staging: mt7621-pci: MIPS/ralink: add MT7621 pcie driver

NeilBrown: forward port and hack to work on GNUBEE1

Signed-off-by: John Crispin <blogic@openwrt.org>
Signed-off-by: NeilBrown <neil@brown.name>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
John Crispin 2018-03-15 07:22:35 +11:00 committed by Greg Kroah-Hartman
parent 5259b32936
commit 03f152e31f
4 changed files with 854 additions and 0 deletions

View File

@ -49,3 +49,4 @@ obj-$(CONFIG_GREYBUS) += greybus/
obj-$(CONFIG_BCM2835_VCHIQ) += vc04_services/
obj-$(CONFIG_DRM_VBOXVIDEO) += vboxvideo/
obj-$(CONFIG_PI433) += pi433/
obj-$(CONFIG_SOC_MT7621) += mt7621-pci/

View File

@ -0,0 +1 @@
obj-$(CONFIG_SOC_MT7621) += pci-mt7621.o

View File

@ -0,0 +1,12 @@
- general code review and cleanup
- can this be converted to not require PCI_DRIVERS_LEGACY ??
The irq returned by pcibios_map_irq is a "hwirq" (hardware irq number)
and pci_assign_irq() assigns this directly to dev->irq, which
expects a "virq" (virtual irq number). These numbers are different
on MIPS. There is a gross hack to make it work on one
specific platform, so it can be tested.
- Should this be merged with arch/mips/pci/pci-mt7620.c ??
- ensure device-tree requirements are documented
Cc: NeilBrown <neil@brown.name>

View File

@ -0,0 +1,840 @@
/**************************************************************************
*
* BRIEF MODULE DESCRIPTION
* PCI init for Ralink RT2880 solution
*
* Copyright 2007 Ralink Inc. (bruce_chang@ralinktech.com.tw)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
**************************************************************************
* May 2007 Bruce Chang
* Initial Release
*
* May 2009 Bruce Chang
* support RT2880/RT3883 PCIe
*
* May 2011 Bruce Chang
* support RT6855/MT7620 PCIe
*
**************************************************************************
*/
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/version.h>
#include <asm/pci.h>
#include <asm/io.h>
#include <asm/mips-cm.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/of_pci.h>
#include <linux/platform_device.h>
#include <ralink_regs.h>
extern void pcie_phy_init(void);
extern void chk_phy_pll(void);
/*
* These functions and structures provide the BIOS scan and mapping of the PCI
* devices.
*/
#define CONFIG_PCIE_PORT0
#define CONFIG_PCIE_PORT1
#define CONFIG_PCIE_PORT2
#define RALINK_PCIE0_CLK_EN (1<<24)
#define RALINK_PCIE1_CLK_EN (1<<25)
#define RALINK_PCIE2_CLK_EN (1<<26)
#define RALINK_PCI_CONFIG_ADDR 0x20
#define RALINK_PCI_CONFIG_DATA_VIRTUAL_REG 0x24
#define SURFBOARDINT_PCIE0 11 /* PCIE0 */
#define RALINK_INT_PCIE0 SURFBOARDINT_PCIE0
#define RALINK_INT_PCIE1 SURFBOARDINT_PCIE1
#define RALINK_INT_PCIE2 SURFBOARDINT_PCIE2
#define SURFBOARDINT_PCIE1 31 /* PCIE1 */
#define SURFBOARDINT_PCIE2 32 /* PCIE2 */
#define RALINK_PCI_MEMBASE *(volatile u32 *)(RALINK_PCI_BASE + 0x0028)
#define RALINK_PCI_IOBASE *(volatile u32 *)(RALINK_PCI_BASE + 0x002C)
#define RALINK_PCIE0_RST (1<<24)
#define RALINK_PCIE1_RST (1<<25)
#define RALINK_PCIE2_RST (1<<26)
#define RALINK_SYSCTL_BASE 0xBE000000
#define RALINK_PCI_PCICFG_ADDR *(volatile u32 *)(RALINK_PCI_BASE + 0x0000)
#define RALINK_PCI_PCIMSK_ADDR *(volatile u32 *)(RALINK_PCI_BASE + 0x000C)
#define RALINK_PCI_BASE 0xBE140000
#define RALINK_PCIEPHY_P0P1_CTL_OFFSET (RALINK_PCI_BASE + 0x9000)
#define RT6855_PCIE0_OFFSET 0x2000
#define RT6855_PCIE1_OFFSET 0x3000
#define RT6855_PCIE2_OFFSET 0x4000
#define RALINK_PCI0_BAR0SETUP_ADDR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0010)
#define RALINK_PCI0_IMBASEBAR0_ADDR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0018)
#define RALINK_PCI0_ID *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0030)
#define RALINK_PCI0_CLASS *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0034)
#define RALINK_PCI0_SUBID *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0038)
#define RALINK_PCI0_STATUS *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0050)
#define RALINK_PCI0_DERR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0060)
#define RALINK_PCI0_ECRC *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE0_OFFSET + 0x0064)
#define RALINK_PCI1_BAR0SETUP_ADDR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0010)
#define RALINK_PCI1_IMBASEBAR0_ADDR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0018)
#define RALINK_PCI1_ID *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0030)
#define RALINK_PCI1_CLASS *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0034)
#define RALINK_PCI1_SUBID *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0038)
#define RALINK_PCI1_STATUS *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0050)
#define RALINK_PCI1_DERR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0060)
#define RALINK_PCI1_ECRC *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE1_OFFSET + 0x0064)
#define RALINK_PCI2_BAR0SETUP_ADDR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0010)
#define RALINK_PCI2_IMBASEBAR0_ADDR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0018)
#define RALINK_PCI2_ID *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0030)
#define RALINK_PCI2_CLASS *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0034)
#define RALINK_PCI2_SUBID *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0038)
#define RALINK_PCI2_STATUS *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0050)
#define RALINK_PCI2_DERR *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0060)
#define RALINK_PCI2_ECRC *(volatile u32 *)(RALINK_PCI_BASE + RT6855_PCIE2_OFFSET + 0x0064)
#define RALINK_PCIEPHY_P0P1_CTL_OFFSET (RALINK_PCI_BASE + 0x9000)
#define RALINK_PCIEPHY_P2_CTL_OFFSET (RALINK_PCI_BASE + 0xA000)
#define MV_WRITE(ofs, data) \
*(volatile u32 *)(RALINK_PCI_BASE+(ofs)) = cpu_to_le32(data)
#define MV_READ(ofs, data) \
*(data) = le32_to_cpu(*(volatile u32 *)(RALINK_PCI_BASE+(ofs)))
#define MV_READ_DATA(ofs) \
le32_to_cpu(*(volatile u32 *)(RALINK_PCI_BASE+(ofs)))
#define MV_WRITE_16(ofs, data) \
*(volatile u16 *)(RALINK_PCI_BASE+(ofs)) = cpu_to_le16(data)
#define MV_READ_16(ofs, data) \
*(data) = le16_to_cpu(*(volatile u16 *)(RALINK_PCI_BASE+(ofs)))
#define MV_WRITE_8(ofs, data) \
*(volatile u8 *)(RALINK_PCI_BASE+(ofs)) = data
#define MV_READ_8(ofs, data) \
*(data) = *(volatile u8 *)(RALINK_PCI_BASE+(ofs))
#define RALINK_PCI_MM_MAP_BASE 0x60000000
#define RALINK_PCI_IO_MAP_BASE 0x1e160000
#define RALINK_SYSTEM_CONTROL_BASE 0xbe000000
#define GPIO_PERST
#define ASSERT_SYSRST_PCIE(val) do { \
if (*(unsigned int *)(0xbe00000c) == 0x00030101) \
RALINK_RSTCTRL |= val; \
else \
RALINK_RSTCTRL &= ~val; \
} while(0)
#define DEASSERT_SYSRST_PCIE(val) do { \
if (*(unsigned int *)(0xbe00000c) == 0x00030101) \
RALINK_RSTCTRL &= ~val; \
else \
RALINK_RSTCTRL |= val; \
} while(0)
#define RALINK_SYSCFG1 *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x14)
#define RALINK_CLKCFG1 *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x30)
#define RALINK_RSTCTRL *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x34)
#define RALINK_GPIOMODE *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x60)
#define RALINK_PCIE_CLK_GEN *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x7c)
#define RALINK_PCIE_CLK_GEN1 *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x80)
#define PPLL_CFG1 *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0x9c)
#define PPLL_DRV *(unsigned int *)(RALINK_SYSTEM_CONTROL_BASE + 0xa0)
//RALINK_SYSCFG1 bit
#define RALINK_PCI_HOST_MODE_EN (1<<7)
#define RALINK_PCIE_RC_MODE_EN (1<<8)
//RALINK_RSTCTRL bit
#define RALINK_PCIE_RST (1<<23)
#define RALINK_PCI_RST (1<<24)
//RALINK_CLKCFG1 bit
#define RALINK_PCI_CLK_EN (1<<19)
#define RALINK_PCIE_CLK_EN (1<<21)
//RALINK_GPIOMODE bit
#define PCI_SLOTx2 (1<<11)
#define PCI_SLOTx1 (2<<11)
//MTK PCIE PLL bit
#define PDRV_SW_SET (1<<31)
#define LC_CKDRVPD_ (1<<19)
#define MEMORY_BASE 0x0
static int pcie_link_status = 0;
#define PCI_ACCESS_READ_1 0
#define PCI_ACCESS_READ_2 1
#define PCI_ACCESS_READ_4 2
#define PCI_ACCESS_WRITE_1 3
#define PCI_ACCESS_WRITE_2 4
#define PCI_ACCESS_WRITE_4 5
static int config_access(unsigned char access_type, struct pci_bus *bus,
unsigned int devfn, unsigned int where, u32 * data)
{
unsigned int slot = PCI_SLOT(devfn);
u8 func = PCI_FUNC(devfn);
uint32_t address_reg, data_reg;
unsigned int address;
address_reg = RALINK_PCI_CONFIG_ADDR;
data_reg = RALINK_PCI_CONFIG_DATA_VIRTUAL_REG;
address = (((where&0xF00)>>8)<<24) |(bus->number << 16) | (slot << 11) | (func << 8) | (where & 0xfc) | 0x80000000;
MV_WRITE(address_reg, address);
switch(access_type) {
case PCI_ACCESS_WRITE_1:
MV_WRITE_8(data_reg+(where&0x3), *data);
break;
case PCI_ACCESS_WRITE_2:
MV_WRITE_16(data_reg+(where&0x3), *data);
break;
case PCI_ACCESS_WRITE_4:
MV_WRITE(data_reg, *data);
break;
case PCI_ACCESS_READ_1:
MV_READ_8( data_reg+(where&0x3), data);
break;
case PCI_ACCESS_READ_2:
MV_READ_16(data_reg+(where&0x3), data);
break;
case PCI_ACCESS_READ_4:
MV_READ(data_reg, data);
break;
default:
printk("no specify access type\n");
break;
}
return 0;
}
static int
read_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 * val)
{
return config_access(PCI_ACCESS_READ_1, bus, devfn, (unsigned int)where, (u32 *)val);
}
static int
read_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 * val)
{
return config_access(PCI_ACCESS_READ_2, bus, devfn, (unsigned int)where, (u32 *)val);
}
static int
read_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 * val)
{
return config_access(PCI_ACCESS_READ_4, bus, devfn, (unsigned int)where, (u32 *)val);
}
static int
write_config_byte(struct pci_bus *bus, unsigned int devfn, int where, u8 val)
{
if (config_access(PCI_ACCESS_WRITE_1, bus, devfn, (unsigned int)where, (u32 *)&val))
return -1;
return PCIBIOS_SUCCESSFUL;
}
static int
write_config_word(struct pci_bus *bus, unsigned int devfn, int where, u16 val)
{
if (config_access(PCI_ACCESS_WRITE_2, bus, devfn, where, (u32 *)&val))
return -1;
return PCIBIOS_SUCCESSFUL;
}
static int
write_config_dword(struct pci_bus *bus, unsigned int devfn, int where, u32 val)
{
if (config_access(PCI_ACCESS_WRITE_4, bus, devfn, where, &val))
return -1;
return PCIBIOS_SUCCESSFUL;
}
static int
pci_config_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val)
{
switch (size) {
case 1:
return read_config_byte(bus, devfn, where, (u8 *) val);
case 2:
return read_config_word(bus, devfn, where, (u16 *) val);
default:
return read_config_dword(bus, devfn, where, val);
}
}
static int
pci_config_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val)
{
switch (size) {
case 1:
return write_config_byte(bus, devfn, where, (u8) val);
case 2:
return write_config_word(bus, devfn, where, (u16) val);
default:
return write_config_dword(bus, devfn, where, val);
}
}
struct pci_ops mt7621_pci_ops= {
.read = pci_config_read,
.write = pci_config_write,
};
static struct resource mt7621_res_pci_mem1 = {
.name = "PCI MEM1",
.start = RALINK_PCI_MM_MAP_BASE,
.end = (u32)((RALINK_PCI_MM_MAP_BASE + (unsigned char *)0x0fffffff)),
.flags = IORESOURCE_MEM,
};
static struct resource mt7621_res_pci_io1 = {
.name = "PCI I/O1",
.start = RALINK_PCI_IO_MAP_BASE,
.end = (u32)((RALINK_PCI_IO_MAP_BASE + (unsigned char *)0x0ffff)),
.flags = IORESOURCE_IO,
};
static struct pci_controller mt7621_controller = {
.pci_ops = &mt7621_pci_ops,
.mem_resource = &mt7621_res_pci_mem1,
.io_resource = &mt7621_res_pci_io1,
.mem_offset = 0x00000000UL,
.io_offset = 0x00000000UL,
.io_map_base = 0xa0000000,
};
static void
read_config(unsigned long bus, unsigned long dev, unsigned long func, unsigned long reg, unsigned long *val)
{
unsigned int address_reg, data_reg, address;
address_reg = RALINK_PCI_CONFIG_ADDR;
data_reg = RALINK_PCI_CONFIG_DATA_VIRTUAL_REG;
address = (((reg & 0xF00)>>8)<<24) | (bus << 16) | (dev << 11) | (func << 8) | (reg & 0xfc) | 0x80000000 ;
MV_WRITE(address_reg, address);
MV_READ(data_reg, val);
return;
}
static void
write_config(unsigned long bus, unsigned long dev, unsigned long func, unsigned long reg, unsigned long val)
{
unsigned int address_reg, data_reg, address;
address_reg = RALINK_PCI_CONFIG_ADDR;
data_reg = RALINK_PCI_CONFIG_DATA_VIRTUAL_REG;
address = (((reg & 0xF00)>>8)<<24) | (bus << 16) | (dev << 11) | (func << 8) | (reg & 0xfc) | 0x80000000 ;
MV_WRITE(address_reg, address);
MV_WRITE(data_reg, val);
return;
}
int
pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
u16 cmd;
u32 val;
int irq = 0;
if ((dev->bus->number == 0) && (slot == 0)) {
write_config(0, 0, 0, PCI_BASE_ADDRESS_0, MEMORY_BASE);
read_config(0, 0, 0, PCI_BASE_ADDRESS_0, (unsigned long *)&val);
printk("BAR0 at slot 0 = %x\n", val);
printk("bus=0x%x, slot = 0x%x\n",dev->bus->number, slot);
} else if((dev->bus->number == 0) && (slot == 0x1)) {
write_config(0, 1, 0, PCI_BASE_ADDRESS_0, MEMORY_BASE);
read_config(0, 1, 0, PCI_BASE_ADDRESS_0, (unsigned long *)&val);
printk("BAR0 at slot 1 = %x\n", val);
printk("bus=0x%x, slot = 0x%x\n",dev->bus->number, slot);
} else if((dev->bus->number == 0) && (slot == 0x2)) {
write_config(0, 2, 0, PCI_BASE_ADDRESS_0, MEMORY_BASE);
read_config(0, 2, 0, PCI_BASE_ADDRESS_0, (unsigned long *)&val);
printk("BAR0 at slot 2 = %x\n", val);
printk("bus=0x%x, slot = 0x%x\n",dev->bus->number, slot);
} else if ((dev->bus->number == 1) && (slot == 0x0)) {
switch (pcie_link_status) {
case 2:
case 6:
irq = RALINK_INT_PCIE1;
break;
case 4:
irq = RALINK_INT_PCIE2;
break;
default:
irq = RALINK_INT_PCIE0;
}
printk("bus=0x%x, slot = 0x%x, irq=0x%x\n",dev->bus->number, slot, dev->irq);
} else if ((dev->bus->number == 2) && (slot == 0x0)) {
switch (pcie_link_status) {
case 5:
case 6:
irq = RALINK_INT_PCIE2;
break;
default:
irq = RALINK_INT_PCIE1;
}
printk("bus=0x%x, slot = 0x%x, irq=0x%x\n",dev->bus->number, slot, dev->irq);
} else if ((dev->bus->number == 2) && (slot == 0x1)) {
switch (pcie_link_status) {
case 5:
case 6:
irq = RALINK_INT_PCIE2;
break;
default:
irq = RALINK_INT_PCIE1;
}
printk("bus=0x%x, slot = 0x%x, irq=0x%x\n",dev->bus->number, slot, dev->irq);
} else if ((dev->bus->number ==3) && (slot == 0x0)) {
irq = RALINK_INT_PCIE2;
printk("bus=0x%x, slot = 0x%x, irq=0x%x\n",dev->bus->number, slot, dev->irq);
} else if ((dev->bus->number ==3) && (slot == 0x1)) {
irq = RALINK_INT_PCIE2;
printk("bus=0x%x, slot = 0x%x, irq=0x%x\n",dev->bus->number, slot, dev->irq);
} else if ((dev->bus->number ==3) && (slot == 0x2)) {
irq = RALINK_INT_PCIE2;
printk("bus=0x%x, slot = 0x%x, irq=0x%x\n",dev->bus->number, slot, dev->irq);
} else {
printk("bus=0x%x, slot = 0x%x\n",dev->bus->number, slot);
return 0;
}
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 0x14); //configure cache line size 0x14
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xFF); //configure latency timer 0x10
pci_read_config_word(dev, PCI_COMMAND, &cmd);
cmd = cmd | PCI_COMMAND_MASTER | PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
pci_write_config_word(dev, PCI_COMMAND, cmd);
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
#ifdef CONFIG_DTB_GNUBEE1
/*
* 'irq' here is a hwirq, but a virq is needed. Until we know how and where
* to convert one to the other, we have this hack for the GNUBEE1
*/
return irq == 11 ? 22 : irq;
#else
return irq;
#endif
}
void
set_pcie_phy(u32 *addr, int start_b, int bits, int val)
{
// printk("0x%p:", addr);
// printk(" %x", *addr);
*(unsigned int *)(addr) &= ~(((1<<bits) - 1)<<start_b);
*(unsigned int *)(addr) |= val << start_b;
// printk(" -> %x\n", *addr);
}
void
bypass_pipe_rst(void)
{
#if defined (CONFIG_PCIE_PORT0)
/* PCIe Port 0 */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x02c), 12, 1, 0x01); // rg_pe1_pipe_rst_b
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x02c), 4, 1, 0x01); // rg_pe1_pipe_cmd_frc[4]
#endif
#if defined (CONFIG_PCIE_PORT1)
/* PCIe Port 1 */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x12c), 12, 1, 0x01); // rg_pe1_pipe_rst_b
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x12c), 4, 1, 0x01); // rg_pe1_pipe_cmd_frc[4]
#endif
#if defined (CONFIG_PCIE_PORT2)
/* PCIe Port 2 */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x02c), 12, 1, 0x01); // rg_pe1_pipe_rst_b
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x02c), 4, 1, 0x01); // rg_pe1_pipe_cmd_frc[4]
#endif
}
void
set_phy_for_ssc(void)
{
unsigned long reg = (*(volatile u32 *)(RALINK_SYSCTL_BASE + 0x10));
reg = (reg >> 6) & 0x7;
#if defined (CONFIG_PCIE_PORT0) || defined (CONFIG_PCIE_PORT1)
/* Set PCIe Port0 & Port1 PHY to disable SSC */
/* Debug Xtal Type */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x400), 8, 1, 0x01); // rg_pe1_frc_h_xtal_type
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x400), 9, 2, 0x00); // rg_pe1_h_xtal_type
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x000), 4, 1, 0x01); // rg_pe1_frc_phy_en //Force Port 0 enable control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x100), 4, 1, 0x01); // rg_pe1_frc_phy_en //Force Port 1 enable control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x000), 5, 1, 0x00); // rg_pe1_phy_en //Port 0 disable
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x100), 5, 1, 0x00); // rg_pe1_phy_en //Port 1 disable
if(reg <= 5 && reg >= 3) { // 40MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 6, 2, 0x01); // RG_PE1_H_PLL_PREDIV //Pre-divider ratio (for host mode)
printk("***** Xtal 40MHz *****\n");
} else { // 25MHz | 20MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 6, 2, 0x00); // RG_PE1_H_PLL_PREDIV //Pre-divider ratio (for host mode)
if (reg >= 6) {
printk("***** Xtal 25MHz *****\n");
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x4bc), 4, 2, 0x01); // RG_PE1_H_PLL_FBKSEL //Feedback clock select
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x49c), 0,31, 0x18000000); // RG_PE1_H_LCDDS_PCW_NCPO //DDS NCPO PCW (for host mode)
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x4a4), 0,16, 0x18d); // RG_PE1_H_LCDDS_SSC_PRD //DDS SSC dither period control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x4a8), 0,12, 0x4a); // RG_PE1_H_LCDDS_SSC_DELTA //DDS SSC dither amplitude control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x4a8), 16,12, 0x4a); // RG_PE1_H_LCDDS_SSC_DELTA1 //DDS SSC dither amplitude control for initial
} else {
printk("***** Xtal 20MHz *****\n");
}
}
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x4a0), 5, 1, 0x01); // RG_PE1_LCDDS_CLK_PH_INV //DDS clock inversion
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 22, 2, 0x02); // RG_PE1_H_PLL_BC
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 18, 4, 0x06); // RG_PE1_H_PLL_BP
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 12, 4, 0x02); // RG_PE1_H_PLL_IR
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 8, 4, 0x01); // RG_PE1_H_PLL_IC
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x4ac), 16, 3, 0x00); // RG_PE1_H_PLL_BR
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x490), 1, 3, 0x02); // RG_PE1_PLL_DIVEN
if(reg <= 5 && reg >= 3) { // 40MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x414), 6, 2, 0x01); // rg_pe1_mstckdiv //value of da_pe1_mstckdiv when force mode enable
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x414), 5, 1, 0x01); // rg_pe1_frc_mstckdiv //force mode enable of da_pe1_mstckdiv
}
/* Enable PHY and disable force mode */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x000), 5, 1, 0x01); // rg_pe1_phy_en //Port 0 enable
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x100), 5, 1, 0x01); // rg_pe1_phy_en //Port 1 enable
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x000), 4, 1, 0x00); // rg_pe1_frc_phy_en //Force Port 0 disable control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P0P1_CTL_OFFSET + 0x100), 4, 1, 0x00); // rg_pe1_frc_phy_en //Force Port 1 disable control
#endif
#if defined (CONFIG_PCIE_PORT2)
/* Set PCIe Port2 PHY to disable SSC */
/* Debug Xtal Type */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x400), 8, 1, 0x01); // rg_pe1_frc_h_xtal_type
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x400), 9, 2, 0x00); // rg_pe1_h_xtal_type
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x000), 4, 1, 0x01); // rg_pe1_frc_phy_en //Force Port 0 enable control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x000), 5, 1, 0x00); // rg_pe1_phy_en //Port 0 disable
if(reg <= 5 && reg >= 3) { // 40MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 6, 2, 0x01); // RG_PE1_H_PLL_PREDIV //Pre-divider ratio (for host mode)
} else { // 25MHz | 20MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 6, 2, 0x00); // RG_PE1_H_PLL_PREDIV //Pre-divider ratio (for host mode)
if (reg >= 6) { // 25MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x4bc), 4, 2, 0x01); // RG_PE1_H_PLL_FBKSEL //Feedback clock select
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x49c), 0,31, 0x18000000); // RG_PE1_H_LCDDS_PCW_NCPO //DDS NCPO PCW (for host mode)
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x4a4), 0,16, 0x18d); // RG_PE1_H_LCDDS_SSC_PRD //DDS SSC dither period control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x4a8), 0,12, 0x4a); // RG_PE1_H_LCDDS_SSC_DELTA //DDS SSC dither amplitude control
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x4a8), 16,12, 0x4a); // RG_PE1_H_LCDDS_SSC_DELTA1 //DDS SSC dither amplitude control for initial
}
}
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x4a0), 5, 1, 0x01); // RG_PE1_LCDDS_CLK_PH_INV //DDS clock inversion
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 22, 2, 0x02); // RG_PE1_H_PLL_BC
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 18, 4, 0x06); // RG_PE1_H_PLL_BP
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 12, 4, 0x02); // RG_PE1_H_PLL_IR
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 8, 4, 0x01); // RG_PE1_H_PLL_IC
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x4ac), 16, 3, 0x00); // RG_PE1_H_PLL_BR
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x490), 1, 3, 0x02); // RG_PE1_PLL_DIVEN
if(reg <= 5 && reg >= 3) { // 40MHz Xtal
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x414), 6, 2, 0x01); // rg_pe1_mstckdiv //value of da_pe1_mstckdiv when force mode enable
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x414), 5, 1, 0x01); // rg_pe1_frc_mstckdiv //force mode enable of da_pe1_mstckdiv
}
/* Enable PHY and disable force mode */
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x000), 5, 1, 0x01); // rg_pe1_phy_en //Port 0 enable
set_pcie_phy((u32 *)(RALINK_PCIEPHY_P2_CTL_OFFSET + 0x000), 4, 1, 0x00); // rg_pe1_frc_phy_en //Force Port 0 disable control
#endif
}
void setup_cm_memory_region(struct resource *mem_resource)
{
resource_size_t mask;
if (mips_cps_numiocu(0)) {
/* FIXME: hardware doesn't accept mask values with 1s after
0s (e.g. 0xffef), so it would be great to warn if that's
about to happen */
mask = ~(mem_resource->end - mem_resource->start);
write_gcr_reg1_base(mem_resource->start);
write_gcr_reg1_mask(mask | CM_GCR_REGn_MASK_CMTGT_IOCU0);
printk("PCI coherence region base: 0x%08llx, mask/settings: 0x%08llx\n",
(unsigned long long)read_gcr_reg1_base(),
(unsigned long long)read_gcr_reg1_mask());
}
}
static int mt7621_pci_probe(struct platform_device *pdev)
{
unsigned long val = 0;
iomem_resource.start = 0;
iomem_resource.end= ~0;
ioport_resource.start= 0;
ioport_resource.end = ~0;
#if defined (CONFIG_PCIE_PORT0)
val = RALINK_PCIE0_RST;
#endif
#if defined (CONFIG_PCIE_PORT1)
val |= RALINK_PCIE1_RST;
#endif
#if defined (CONFIG_PCIE_PORT2)
val |= RALINK_PCIE2_RST;
#endif
ASSERT_SYSRST_PCIE(RALINK_PCIE0_RST | RALINK_PCIE1_RST | RALINK_PCIE2_RST);
printk("pull PCIe RST: RALINK_RSTCTRL = %x\n", RALINK_RSTCTRL);
#if defined GPIO_PERST /* add GPIO control instead of PERST_N */ /*chhung*/
*(unsigned int *)(0xbe000060) &= ~(0x3<<10 | 0x3<<3);
*(unsigned int *)(0xbe000060) |= 0x1<<10 | 0x1<<3;
mdelay(100);
*(unsigned int *)(0xbe000600) |= 0x1<<19 | 0x1<<8 | 0x1<<7; // use GPIO19/GPIO8/GPIO7 (PERST_N/UART_RXD3/UART_TXD3)
mdelay(100);
*(unsigned int *)(0xbe000620) &= ~(0x1<<19 | 0x1<<8 | 0x1<<7); // clear DATA
mdelay(100);
#else
*(unsigned int *)(0xbe000060) &= ~0x00000c00;
#endif
#if defined (CONFIG_PCIE_PORT0)
val = RALINK_PCIE0_RST;
#endif
#if defined (CONFIG_PCIE_PORT1)
val |= RALINK_PCIE1_RST;
#endif
#if defined (CONFIG_PCIE_PORT2)
val |= RALINK_PCIE2_RST;
#endif
DEASSERT_SYSRST_PCIE(val);
printk("release PCIe RST: RALINK_RSTCTRL = %x\n", RALINK_RSTCTRL);
if ((*(unsigned int *)(0xbe00000c)&0xFFFF) == 0x0101) // MT7621 E2
bypass_pipe_rst();
set_phy_for_ssc();
printk("release PCIe RST: RALINK_RSTCTRL = %x\n", RALINK_RSTCTRL);
#if defined (CONFIG_PCIE_PORT0)
read_config(0, 0, 0, 0x70c, &val);
printk("Port 0 N_FTS = %x\n", (unsigned int)val);
#endif
#if defined (CONFIG_PCIE_PORT1)
read_config(0, 1, 0, 0x70c, &val);
printk("Port 1 N_FTS = %x\n", (unsigned int)val);
#endif
#if defined (CONFIG_PCIE_PORT2)
read_config(0, 2, 0, 0x70c, &val);
printk("Port 2 N_FTS = %x\n", (unsigned int)val);
#endif
RALINK_RSTCTRL = (RALINK_RSTCTRL | RALINK_PCIE_RST);
RALINK_SYSCFG1 &= ~(0x30);
RALINK_SYSCFG1 |= (2<<4);
RALINK_PCIE_CLK_GEN &= 0x7fffffff;
RALINK_PCIE_CLK_GEN1 &= 0x80ffffff;
RALINK_PCIE_CLK_GEN1 |= 0xa << 24;
RALINK_PCIE_CLK_GEN |= 0x80000000;
mdelay(50);
RALINK_RSTCTRL = (RALINK_RSTCTRL & ~RALINK_PCIE_RST);
#if defined GPIO_PERST /* add GPIO control instead of PERST_N */ /*chhung*/
*(unsigned int *)(0xbe000620) |= 0x1<<19 | 0x1<<8 | 0x1<<7; // set DATA
mdelay(100);
#else
RALINK_PCI_PCICFG_ADDR &= ~(1<<1); //de-assert PERST
#endif
mdelay(500);
mdelay(500);
#if defined (CONFIG_PCIE_PORT0)
if(( RALINK_PCI0_STATUS & 0x1) == 0)
{
printk("PCIE0 no card, disable it(RST&CLK)\n");
ASSERT_SYSRST_PCIE(RALINK_PCIE0_RST);
RALINK_CLKCFG1 = (RALINK_CLKCFG1 & ~RALINK_PCIE0_CLK_EN);
pcie_link_status &= ~(1<<0);
} else {
pcie_link_status |= 1<<0;
RALINK_PCI_PCIMSK_ADDR |= (1<<20); // enable pcie1 interrupt
}
#endif
#if defined (CONFIG_PCIE_PORT1)
if(( RALINK_PCI1_STATUS & 0x1) == 0)
{
printk("PCIE1 no card, disable it(RST&CLK)\n");
ASSERT_SYSRST_PCIE(RALINK_PCIE1_RST);
RALINK_CLKCFG1 = (RALINK_CLKCFG1 & ~RALINK_PCIE1_CLK_EN);
pcie_link_status &= ~(1<<1);
} else {
pcie_link_status |= 1<<1;
RALINK_PCI_PCIMSK_ADDR |= (1<<21); // enable pcie1 interrupt
}
#endif
#if defined (CONFIG_PCIE_PORT2)
if (( RALINK_PCI2_STATUS & 0x1) == 0) {
printk("PCIE2 no card, disable it(RST&CLK)\n");
ASSERT_SYSRST_PCIE(RALINK_PCIE2_RST);
RALINK_CLKCFG1 = (RALINK_CLKCFG1 & ~RALINK_PCIE2_CLK_EN);
pcie_link_status &= ~(1<<2);
} else {
pcie_link_status |= 1<<2;
RALINK_PCI_PCIMSK_ADDR |= (1<<22); // enable pcie2 interrupt
}
#endif
if (pcie_link_status == 0)
return 0;
/*
pcie(2/1/0) link status pcie2_num pcie1_num pcie0_num
3'b000 x x x
3'b001 x x 0
3'b010 x 0 x
3'b011 x 1 0
3'b100 0 x x
3'b101 1 x 0
3'b110 1 0 x
3'b111 2 1 0
*/
switch(pcie_link_status) {
case 2:
RALINK_PCI_PCICFG_ADDR &= ~0x00ff0000;
RALINK_PCI_PCICFG_ADDR |= 0x1 << 16; //port0
RALINK_PCI_PCICFG_ADDR |= 0x0 << 20; //port1
break;
case 4:
RALINK_PCI_PCICFG_ADDR &= ~0x0fff0000;
RALINK_PCI_PCICFG_ADDR |= 0x1 << 16; //port0
RALINK_PCI_PCICFG_ADDR |= 0x2 << 20; //port1
RALINK_PCI_PCICFG_ADDR |= 0x0 << 24; //port2
break;
case 5:
RALINK_PCI_PCICFG_ADDR &= ~0x0fff0000;
RALINK_PCI_PCICFG_ADDR |= 0x0 << 16; //port0
RALINK_PCI_PCICFG_ADDR |= 0x2 << 20; //port1
RALINK_PCI_PCICFG_ADDR |= 0x1 << 24; //port2
break;
case 6:
RALINK_PCI_PCICFG_ADDR &= ~0x0fff0000;
RALINK_PCI_PCICFG_ADDR |= 0x2 << 16; //port0
RALINK_PCI_PCICFG_ADDR |= 0x0 << 20; //port1
RALINK_PCI_PCICFG_ADDR |= 0x1 << 24; //port2
break;
}
printk(" -> %x\n", RALINK_PCI_PCICFG_ADDR);
//printk(" RALINK_PCI_ARBCTL = %x\n", RALINK_PCI_ARBCTL);
/*
ioport_resource.start = mt7621_res_pci_io1.start;
ioport_resource.end = mt7621_res_pci_io1.end;
*/
RALINK_PCI_MEMBASE = 0xffffffff; //RALINK_PCI_MM_MAP_BASE;
RALINK_PCI_IOBASE = RALINK_PCI_IO_MAP_BASE;
#if defined (CONFIG_PCIE_PORT0)
//PCIe0
if((pcie_link_status & 0x1) != 0) {
RALINK_PCI0_BAR0SETUP_ADDR = 0x7FFF0001; //open 7FFF:2G; ENABLE
RALINK_PCI0_IMBASEBAR0_ADDR = MEMORY_BASE;
RALINK_PCI0_CLASS = 0x06040001;
printk("PCIE0 enabled\n");
}
#endif
#if defined (CONFIG_PCIE_PORT1)
//PCIe1
if ((pcie_link_status & 0x2) != 0) {
RALINK_PCI1_BAR0SETUP_ADDR = 0x7FFF0001; //open 7FFF:2G; ENABLE
RALINK_PCI1_IMBASEBAR0_ADDR = MEMORY_BASE;
RALINK_PCI1_CLASS = 0x06040001;
printk("PCIE1 enabled\n");
}
#endif
#if defined (CONFIG_PCIE_PORT2)
//PCIe2
if ((pcie_link_status & 0x4) != 0) {
RALINK_PCI2_BAR0SETUP_ADDR = 0x7FFF0001; //open 7FFF:2G; ENABLE
RALINK_PCI2_IMBASEBAR0_ADDR = MEMORY_BASE;
RALINK_PCI2_CLASS = 0x06040001;
printk("PCIE2 enabled\n");
}
#endif
switch(pcie_link_status) {
case 7:
read_config(0, 2, 0, 0x4, &val);
write_config(0, 2, 0, 0x4, val|0x4);
// write_config(0, 1, 0, 0x4, val|0x7);
read_config(0, 2, 0, 0x70c, &val);
val &= ~(0xff)<<8;
val |= 0x50<<8;
write_config(0, 2, 0, 0x70c, val);
case 3:
case 5:
case 6:
read_config(0, 1, 0, 0x4, &val);
write_config(0, 1, 0, 0x4, val|0x4);
// write_config(0, 1, 0, 0x4, val|0x7);
read_config(0, 1, 0, 0x70c, &val);
val &= ~(0xff)<<8;
val |= 0x50<<8;
write_config(0, 1, 0, 0x70c, val);
default:
read_config(0, 0, 0, 0x4, &val);
write_config(0, 0, 0, 0x4, val|0x4); //bus master enable
// write_config(0, 0, 0, 0x4, val|0x7); //bus master enable
read_config(0, 0, 0, 0x70c, &val);
val &= ~(0xff)<<8;
val |= 0x50<<8;
write_config(0, 0, 0, 0x70c, val);
}
pci_load_of_ranges(&mt7621_controller, pdev->dev.of_node);
setup_cm_memory_region(mt7621_controller.mem_resource);
register_pci_controller(&mt7621_controller);
return 0;
}
int pcibios_plat_dev_init(struct pci_dev *dev)
{
return 0;
}
static const struct of_device_id mt7621_pci_ids[] = {
{ .compatible = "mediatek,mt7621-pci" },
{},
};
MODULE_DEVICE_TABLE(of, mt7621_pci_ids);
static struct platform_driver mt7621_pci_driver = {
.probe = mt7621_pci_probe,
.driver = {
.name = "mt7621-pci",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(mt7621_pci_ids),
},
};
static int __init mt7621_pci_init(void)
{
return platform_driver_register(&mt7621_pci_driver);
}
arch_initcall(mt7621_pci_init);