OpenCloudOS-Kernel/include/linux/litex.h

181 lines
5.4 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Common LiteX header providing
* helper functions for accessing CSRs.
*
* Copyright (C) 2019-2020 Antmicro <www.antmicro.com>
*/
#ifndef _LINUX_LITEX_H
#define _LINUX_LITEX_H
#include <linux/io.h>
#include <linux/types.h>
#include <linux/compiler_types.h>
/*
* The parameters below are true for LiteX SoCs configured for 8-bit CSR Bus,
* 32-bit aligned.
*
* Supporting other configurations will require extending the logic in this
* header and in the LiteX SoC controller driver.
*/
#define LITEX_SUBREG_SIZE 0x1
#define LITEX_SUBREG_SIZE_BIT (LITEX_SUBREG_SIZE * 8)
/* LiteX subregisters of any width are always aligned on a 4-byte boundary */
#define LITEX_SUBREG_ALIGN 0x4
static inline void _write_litex_subregister(u32 val, void __iomem *addr)
{
writel((u32 __force)cpu_to_le32(val), addr);
}
static inline u32 _read_litex_subregister(void __iomem *addr)
{
return le32_to_cpu((__le32 __force)readl(addr));
}
#define WRITE_LITEX_SUBREGISTER(val, base_offset, subreg_id) \
_write_litex_subregister(val, (base_offset) + \
LITEX_SUBREG_ALIGN * (subreg_id))
#define READ_LITEX_SUBREGISTER(base_offset, subreg_id) \
_read_litex_subregister((base_offset) + \
LITEX_SUBREG_ALIGN * (subreg_id))
/*
* LiteX SoC Generator, depending on the configuration, can split a single
* logical CSR (Control&Status Register) into a series of consecutive physical
* registers.
*
* For example, in the configuration with 8-bit CSR Bus, 32-bit aligned (the
* default one for 32-bit CPUs) a 32-bit logical CSR will be generated as four
* 32-bit physical registers, each one containing one byte of meaningful data.
*
* For details see: https://github.com/enjoy-digital/litex/wiki/CSR-Bus
*
* The purpose of `litex_set_reg`/`litex_get_reg` is to implement the logic
* of writing to/reading from the LiteX CSR in a single place that can be
* then reused by all LiteX drivers.
*/
/**
* litex_set_reg() - Writes the value to the LiteX CSR (Control&Status Register)
* @reg: Address of the CSR
* @reg_size: The width of the CSR expressed in the number of bytes
* @val: Value to be written to the CSR
*
* In the currently supported LiteX configuration (8-bit CSR Bus, 32-bit aligned),
* a 32-bit LiteX CSR is generated as 4 consecutive 32-bit physical registers,
* each one containing one byte of meaningful data.
*
* This function splits a single possibly multi-byte write into a series of
* single-byte writes with a proper offset.
*/
static inline void litex_set_reg(void __iomem *reg, ulong reg_size, ulong val)
{
ulong shifted_data, shift, i;
for (i = 0; i < reg_size; ++i) {
shift = ((reg_size - i - 1) * LITEX_SUBREG_SIZE_BIT);
shifted_data = val >> shift;
WRITE_LITEX_SUBREGISTER(shifted_data, reg, i);
}
}
/**
* litex_get_reg() - Reads the value of the LiteX CSR (Control&Status Register)
* @reg: Address of the CSR
* @reg_size: The width of the CSR expressed in the number of bytes
*
* Return: Value read from the CSR
*
* In the currently supported LiteX configuration (8-bit CSR Bus, 32-bit aligned),
* a 32-bit LiteX CSR is generated as 4 consecutive 32-bit physical registers,
* each one containing one byte of meaningful data.
*
* This function generates a series of single-byte reads with a proper offset
* and joins their results into a single multi-byte value.
*/
static inline ulong litex_get_reg(void __iomem *reg, ulong reg_size)
{
ulong shifted_data, shift, i;
ulong result = 0;
for (i = 0; i < reg_size; ++i) {
shifted_data = READ_LITEX_SUBREGISTER(reg, i);
shift = ((reg_size - i - 1) * LITEX_SUBREG_SIZE_BIT);
result |= (shifted_data << shift);
}
return result;
}
static inline void litex_write8(void __iomem *reg, u8 val)
{
WRITE_LITEX_SUBREGISTER(val, reg, 0);
}
static inline void litex_write16(void __iomem *reg, u16 val)
{
WRITE_LITEX_SUBREGISTER(val >> 8, reg, 0);
WRITE_LITEX_SUBREGISTER(val, reg, 1);
}
static inline void litex_write32(void __iomem *reg, u32 val)
{
WRITE_LITEX_SUBREGISTER(val >> 24, reg, 0);
WRITE_LITEX_SUBREGISTER(val >> 16, reg, 1);
WRITE_LITEX_SUBREGISTER(val >> 8, reg, 2);
WRITE_LITEX_SUBREGISTER(val, reg, 3);
}
static inline void litex_write64(void __iomem *reg, u64 val)
{
WRITE_LITEX_SUBREGISTER(val >> 56, reg, 0);
WRITE_LITEX_SUBREGISTER(val >> 48, reg, 1);
WRITE_LITEX_SUBREGISTER(val >> 40, reg, 2);
WRITE_LITEX_SUBREGISTER(val >> 32, reg, 3);
WRITE_LITEX_SUBREGISTER(val >> 24, reg, 4);
WRITE_LITEX_SUBREGISTER(val >> 16, reg, 5);
WRITE_LITEX_SUBREGISTER(val >> 8, reg, 6);
WRITE_LITEX_SUBREGISTER(val, reg, 7);
}
static inline u8 litex_read8(void __iomem *reg)
{
return READ_LITEX_SUBREGISTER(reg, 0);
}
static inline u16 litex_read16(void __iomem *reg)
{
return (READ_LITEX_SUBREGISTER(reg, 0) << 8)
| (READ_LITEX_SUBREGISTER(reg, 1));
}
static inline u32 litex_read32(void __iomem *reg)
{
return (READ_LITEX_SUBREGISTER(reg, 0) << 24)
| (READ_LITEX_SUBREGISTER(reg, 1) << 16)
| (READ_LITEX_SUBREGISTER(reg, 2) << 8)
| (READ_LITEX_SUBREGISTER(reg, 3));
}
static inline u64 litex_read64(void __iomem *reg)
{
return ((u64)READ_LITEX_SUBREGISTER(reg, 0) << 56)
| ((u64)READ_LITEX_SUBREGISTER(reg, 1) << 48)
| ((u64)READ_LITEX_SUBREGISTER(reg, 2) << 40)
| ((u64)READ_LITEX_SUBREGISTER(reg, 3) << 32)
| ((u64)READ_LITEX_SUBREGISTER(reg, 4) << 24)
| ((u64)READ_LITEX_SUBREGISTER(reg, 5) << 16)
| ((u64)READ_LITEX_SUBREGISTER(reg, 6) << 8)
| ((u64)READ_LITEX_SUBREGISTER(reg, 7));
}
#endif /* _LINUX_LITEX_H */