);
|
||||
u32 virt = bip_get_seed(bip) & 0xffffffff;
|
||||
struct bio_vec iv;
|
||||
struct bvec_iter iter;
|
||||
|
||||
bip_for_each_vec(iv, bip, iter) {
|
||||
void *p, *pmap;
|
||||
unsigned int j;
|
||||
|
||||
pmap = kmap_atomic(iv.bv_page);
|
||||
p = pmap + iv.bv_offset;
|
||||
for (j = 0; j < iv.bv_len && intervals; j += tuple_sz) {
|
||||
struct t10_pi_tuple *pi = p;
|
||||
|
||||
if (be32_to_cpu(pi->ref_tag) == ref_tag)
|
||||
pi->ref_tag = cpu_to_be32(virt);
|
||||
virt++;
|
||||
ref_tag++;
|
||||
intervals--;
|
||||
p += tuple_sz;
|
||||
}
|
||||
|
||||
kunmap_atomic(pmap);
|
||||
}
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(t10_pi_complete);
|
||||
|
|
|
@ -1119,7 +1119,7 @@ static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
|
|||
SCpnt->cmnd[0] = WRITE_6;
|
||||
|
||||
if (blk_integrity_rq(rq))
|
||||
sd_dif_prepare(SCpnt);
|
||||
t10_pi_prepare(SCpnt->request, sdkp->protection_type);
|
||||
|
||||
} else if (rq_data_dir(rq) == READ) {
|
||||
SCpnt->cmnd[0] = READ_6;
|
||||
|
@ -2047,8 +2047,10 @@ static int sd_done(struct scsi_cmnd *SCpnt)
|
|||
"sd_done: completed %d of %d bytes\n",
|
||||
good_bytes, scsi_bufflen(SCpnt)));
|
||||
|
||||
if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
|
||||
sd_dif_complete(SCpnt, good_bytes);
|
||||
if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
|
||||
good_bytes)
|
||||
t10_pi_complete(SCpnt->request, sdkp->protection_type,
|
||||
good_bytes / scsi_prot_interval(SCpnt));
|
||||
|
||||
return good_bytes;
|
||||
}
|
||||
|
|
|
@ -254,21 +254,12 @@ static inline unsigned int sd_prot_flag_mask(unsigned int prot_op)
|
|||
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
||||
|
||||
extern void sd_dif_config_host(struct scsi_disk *);
|
||||
extern void sd_dif_prepare(struct scsi_cmnd *scmd);
|
||||
extern void sd_dif_complete(struct scsi_cmnd *, unsigned int);
|
||||
|
||||
#else /* CONFIG_BLK_DEV_INTEGRITY */
|
||||
|
||||
static inline void sd_dif_config_host(struct scsi_disk *disk)
|
||||
{
|
||||
}
|
||||
static inline int sd_dif_prepare(struct scsi_cmnd *scmd)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
static inline void sd_dif_complete(struct scsi_cmnd *cmd, unsigned int a)
|
||||
{
|
||||
}
|
||||
|
||||
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
||||
|
||||
|
|
|
@ -95,116 +95,3 @@ out:
|
|||
blk_integrity_register(disk, &bi);
|
||||
}
|
||||
|
||||
/*
|
||||
* The virtual start sector is the one that was originally submitted
|
||||
* by the block layer. Due to partitioning, MD/DM cloning, etc. the
|
||||
* actual physical start sector is likely to be different. Remap
|
||||
* protection information to match the physical LBA.
|
||||
*
|
||||
* From a protocol perspective there's a slight difference between
|
||||
* Type 1 and 2. The latter uses 32-byte CDBs exclusively, and the
|
||||
* reference tag is seeded in the CDB. This gives us the potential to
|
||||
* avoid virt->phys remapping during write. However, at read time we
|
||||
* don't know whether the virt sector is the same as when we wrote it
|
||||
* (we could be reading from real disk as opposed to MD/DM device. So
|
||||
* we always remap Type 2 making it identical to Type 1.
|
||||
*
|
||||
* Type 3 does not have a reference tag so no remapping is required.
|
||||
*/
|
||||
void sd_dif_prepare(struct scsi_cmnd *scmd)
|
||||
{
|
||||
const int tuple_sz = sizeof(struct t10_pi_tuple);
|
||||
struct bio *bio;
|
||||
struct scsi_disk *sdkp;
|
||||
struct t10_pi_tuple *pi;
|
||||
u32 phys, virt;
|
||||
|
||||
sdkp = scsi_disk(scmd->request->rq_disk);
|
||||
|
||||
if (sdkp->protection_type == T10_PI_TYPE3_PROTECTION)
|
||||
return;
|
||||
|
||||
phys = t10_pi_ref_tag(scmd->request);
|
||||
|
||||
__rq_for_each_bio(bio, scmd->request) {
|
||||
struct bio_integrity_payload *bip = bio_integrity(bio);
|
||||
struct bio_vec iv;
|
||||
struct bvec_iter iter;
|
||||
unsigned int j;
|
||||
|
||||
/* Already remapped? */
|
||||
if (bip->bip_flags & BIP_MAPPED_INTEGRITY)
|
||||
break;
|
||||
|
||||
virt = bip_get_seed(bip) & 0xffffffff;
|
||||
|
||||
bip_for_each_vec(iv, bip, iter) {
|
||||
pi = kmap_atomic(iv.bv_page) + iv.bv_offset;
|
||||
|
||||
for (j = 0; j < iv.bv_len; j += tuple_sz, pi++) {
|
||||
|
||||
if (be32_to_cpu(pi->ref_tag) == virt)
|
||||
pi->ref_tag = cpu_to_be32(phys);
|
||||
|
||||
virt++;
|
||||
phys++;
|
||||
}
|
||||
|
||||
kunmap_atomic(pi);
|
||||
}
|
||||
|
||||
bip->bip_flags |= BIP_MAPPED_INTEGRITY;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Remap physical sector values in the reference tag to the virtual
|
||||
* values expected by the block layer.
|
||||
*/
|
||||
void sd_dif_complete(struct scsi_cmnd *scmd, unsigned int good_bytes)
|
||||
{
|
||||
const int tuple_sz = sizeof(struct t10_pi_tuple);
|
||||
struct scsi_disk *sdkp;
|
||||
struct bio *bio;
|
||||
struct t10_pi_tuple *pi;
|
||||
unsigned int j, intervals;
|
||||
u32 phys, virt;
|
||||
|
||||
sdkp = scsi_disk(scmd->request->rq_disk);
|
||||
|
||||
if (sdkp->protection_type == T10_PI_TYPE3_PROTECTION || good_bytes == 0)
|
||||
return;
|
||||
|
||||
intervals = good_bytes / scsi_prot_interval(scmd);
|
||||
phys = t10_pi_ref_tag(scmd->request);
|
||||
|
||||
__rq_for_each_bio(bio, scmd->request) {
|
||||
struct bio_integrity_payload *bip = bio_integrity(bio);
|
||||
struct bio_vec iv;
|
||||
struct bvec_iter iter;
|
||||
|
||||
virt = bip_get_seed(bip) & 0xffffffff;
|
||||
|
||||
bip_for_each_vec(iv, bip, iter) {
|
||||
pi = kmap_atomic(iv.bv_page) + iv.bv_offset;
|
||||
|
||||
for (j = 0; j < iv.bv_len; j += tuple_sz, pi++) {
|
||||
|
||||
if (intervals == 0) {
|
||||
kunmap_atomic(pi);
|
||||
return;
|
||||
}
|
||||
|
||||
if (be32_to_cpu(pi->ref_tag) == phys)
|
||||
pi->ref_tag = cpu_to_be32(virt);
|
||||
|
||||
virt++;
|
||||
phys++;
|
||||
intervals--;
|
||||
}
|
||||
|
||||
kunmap_atomic(pi);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -51,5 +51,8 @@ extern const struct blk_integrity_profile t10_pi_type1_crc;
|
|||
extern const struct blk_integrity_profile t10_pi_type1_ip;
|
||||
extern const struct blk_integrity_profile t10_pi_type3_crc;
|
||||
extern const struct blk_integrity_profile t10_pi_type3_ip;
|
||||
extern void t10_pi_prepare(struct request *rq, u8 protection_type);
|
||||
extern void t10_pi_complete(struct request *rq, u8 protection_type,
|
||||
unsigned int intervals);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue