crypto: ccp - CCP SHA crypto API support
These routines provide crypto API support for SHA1, SHA224 and SHA256 on the AMD CCP. HMAC support for these SHA modes is also provided. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
1d6b8a6f64
commit
0ab0a1d505
|
@ -0,0 +1,497 @@
|
|||
/*
|
||||
* AMD Cryptographic Coprocessor (CCP) SHA crypto API support
|
||||
*
|
||||
* Copyright (C) 2013 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/hash.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/sha.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
|
||||
#include "ccp-crypto.h"
|
||||
|
||||
|
||||
struct ccp_sha_result {
|
||||
struct completion completion;
|
||||
int err;
|
||||
};
|
||||
|
||||
static void ccp_sync_hash_complete(struct crypto_async_request *req, int err)
|
||||
{
|
||||
struct ccp_sha_result *result = req->data;
|
||||
|
||||
if (err == -EINPROGRESS)
|
||||
return;
|
||||
|
||||
result->err = err;
|
||||
complete(&result->completion);
|
||||
}
|
||||
|
||||
static int ccp_sync_hash(struct crypto_ahash *tfm, u8 *buf,
|
||||
struct scatterlist *sg, unsigned int len)
|
||||
{
|
||||
struct ccp_sha_result result;
|
||||
struct ahash_request *req;
|
||||
int ret;
|
||||
|
||||
init_completion(&result.completion);
|
||||
|
||||
req = ahash_request_alloc(tfm, GFP_KERNEL);
|
||||
if (!req)
|
||||
return -ENOMEM;
|
||||
|
||||
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
||||
ccp_sync_hash_complete, &result);
|
||||
ahash_request_set_crypt(req, sg, buf, len);
|
||||
|
||||
ret = crypto_ahash_digest(req);
|
||||
if ((ret == -EINPROGRESS) || (ret == -EBUSY)) {
|
||||
ret = wait_for_completion_interruptible(&result.completion);
|
||||
if (!ret)
|
||||
ret = result.err;
|
||||
}
|
||||
|
||||
ahash_request_free(req);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_sha_finish_hmac(struct crypto_async_request *async_req)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(async_req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct scatterlist sg[2];
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
|
||||
sg_init_table(sg, ARRAY_SIZE(sg));
|
||||
sg_set_buf(&sg[0], ctx->u.sha.opad, block_size);
|
||||
sg_set_buf(&sg[1], req->result, digest_size);
|
||||
|
||||
return ccp_sync_hash(ctx->u.sha.hmac_tfm, req->result, sg,
|
||||
block_size + digest_size);
|
||||
}
|
||||
|
||||
static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
|
||||
{
|
||||
struct ahash_request *req = ahash_request_cast(async_req);
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
|
||||
if (ret)
|
||||
goto e_free;
|
||||
|
||||
if (rctx->hash_rem) {
|
||||
/* Save remaining data to buffer */
|
||||
scatterwalk_map_and_copy(rctx->buf, rctx->cmd.u.sha.src,
|
||||
rctx->hash_cnt, rctx->hash_rem, 0);
|
||||
rctx->buf_count = rctx->hash_rem;
|
||||
} else
|
||||
rctx->buf_count = 0;
|
||||
|
||||
memcpy(req->result, rctx->ctx, digest_size);
|
||||
|
||||
/* If we're doing an HMAC, we need to perform that on the final op */
|
||||
if (rctx->final && ctx->u.sha.key_len)
|
||||
ret = ccp_sha_finish_hmac(async_req);
|
||||
|
||||
e_free:
|
||||
sg_free_table(&rctx->data_sg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
|
||||
unsigned int final)
|
||||
{
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct scatterlist *sg;
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int len, sg_count;
|
||||
int ret;
|
||||
|
||||
if (!final && ((nbytes + rctx->buf_count) <= block_size)) {
|
||||
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
|
||||
0, nbytes, 0);
|
||||
rctx->buf_count += nbytes;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
len = rctx->buf_count + nbytes;
|
||||
|
||||
rctx->final = final;
|
||||
rctx->hash_cnt = final ? len : len & ~(block_size - 1);
|
||||
rctx->hash_rem = final ? 0 : len & (block_size - 1);
|
||||
if (!final && (rctx->hash_cnt == len)) {
|
||||
/* CCP can't do zero length final, so keep some data around */
|
||||
rctx->hash_cnt -= block_size;
|
||||
rctx->hash_rem = block_size;
|
||||
}
|
||||
|
||||
/* Initialize the context scatterlist */
|
||||
sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
|
||||
|
||||
/* Build the data scatterlist table - allocate enough entries for all
|
||||
* possible data pieces (hmac ipad, buffer, input data)
|
||||
*/
|
||||
sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
|
||||
ret = sg_alloc_table(&rctx->data_sg, sg_count, GFP_KERNEL);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sg = NULL;
|
||||
if (rctx->first && ctx->u.sha.key_len) {
|
||||
rctx->hash_cnt += block_size;
|
||||
|
||||
sg_init_one(&rctx->pad_sg, ctx->u.sha.ipad, block_size);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
|
||||
}
|
||||
|
||||
if (rctx->buf_count) {
|
||||
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
|
||||
}
|
||||
|
||||
if (nbytes)
|
||||
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
|
||||
|
||||
if (sg)
|
||||
sg_mark_end(sg);
|
||||
|
||||
rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
|
||||
|
||||
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
||||
INIT_LIST_HEAD(&rctx->cmd.entry);
|
||||
rctx->cmd.engine = CCP_ENGINE_SHA;
|
||||
rctx->cmd.u.sha.type = rctx->type;
|
||||
rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
|
||||
rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
|
||||
rctx->cmd.u.sha.src = (sg) ? rctx->data_sg.sgl : NULL;
|
||||
rctx->cmd.u.sha.src_len = rctx->hash_cnt;
|
||||
rctx->cmd.u.sha.final = rctx->final;
|
||||
rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
|
||||
|
||||
rctx->first = 0;
|
||||
|
||||
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_sha_init(struct ahash_request *req)
|
||||
{
|
||||
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
||||
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
|
||||
struct ccp_crypto_ahash_alg *alg =
|
||||
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
|
||||
|
||||
memset(rctx, 0, sizeof(*rctx));
|
||||
|
||||
memcpy(rctx->ctx, alg->init, sizeof(rctx->ctx));
|
||||
rctx->type = alg->type;
|
||||
rctx->first = 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_sha_update(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_sha_update(req, req->nbytes, 0);
|
||||
}
|
||||
|
||||
static int ccp_sha_final(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_sha_update(req, 0, 1);
|
||||
}
|
||||
|
||||
static int ccp_sha_finup(struct ahash_request *req)
|
||||
{
|
||||
return ccp_do_sha_update(req, req->nbytes, 1);
|
||||
}
|
||||
|
||||
static int ccp_sha_digest(struct ahash_request *req)
|
||||
{
|
||||
ccp_sha_init(req);
|
||||
|
||||
return ccp_do_sha_update(req, req->nbytes, 1);
|
||||
}
|
||||
|
||||
static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
|
||||
unsigned int key_len)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
|
||||
struct scatterlist sg;
|
||||
unsigned int block_size =
|
||||
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
||||
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
||||
int i, ret;
|
||||
|
||||
/* Set to zero until complete */
|
||||
ctx->u.sha.key_len = 0;
|
||||
|
||||
/* Clear key area to provide zero padding for keys smaller
|
||||
* than the block size
|
||||
*/
|
||||
memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
|
||||
|
||||
if (key_len > block_size) {
|
||||
/* Must hash the input key */
|
||||
sg_init_one(&sg, key, key_len);
|
||||
ret = ccp_sync_hash(tfm, ctx->u.sha.key, &sg, key_len);
|
||||
if (ret) {
|
||||
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
key_len = digest_size;
|
||||
} else
|
||||
memcpy(ctx->u.sha.key, key, key_len);
|
||||
|
||||
for (i = 0; i < block_size; i++) {
|
||||
ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
|
||||
ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
|
||||
}
|
||||
|
||||
ctx->u.sha.key_len = key_len;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ccp_sha_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
||||
|
||||
ctx->complete = ccp_sha_complete;
|
||||
ctx->u.sha.key_len = 0;
|
||||
|
||||
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
}
|
||||
|
||||
static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
|
||||
struct crypto_ahash *hmac_tfm;
|
||||
|
||||
hmac_tfm = crypto_alloc_ahash(alg->child_alg,
|
||||
CRYPTO_ALG_TYPE_AHASH, 0);
|
||||
if (IS_ERR(hmac_tfm)) {
|
||||
pr_warn("could not load driver %s need for HMAC support\n",
|
||||
alg->child_alg);
|
||||
return PTR_ERR(hmac_tfm);
|
||||
}
|
||||
|
||||
ctx->u.sha.hmac_tfm = hmac_tfm;
|
||||
|
||||
return ccp_sha_cra_init(tfm);
|
||||
}
|
||||
|
||||
static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
|
||||
{
|
||||
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
||||
|
||||
if (ctx->u.sha.hmac_tfm)
|
||||
crypto_free_ahash(ctx->u.sha.hmac_tfm);
|
||||
|
||||
ccp_sha_cra_exit(tfm);
|
||||
}
|
||||
|
||||
static const u32 sha1_init[CCP_SHA_CTXSIZE / sizeof(u32)] = {
|
||||
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
|
||||
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
|
||||
cpu_to_be32(SHA1_H4), 0, 0, 0,
|
||||
};
|
||||
|
||||
static const u32 sha224_init[CCP_SHA_CTXSIZE / sizeof(u32)] = {
|
||||
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
|
||||
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
|
||||
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
|
||||
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
|
||||
};
|
||||
|
||||
static const u32 sha256_init[CCP_SHA_CTXSIZE / sizeof(u32)] = {
|
||||
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
|
||||
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
|
||||
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
|
||||
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
|
||||
};
|
||||
|
||||
struct ccp_sha_def {
|
||||
const char *name;
|
||||
const char *drv_name;
|
||||
const u32 *init;
|
||||
enum ccp_sha_type type;
|
||||
u32 digest_size;
|
||||
u32 block_size;
|
||||
};
|
||||
|
||||
static struct ccp_sha_def sha_algs[] = {
|
||||
{
|
||||
.name = "sha1",
|
||||
.drv_name = "sha1-ccp",
|
||||
.init = sha1_init,
|
||||
.type = CCP_SHA_TYPE_1,
|
||||
.digest_size = SHA1_DIGEST_SIZE,
|
||||
.block_size = SHA1_BLOCK_SIZE,
|
||||
},
|
||||
{
|
||||
.name = "sha224",
|
||||
.drv_name = "sha224-ccp",
|
||||
.init = sha224_init,
|
||||
.type = CCP_SHA_TYPE_224,
|
||||
.digest_size = SHA224_DIGEST_SIZE,
|
||||
.block_size = SHA224_BLOCK_SIZE,
|
||||
},
|
||||
{
|
||||
.name = "sha256",
|
||||
.drv_name = "sha256-ccp",
|
||||
.init = sha256_init,
|
||||
.type = CCP_SHA_TYPE_256,
|
||||
.digest_size = SHA256_DIGEST_SIZE,
|
||||
.block_size = SHA256_BLOCK_SIZE,
|
||||
},
|
||||
};
|
||||
|
||||
static int ccp_register_hmac_alg(struct list_head *head,
|
||||
const struct ccp_sha_def *def,
|
||||
const struct ccp_crypto_ahash_alg *base_alg)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ccp_alg;
|
||||
struct ahash_alg *alg;
|
||||
struct hash_alg_common *halg;
|
||||
struct crypto_alg *base;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Copy the base algorithm and only change what's necessary */
|
||||
memcpy(ccp_alg, base_alg, sizeof(*ccp_alg));
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
|
||||
strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
alg->setkey = ccp_sha_setkey;
|
||||
|
||||
halg = &alg->halg;
|
||||
|
||||
base = &halg->base;
|
||||
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
|
||||
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
|
||||
def->drv_name);
|
||||
base->cra_init = ccp_hmac_sha_cra_init;
|
||||
base->cra_exit = ccp_hmac_sha_cra_exit;
|
||||
|
||||
ret = crypto_register_ahash(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ahash algorithm registration error (%d)\n",
|
||||
base->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int ccp_register_sha_alg(struct list_head *head,
|
||||
const struct ccp_sha_def *def)
|
||||
{
|
||||
struct ccp_crypto_ahash_alg *ccp_alg;
|
||||
struct ahash_alg *alg;
|
||||
struct hash_alg_common *halg;
|
||||
struct crypto_alg *base;
|
||||
int ret;
|
||||
|
||||
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
||||
if (!ccp_alg)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&ccp_alg->entry);
|
||||
|
||||
ccp_alg->init = def->init;
|
||||
ccp_alg->type = def->type;
|
||||
|
||||
alg = &ccp_alg->alg;
|
||||
alg->init = ccp_sha_init;
|
||||
alg->update = ccp_sha_update;
|
||||
alg->final = ccp_sha_final;
|
||||
alg->finup = ccp_sha_finup;
|
||||
alg->digest = ccp_sha_digest;
|
||||
|
||||
halg = &alg->halg;
|
||||
halg->digestsize = def->digest_size;
|
||||
|
||||
base = &halg->base;
|
||||
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
|
||||
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
|
||||
def->drv_name);
|
||||
base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
|
||||
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
||||
CRYPTO_ALG_NEED_FALLBACK;
|
||||
base->cra_blocksize = def->block_size;
|
||||
base->cra_ctxsize = sizeof(struct ccp_ctx);
|
||||
base->cra_priority = CCP_CRA_PRIORITY;
|
||||
base->cra_type = &crypto_ahash_type;
|
||||
base->cra_init = ccp_sha_cra_init;
|
||||
base->cra_exit = ccp_sha_cra_exit;
|
||||
base->cra_module = THIS_MODULE;
|
||||
|
||||
ret = crypto_register_ahash(alg);
|
||||
if (ret) {
|
||||
pr_err("%s ahash algorithm registration error (%d)\n",
|
||||
base->cra_name, ret);
|
||||
kfree(ccp_alg);
|
||||
return ret;
|
||||
}
|
||||
|
||||
list_add(&ccp_alg->entry, head);
|
||||
|
||||
ret = ccp_register_hmac_alg(head, def, ccp_alg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int ccp_register_sha_algs(struct list_head *head)
|
||||
{
|
||||
int i, ret;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
|
||||
ret = ccp_register_sha_alg(head, &sha_algs[i]);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue