mm: multi-gen LRU: admin guide
Add an admin guide. Link: https://lkml.kernel.org/r/20220918080010.2920238-14-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This commit is contained in:
parent
d6c3af7d8a
commit
07017acb06
|
@ -32,6 +32,7 @@ the Linux memory management.
|
|||
idle_page_tracking
|
||||
ksm
|
||||
memory-hotplug
|
||||
multigen_lru
|
||||
nommu-mmap
|
||||
numa_memory_policy
|
||||
numaperf
|
||||
|
|
|
@ -0,0 +1,162 @@
|
|||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
=============
|
||||
Multi-Gen LRU
|
||||
=============
|
||||
The multi-gen LRU is an alternative LRU implementation that optimizes
|
||||
page reclaim and improves performance under memory pressure. Page
|
||||
reclaim decides the kernel's caching policy and ability to overcommit
|
||||
memory. It directly impacts the kswapd CPU usage and RAM efficiency.
|
||||
|
||||
Quick start
|
||||
===========
|
||||
Build the kernel with the following configurations.
|
||||
|
||||
* ``CONFIG_LRU_GEN=y``
|
||||
* ``CONFIG_LRU_GEN_ENABLED=y``
|
||||
|
||||
All set!
|
||||
|
||||
Runtime options
|
||||
===============
|
||||
``/sys/kernel/mm/lru_gen/`` contains stable ABIs described in the
|
||||
following subsections.
|
||||
|
||||
Kill switch
|
||||
-----------
|
||||
``enabled`` accepts different values to enable or disable the
|
||||
following components. Its default value depends on
|
||||
``CONFIG_LRU_GEN_ENABLED``. All the components should be enabled
|
||||
unless some of them have unforeseen side effects. Writing to
|
||||
``enabled`` has no effect when a component is not supported by the
|
||||
hardware, and valid values will be accepted even when the main switch
|
||||
is off.
|
||||
|
||||
====== ===============================================================
|
||||
Values Components
|
||||
====== ===============================================================
|
||||
0x0001 The main switch for the multi-gen LRU.
|
||||
0x0002 Clearing the accessed bit in leaf page table entries in large
|
||||
batches, when MMU sets it (e.g., on x86). This behavior can
|
||||
theoretically worsen lock contention (mmap_lock). If it is
|
||||
disabled, the multi-gen LRU will suffer a minor performance
|
||||
degradation for workloads that contiguously map hot pages,
|
||||
whose accessed bits can be otherwise cleared by fewer larger
|
||||
batches.
|
||||
0x0004 Clearing the accessed bit in non-leaf page table entries as
|
||||
well, when MMU sets it (e.g., on x86). This behavior was not
|
||||
verified on x86 varieties other than Intel and AMD. If it is
|
||||
disabled, the multi-gen LRU will suffer a negligible
|
||||
performance degradation.
|
||||
[yYnN] Apply to all the components above.
|
||||
====== ===============================================================
|
||||
|
||||
E.g.,
|
||||
::
|
||||
|
||||
echo y >/sys/kernel/mm/lru_gen/enabled
|
||||
cat /sys/kernel/mm/lru_gen/enabled
|
||||
0x0007
|
||||
echo 5 >/sys/kernel/mm/lru_gen/enabled
|
||||
cat /sys/kernel/mm/lru_gen/enabled
|
||||
0x0005
|
||||
|
||||
Thrashing prevention
|
||||
--------------------
|
||||
Personal computers are more sensitive to thrashing because it can
|
||||
cause janks (lags when rendering UI) and negatively impact user
|
||||
experience. The multi-gen LRU offers thrashing prevention to the
|
||||
majority of laptop and desktop users who do not have ``oomd``.
|
||||
|
||||
Users can write ``N`` to ``min_ttl_ms`` to prevent the working set of
|
||||
``N`` milliseconds from getting evicted. The OOM killer is triggered
|
||||
if this working set cannot be kept in memory. In other words, this
|
||||
option works as an adjustable pressure relief valve, and when open, it
|
||||
terminates applications that are hopefully not being used.
|
||||
|
||||
Based on the average human detectable lag (~100ms), ``N=1000`` usually
|
||||
eliminates intolerable janks due to thrashing. Larger values like
|
||||
``N=3000`` make janks less noticeable at the risk of premature OOM
|
||||
kills.
|
||||
|
||||
The default value ``0`` means disabled.
|
||||
|
||||
Experimental features
|
||||
=====================
|
||||
``/sys/kernel/debug/lru_gen`` accepts commands described in the
|
||||
following subsections. Multiple command lines are supported, so does
|
||||
concatenation with delimiters ``,`` and ``;``.
|
||||
|
||||
``/sys/kernel/debug/lru_gen_full`` provides additional stats for
|
||||
debugging. ``CONFIG_LRU_GEN_STATS=y`` keeps historical stats from
|
||||
evicted generations in this file.
|
||||
|
||||
Working set estimation
|
||||
----------------------
|
||||
Working set estimation measures how much memory an application needs
|
||||
in a given time interval, and it is usually done with little impact on
|
||||
the performance of the application. E.g., data centers want to
|
||||
optimize job scheduling (bin packing) to improve memory utilizations.
|
||||
When a new job comes in, the job scheduler needs to find out whether
|
||||
each server it manages can allocate a certain amount of memory for
|
||||
this new job before it can pick a candidate. To do so, the job
|
||||
scheduler needs to estimate the working sets of the existing jobs.
|
||||
|
||||
When it is read, ``lru_gen`` returns a histogram of numbers of pages
|
||||
accessed over different time intervals for each memcg and node.
|
||||
``MAX_NR_GENS`` decides the number of bins for each histogram. The
|
||||
histograms are noncumulative.
|
||||
::
|
||||
|
||||
memcg memcg_id memcg_path
|
||||
node node_id
|
||||
min_gen_nr age_in_ms nr_anon_pages nr_file_pages
|
||||
...
|
||||
max_gen_nr age_in_ms nr_anon_pages nr_file_pages
|
||||
|
||||
Each bin contains an estimated number of pages that have been accessed
|
||||
within ``age_in_ms``. E.g., ``min_gen_nr`` contains the coldest pages
|
||||
and ``max_gen_nr`` contains the hottest pages, since ``age_in_ms`` of
|
||||
the former is the largest and that of the latter is the smallest.
|
||||
|
||||
Users can write the following command to ``lru_gen`` to create a new
|
||||
generation ``max_gen_nr+1``:
|
||||
|
||||
``+ memcg_id node_id max_gen_nr [can_swap [force_scan]]``
|
||||
|
||||
``can_swap`` defaults to the swap setting and, if it is set to ``1``,
|
||||
it forces the scan of anon pages when swap is off, and vice versa.
|
||||
``force_scan`` defaults to ``1`` and, if it is set to ``0``, it
|
||||
employs heuristics to reduce the overhead, which is likely to reduce
|
||||
the coverage as well.
|
||||
|
||||
A typical use case is that a job scheduler runs this command at a
|
||||
certain time interval to create new generations, and it ranks the
|
||||
servers it manages based on the sizes of their cold pages defined by
|
||||
this time interval.
|
||||
|
||||
Proactive reclaim
|
||||
-----------------
|
||||
Proactive reclaim induces page reclaim when there is no memory
|
||||
pressure. It usually targets cold pages only. E.g., when a new job
|
||||
comes in, the job scheduler wants to proactively reclaim cold pages on
|
||||
the server it selected, to improve the chance of successfully landing
|
||||
this new job.
|
||||
|
||||
Users can write the following command to ``lru_gen`` to evict
|
||||
generations less than or equal to ``min_gen_nr``.
|
||||
|
||||
``- memcg_id node_id min_gen_nr [swappiness [nr_to_reclaim]]``
|
||||
|
||||
``min_gen_nr`` should be less than ``max_gen_nr-1``, since
|
||||
``max_gen_nr`` and ``max_gen_nr-1`` are not fully aged (equivalent to
|
||||
the active list) and therefore cannot be evicted. ``swappiness``
|
||||
overrides the default value in ``/proc/sys/vm/swappiness``.
|
||||
``nr_to_reclaim`` limits the number of pages to evict.
|
||||
|
||||
A typical use case is that a job scheduler runs this command before it
|
||||
tries to land a new job on a server. If it fails to materialize enough
|
||||
cold pages because of the overestimation, it retries on the next
|
||||
server according to the ranking result obtained from the working set
|
||||
estimation step. This less forceful approach limits the impacts on the
|
||||
existing jobs.
|
|
@ -1125,7 +1125,8 @@ config LRU_GEN
|
|||
# make sure folio->flags has enough spare bits
|
||||
depends on 64BIT || !SPARSEMEM || SPARSEMEM_VMEMMAP
|
||||
help
|
||||
A high performance LRU implementation to overcommit memory.
|
||||
A high performance LRU implementation to overcommit memory. See
|
||||
Documentation/admin-guide/mm/multigen_lru.rst for details.
|
||||
|
||||
config LRU_GEN_ENABLED
|
||||
bool "Enable by default"
|
||||
|
|
|
@ -5310,6 +5310,7 @@ static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, c
|
|||
return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
|
||||
}
|
||||
|
||||
/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
|
||||
static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
|
||||
const char *buf, size_t len)
|
||||
{
|
||||
|
@ -5343,6 +5344,7 @@ static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, c
|
|||
return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
|
||||
}
|
||||
|
||||
/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
|
||||
static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
|
||||
const char *buf, size_t len)
|
||||
{
|
||||
|
@ -5490,6 +5492,7 @@ static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
|
|||
seq_putc(m, '\n');
|
||||
}
|
||||
|
||||
/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
|
||||
static int lru_gen_seq_show(struct seq_file *m, void *v)
|
||||
{
|
||||
unsigned long seq;
|
||||
|
@ -5648,6 +5651,7 @@ done:
|
|||
return err;
|
||||
}
|
||||
|
||||
/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
|
||||
static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
|
||||
size_t len, loff_t *pos)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue