[media] s5p-mfc: Replace bank1/bank2 entries with an array

Internal MFC driver device structure contains two entries for keeping
addresses of the DMA memory banks. Replace them with the dma_base[] array
and use defines for accessing particular banks. This will help to simplify
code in the next patches.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Javier Martinez Canillas <javier@osg.samsung.com>
Tested-by: Javier Martinez Canillas <javier@osg.samsung.com>
Acked-by: Andrzej Hajda <a.hajda@samsung.com>
Tested-by: Smitha T Murthy <smitha.t@samsung.com>
Signed-off-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
This commit is contained in:
Marek Szyprowski 2017-02-08 06:53:48 -02:00 committed by Mauro Carvalho Chehab
parent 255d831dc9
commit 0d9e301b10
4 changed files with 43 additions and 38 deletions

View File

@ -273,8 +273,7 @@ struct s5p_mfc_priv_buf {
* @queue: waitqueue for waiting for completion of device commands
* @fw_size: size of firmware
* @fw_virt_addr: virtual firmware address
* @bank1: address of the beginning of bank 1 memory
* @bank2: address of the beginning of bank 2 memory
* @dma_base[]: address of the beginning of memory banks
* @hw_lock: used for hardware locking
* @ctx: array of driver contexts
* @curr_ctx: number of the currently running context
@ -315,8 +314,7 @@ struct s5p_mfc_dev {
wait_queue_head_t queue;
size_t fw_size;
void *fw_virt_addr;
dma_addr_t bank1;
dma_addr_t bank2;
dma_addr_t dma_base[BANK_CTX_NUM];
unsigned long hw_lock;
struct s5p_mfc_ctx *ctx[MFC_NUM_CONTEXTS];
int curr_ctx;

View File

@ -38,8 +38,8 @@ int s5p_mfc_alloc_firmware(struct s5p_mfc_dev *dev)
}
dev->fw_virt_addr = dma_alloc_coherent(dev->mem_dev[BANK1_CTX],
dev->fw_size, &dev->bank1, GFP_KERNEL);
dev->fw_size, &dev->dma_base[BANK1_CTX],
GFP_KERNEL);
if (!dev->fw_virt_addr) {
mfc_err("Allocating bitprocessor buffer failed\n");
return -ENOMEM;
@ -52,7 +52,8 @@ int s5p_mfc_alloc_firmware(struct s5p_mfc_dev *dev)
if (!bank2_virt) {
mfc_err("Allocating bank2 base failed\n");
dma_free_coherent(dev->mem_dev[BANK1_CTX], dev->fw_size,
dev->fw_virt_addr, dev->bank1);
dev->fw_virt_addr,
dev->dma_base[BANK1_CTX]);
dev->fw_virt_addr = NULL;
return -ENOMEM;
}
@ -61,7 +62,7 @@ int s5p_mfc_alloc_firmware(struct s5p_mfc_dev *dev)
* should not have address of bank2 - MFC will treat it as a null frame.
* To avoid such situation we set bank2 address below the pool address.
*/
dev->bank2 = bank2_dma_addr - align_size;
dev->dma_base[BANK2_CTX] = bank2_dma_addr - align_size;
dma_free_coherent(dev->mem_dev[BANK2_CTX], align_size,
bank2_virt, bank2_dma_addr);
@ -70,7 +71,7 @@ int s5p_mfc_alloc_firmware(struct s5p_mfc_dev *dev)
/* In this case bank2 can point to the same address as bank1.
* Firmware will always occupy the beginning of this area so it is
* impossible having a video frame buffer with zero address. */
dev->bank2 = dev->bank1;
dev->dma_base[BANK2_CTX] = dev->dma_base[BANK1_CTX];
}
return 0;
}
@ -125,7 +126,7 @@ int s5p_mfc_release_firmware(struct s5p_mfc_dev *dev)
if (!dev->fw_virt_addr)
return -EINVAL;
dma_free_coherent(dev->mem_dev[BANK1_CTX], dev->fw_size,
dev->fw_virt_addr, dev->bank1);
dev->fw_virt_addr, dev->dma_base[BANK1_CTX]);
dev->fw_virt_addr = NULL;
return 0;
}
@ -211,13 +212,17 @@ int s5p_mfc_reset(struct s5p_mfc_dev *dev)
static inline void s5p_mfc_init_memctrl(struct s5p_mfc_dev *dev)
{
if (IS_MFCV6_PLUS(dev)) {
mfc_write(dev, dev->bank1, S5P_FIMV_RISC_BASE_ADDRESS_V6);
mfc_debug(2, "Base Address : %pad\n", &dev->bank1);
mfc_write(dev, dev->dma_base[BANK1_CTX],
S5P_FIMV_RISC_BASE_ADDRESS_V6);
mfc_debug(2, "Base Address : %pad\n",
&dev->dma_base[BANK1_CTX]);
} else {
mfc_write(dev, dev->bank1, S5P_FIMV_MC_DRAMBASE_ADR_A);
mfc_write(dev, dev->bank2, S5P_FIMV_MC_DRAMBASE_ADR_B);
mfc_write(dev, dev->dma_base[BANK1_CTX],
S5P_FIMV_MC_DRAMBASE_ADR_A);
mfc_write(dev, dev->dma_base[BANK2_CTX],
S5P_FIMV_MC_DRAMBASE_ADR_B);
mfc_debug(2, "Bank1: %pad, Bank2: %pad\n",
&dev->bank1, &dev->bank2);
&dev->dma_base[BANK1_CTX], &dev->dma_base[BANK2_CTX]);
}
}

View File

@ -30,8 +30,8 @@
#include <linux/mm.h>
#include <linux/sched.h>
#define OFFSETA(x) (((x) - dev->bank1) >> MFC_OFFSET_SHIFT)
#define OFFSETB(x) (((x) - dev->bank2) >> MFC_OFFSET_SHIFT)
#define OFFSETA(x) (((x) - dev->dma_base[BANK1_CTX]) >> MFC_OFFSET_SHIFT)
#define OFFSETB(x) (((x) - dev->dma_base[BANK2_CTX]) >> MFC_OFFSET_SHIFT)
/* Allocate temporary buffers for decoding */
static int s5p_mfc_alloc_dec_temp_buffers_v5(struct s5p_mfc_ctx *ctx)
@ -41,8 +41,8 @@ static int s5p_mfc_alloc_dec_temp_buffers_v5(struct s5p_mfc_ctx *ctx)
int ret;
ctx->dsc.size = buf_size->dsc;
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX], dev->bank1,
&ctx->dsc);
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->dma_base[BANK1_CTX], &ctx->dsc);
if (ret) {
mfc_err("Failed to allocate temporary buffer\n");
return ret;
@ -174,7 +174,7 @@ static int s5p_mfc_alloc_codec_buffers_v5(struct s5p_mfc_ctx *ctx)
if (ctx->bank1.size > 0) {
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->bank1, &ctx->bank1);
dev->dma_base[BANK1_CTX], &ctx->bank1);
if (ret) {
mfc_err("Failed to allocate Bank1 temporary buffer\n");
return ret;
@ -184,7 +184,7 @@ static int s5p_mfc_alloc_codec_buffers_v5(struct s5p_mfc_ctx *ctx)
/* Allocate only if memory from bank 2 is necessary */
if (ctx->bank2.size > 0) {
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK2_CTX],
dev->bank2, &ctx->bank2);
dev->dma_base[BANK2_CTX], &ctx->bank2);
if (ret) {
mfc_err("Failed to allocate Bank2 temporary buffer\n");
s5p_mfc_release_priv_buf(ctx->dev->mem_dev[BANK1_CTX],
@ -216,8 +216,8 @@ static int s5p_mfc_alloc_instance_buffer_v5(struct s5p_mfc_ctx *ctx)
else
ctx->ctx.size = buf_size->non_h264_ctx;
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX], dev->bank1,
&ctx->ctx);
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->dma_base[BANK1_CTX], &ctx->ctx);
if (ret) {
mfc_err("Failed to allocate instance buffer\n");
return ret;
@ -230,8 +230,8 @@ static int s5p_mfc_alloc_instance_buffer_v5(struct s5p_mfc_ctx *ctx)
/* Initialize shared memory */
ctx->shm.size = buf_size->shm;
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX], dev->bank1,
&ctx->shm);
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->dma_base[BANK1_CTX], &ctx->shm);
if (ret) {
mfc_err("Failed to allocate shared memory buffer\n");
s5p_mfc_release_priv_buf(dev->mem_dev[BANK1_CTX], &ctx->ctx);
@ -239,7 +239,7 @@ static int s5p_mfc_alloc_instance_buffer_v5(struct s5p_mfc_ctx *ctx)
}
/* shared memory offset only keeps the offset from base (port a) */
ctx->shm.ofs = ctx->shm.dma - dev->bank1;
ctx->shm.ofs = ctx->shm.dma - dev->dma_base[BANK1_CTX];
BUG_ON(ctx->shm.ofs & ((1 << MFC_BANK1_ALIGN_ORDER) - 1));
memset(ctx->shm.virt, 0, buf_size->shm);
@ -538,10 +538,10 @@ static void s5p_mfc_get_enc_frame_buffer_v5(struct s5p_mfc_ctx *ctx,
{
struct s5p_mfc_dev *dev = ctx->dev;
*y_addr = dev->bank2 + (mfc_read(dev, S5P_FIMV_ENCODED_Y_ADDR)
<< MFC_OFFSET_SHIFT);
*c_addr = dev->bank2 + (mfc_read(dev, S5P_FIMV_ENCODED_C_ADDR)
<< MFC_OFFSET_SHIFT);
*y_addr = dev->dma_base[BANK2_CTX] +
(mfc_read(dev, S5P_FIMV_ENCODED_Y_ADDR) << MFC_OFFSET_SHIFT);
*c_addr = dev->dma_base[BANK2_CTX] +
(mfc_read(dev, S5P_FIMV_ENCODED_C_ADDR) << MFC_OFFSET_SHIFT);
}
/* Set encoding ref & codec buffer */
@ -1218,7 +1218,8 @@ static int s5p_mfc_run_enc_frame(struct s5p_mfc_ctx *ctx)
}
if (list_empty(&ctx->src_queue)) {
/* send null frame */
s5p_mfc_set_enc_frame_buffer_v5(ctx, dev->bank2, dev->bank2);
s5p_mfc_set_enc_frame_buffer_v5(ctx, dev->dma_base[BANK2_CTX],
dev->dma_base[BANK2_CTX]);
src_mb = NULL;
} else {
src_mb = list_entry(ctx->src_queue.next, struct s5p_mfc_buf,
@ -1226,8 +1227,9 @@ static int s5p_mfc_run_enc_frame(struct s5p_mfc_ctx *ctx)
src_mb->flags |= MFC_BUF_FLAG_USED;
if (src_mb->b->vb2_buf.planes[0].bytesused == 0) {
/* send null frame */
s5p_mfc_set_enc_frame_buffer_v5(ctx, dev->bank2,
dev->bank2);
s5p_mfc_set_enc_frame_buffer_v5(ctx,
dev->dma_base[BANK2_CTX],
dev->dma_base[BANK2_CTX]);
ctx->state = MFCINST_FINISHING;
} else {
src_y_addr = vb2_dma_contig_plane_dma_addr(

View File

@ -240,7 +240,7 @@ static int s5p_mfc_alloc_codec_buffers_v6(struct s5p_mfc_ctx *ctx)
/* Allocate only if memory from bank 1 is necessary */
if (ctx->bank1.size > 0) {
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->bank1, &ctx->bank1);
dev->dma_base[BANK1_CTX], &ctx->bank1);
if (ret) {
mfc_err("Failed to allocate Bank1 memory\n");
return ret;
@ -292,8 +292,8 @@ static int s5p_mfc_alloc_instance_buffer_v6(struct s5p_mfc_ctx *ctx)
break;
}
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX], dev->bank1,
&ctx->ctx);
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->dma_base[BANK1_CTX], &ctx->ctx);
if (ret) {
mfc_err("Failed to allocate instance buffer\n");
return ret;
@ -322,8 +322,8 @@ static int s5p_mfc_alloc_dev_context_buffer_v6(struct s5p_mfc_dev *dev)
mfc_debug_enter();
dev->ctx_buf.size = buf_size->dev_ctx;
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX], dev->bank1,
&dev->ctx_buf);
ret = s5p_mfc_alloc_priv_buf(dev->mem_dev[BANK1_CTX],
dev->dma_base[BANK1_CTX], &dev->ctx_buf);
if (ret) {
mfc_err("Failed to allocate device context buffer\n");
return ret;