OpenCloudOS-Kernel/net/ipv4/inet_fragment.c

366 lines
8.7 KiB
C
Raw Normal View History

/*
* inet fragments management
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Pavel Emelyanov <xemul@openvz.org>
* Started as consolidation of ipv4/ip_fragment.c,
* ipv6/reassembly. and ipv6 nf conntrack reassembly
*/
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <net/sock.h>
#include <net/inet_frag.h>
#include <net/inet_ecn.h>
/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
* Value : 0xff if frame should be dropped.
* 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
*/
const u8 ip_frag_ecn_table[16] = {
/* at least one fragment had CE, and others ECT_0 or ECT_1 */
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
/* invalid combinations : drop frame */
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
};
EXPORT_SYMBOL(ip_frag_ecn_table);
static void inet_frag_secret_rebuild(unsigned long dummy)
{
struct inet_frags *f = (struct inet_frags *)dummy;
unsigned long now = jiffies;
int i;
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
/* Per bucket lock NOT needed here, due to write lock protection */
write_lock(&f->lock);
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
get_random_bytes(&f->rnd, sizeof(u32));
for (i = 0; i < INETFRAGS_HASHSZ; i++) {
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
struct inet_frag_bucket *hb;
struct inet_frag_queue *q;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
struct hlist_node *n;
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
hb = &f->hash[i];
hlist_for_each_entry_safe(q, n, &hb->chain, list) {
unsigned int hval = f->hashfn(q);
if (hval != i) {
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
struct inet_frag_bucket *hb_dest;
hlist_del(&q->list);
/* Relink to new hash chain. */
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
hb_dest = &f->hash[hval];
hlist_add_head(&q->list, &hb_dest->chain);
}
}
}
write_unlock(&f->lock);
mod_timer(&f->secret_timer, now + f->secret_interval);
}
void inet_frags_init(struct inet_frags *f)
{
int i;
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
for (i = 0; i < INETFRAGS_HASHSZ; i++) {
struct inet_frag_bucket *hb = &f->hash[i];
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
spin_lock_init(&hb->chain_lock);
INIT_HLIST_HEAD(&hb->chain);
}
rwlock_init(&f->lock);
f->rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^
(jiffies ^ (jiffies >> 6)));
setup_timer(&f->secret_timer, inet_frag_secret_rebuild,
(unsigned long)f);
f->secret_timer.expires = jiffies + f->secret_interval;
add_timer(&f->secret_timer);
}
EXPORT_SYMBOL(inet_frags_init);
void inet_frags_init_net(struct netns_frags *nf)
{
nf->nqueues = 0;
init_frag_mem_limit(nf);
INIT_LIST_HEAD(&nf->lru_list);
spin_lock_init(&nf->lru_lock);
}
EXPORT_SYMBOL(inet_frags_init_net);
void inet_frags_fini(struct inet_frags *f)
{
del_timer(&f->secret_timer);
}
EXPORT_SYMBOL(inet_frags_fini);
void inet_frags_exit_net(struct netns_frags *nf, struct inet_frags *f)
{
nf->low_thresh = 0;
local_bh_disable();
inet_frag_evictor(nf, f, true);
local_bh_enable();
percpu_counter_destroy(&nf->mem);
}
EXPORT_SYMBOL(inet_frags_exit_net);
static inline void fq_unlink(struct inet_frag_queue *fq, struct inet_frags *f)
{
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
struct inet_frag_bucket *hb;
unsigned int hash;
read_lock(&f->lock);
hash = f->hashfn(fq);
hb = &f->hash[hash];
spin_lock(&hb->chain_lock);
hlist_del(&fq->list);
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
spin_unlock(&hb->chain_lock);
read_unlock(&f->lock);
inet_frag_lru_del(fq);
}
void inet_frag_kill(struct inet_frag_queue *fq, struct inet_frags *f)
{
if (del_timer(&fq->timer))
atomic_dec(&fq->refcnt);
if (!(fq->last_in & INET_FRAG_COMPLETE)) {
fq_unlink(fq, f);
atomic_dec(&fq->refcnt);
fq->last_in |= INET_FRAG_COMPLETE;
}
}
EXPORT_SYMBOL(inet_frag_kill);
static inline void frag_kfree_skb(struct netns_frags *nf, struct inet_frags *f,
struct sk_buff *skb)
{
if (f->skb_free)
f->skb_free(skb);
kfree_skb(skb);
}
void inet_frag_destroy(struct inet_frag_queue *q, struct inet_frags *f,
int *work)
{
struct sk_buff *fp;
struct netns_frags *nf;
unsigned int sum, sum_truesize = 0;
WARN_ON(!(q->last_in & INET_FRAG_COMPLETE));
WARN_ON(del_timer(&q->timer) != 0);
/* Release all fragment data. */
fp = q->fragments;
nf = q->net;
while (fp) {
struct sk_buff *xp = fp->next;
sum_truesize += fp->truesize;
frag_kfree_skb(nf, f, fp);
fp = xp;
}
sum = sum_truesize + f->qsize;
if (work)
*work -= sum;
sub_frag_mem_limit(q, sum);
if (f->destructor)
f->destructor(q);
kfree(q);
}
EXPORT_SYMBOL(inet_frag_destroy);
int inet_frag_evictor(struct netns_frags *nf, struct inet_frags *f, bool force)
{
struct inet_frag_queue *q;
int work, evicted = 0;
if (!force) {
if (frag_mem_limit(nf) <= nf->high_thresh)
return 0;
}
work = frag_mem_limit(nf) - nf->low_thresh;
while (work > 0) {
spin_lock(&nf->lru_lock);
if (list_empty(&nf->lru_list)) {
spin_unlock(&nf->lru_lock);
break;
}
q = list_first_entry(&nf->lru_list,
struct inet_frag_queue, lru_list);
atomic_inc(&q->refcnt);
/* Remove q from list to avoid several CPUs grabbing it */
list_del_init(&q->lru_list);
spin_unlock(&nf->lru_lock);
spin_lock(&q->lock);
if (!(q->last_in & INET_FRAG_COMPLETE))
inet_frag_kill(q, f);
spin_unlock(&q->lock);
if (atomic_dec_and_test(&q->refcnt))
inet_frag_destroy(q, f, &work);
evicted++;
}
return evicted;
}
EXPORT_SYMBOL(inet_frag_evictor);
static struct inet_frag_queue *inet_frag_intern(struct netns_frags *nf,
struct inet_frag_queue *qp_in, struct inet_frags *f,
void *arg)
{
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
struct inet_frag_bucket *hb;
struct inet_frag_queue *qp;
#ifdef CONFIG_SMP
#endif
unsigned int hash;
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
read_lock(&f->lock); /* Protects against hash rebuild */
/*
* While we stayed w/o the lock other CPU could update
* the rnd seed, so we need to re-calculate the hash
* chain. Fortunatelly the qp_in can be used to get one.
*/
hash = f->hashfn(qp_in);
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
hb = &f->hash[hash];
spin_lock(&hb->chain_lock);
#ifdef CONFIG_SMP
/* With SMP race we have to recheck hash table, because
* such entry could be created on other cpu, while we
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
* released the hash bucket lock.
*/
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
hlist_for_each_entry(qp, &hb->chain, list) {
if (qp->net == nf && f->match(qp, arg)) {
atomic_inc(&qp->refcnt);
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
spin_unlock(&hb->chain_lock);
read_unlock(&f->lock);
qp_in->last_in |= INET_FRAG_COMPLETE;
inet_frag_put(qp_in, f);
return qp;
}
}
#endif
qp = qp_in;
if (!mod_timer(&qp->timer, jiffies + nf->timeout))
atomic_inc(&qp->refcnt);
atomic_inc(&qp->refcnt);
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
hlist_add_head(&qp->list, &hb->chain);
spin_unlock(&hb->chain_lock);
read_unlock(&f->lock);
inet_frag_lru_add(nf, qp);
return qp;
}
static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf,
struct inet_frags *f, void *arg)
{
struct inet_frag_queue *q;
q = kzalloc(f->qsize, GFP_ATOMIC);
if (q == NULL)
return NULL;
q->net = nf;
f->constructor(q, arg);
add_frag_mem_limit(q, f->qsize);
setup_timer(&q->timer, f->frag_expire, (unsigned long)q);
spin_lock_init(&q->lock);
atomic_set(&q->refcnt, 1);
net: frag, fix race conditions in LRU list maintenance This patch fixes race between inet_frag_lru_move() and inet_frag_lru_add() which was introduced in commit 3ef0eb0db4bf92c6d2510fe5c4dc51852746f206 ("net: frag, move LRU list maintenance outside of rwlock") One cpu already added new fragment queue into hash but not into LRU. Other cpu found it in hash and tries to move it to the end of LRU. This leads to NULL pointer dereference inside of list_move_tail(). Another possible race condition is between inet_frag_lru_move() and inet_frag_lru_del(): move can happens after deletion. This patch initializes LRU list head before adding fragment into hash and inet_frag_lru_move() doesn't touches it if it's empty. I saw this kernel oops two times in a couple of days. [119482.128853] BUG: unable to handle kernel NULL pointer dereference at (null) [119482.132693] IP: [<ffffffff812ede89>] __list_del_entry+0x29/0xd0 [119482.136456] PGD 2148f6067 PUD 215ab9067 PMD 0 [119482.140221] Oops: 0000 [#1] SMP [119482.144008] Modules linked in: vfat msdos fat 8021q fuse nfsd auth_rpcgss nfs_acl nfs lockd sunrpc ppp_async ppp_generic bridge slhc stp llc w83627ehf hwmon_vid snd_hda_codec_hdmi snd_hda_codec_realtek kvm_amd k10temp kvm snd_hda_intel snd_hda_codec edac_core radeon snd_hwdep ath9k snd_pcm ath9k_common snd_page_alloc ath9k_hw snd_timer snd soundcore drm_kms_helper ath ttm r8169 mii [119482.152692] CPU 3 [119482.152721] Pid: 20, comm: ksoftirqd/3 Not tainted 3.9.0-zurg-00001-g9f95269 #132 To Be Filled By O.E.M. To Be Filled By O.E.M./RS880D [119482.161478] RIP: 0010:[<ffffffff812ede89>] [<ffffffff812ede89>] __list_del_entry+0x29/0xd0 [119482.166004] RSP: 0018:ffff880216d5db58 EFLAGS: 00010207 [119482.170568] RAX: 0000000000000000 RBX: ffff88020882b9c0 RCX: dead000000200200 [119482.175189] RDX: 0000000000000000 RSI: 0000000000000880 RDI: ffff88020882ba00 [119482.179860] RBP: ffff880216d5db58 R08: ffffffff8155c7f0 R09: 0000000000000014 [119482.184570] R10: 0000000000000000 R11: 0000000000000000 R12: ffff88020882ba00 [119482.189337] R13: ffffffff81c8d780 R14: ffff880204357f00 R15: 00000000000005a0 [119482.194140] FS: 00007f58124dc700(0000) GS:ffff88021fcc0000(0000) knlGS:0000000000000000 [119482.198928] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [119482.203711] CR2: 0000000000000000 CR3: 00000002155f0000 CR4: 00000000000007e0 [119482.208533] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [119482.213371] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [119482.218221] Process ksoftirqd/3 (pid: 20, threadinfo ffff880216d5c000, task ffff880216d3a9a0) [119482.223113] Stack: [119482.228004] ffff880216d5dbd8 ffffffff8155dcda 0000000000000000 ffff000200000001 [119482.233038] ffff8802153c1f00 ffff880000289440 ffff880200000014 ffff88007bc72000 [119482.238083] 00000000000079d5 ffff88007bc72f44 ffffffff00000002 ffff880204357f00 [119482.243090] Call Trace: [119482.248009] [<ffffffff8155dcda>] ip_defrag+0x8fa/0xd10 [119482.252921] [<ffffffff815a8013>] ipv4_conntrack_defrag+0x83/0xe0 [119482.257803] [<ffffffff8154485b>] nf_iterate+0x8b/0xa0 [119482.262658] [<ffffffff8155c7f0>] ? inet_del_offload+0x40/0x40 [119482.267527] [<ffffffff815448e4>] nf_hook_slow+0x74/0x130 [119482.272412] [<ffffffff8155c7f0>] ? inet_del_offload+0x40/0x40 [119482.277302] [<ffffffff8155d068>] ip_rcv+0x268/0x320 [119482.282147] [<ffffffff81519992>] __netif_receive_skb_core+0x612/0x7e0 [119482.286998] [<ffffffff81519b78>] __netif_receive_skb+0x18/0x60 [119482.291826] [<ffffffff8151a650>] process_backlog+0xa0/0x160 [119482.296648] [<ffffffff81519f29>] net_rx_action+0x139/0x220 [119482.301403] [<ffffffff81053707>] __do_softirq+0xe7/0x220 [119482.306103] [<ffffffff81053868>] run_ksoftirqd+0x28/0x40 [119482.310809] [<ffffffff81074f5f>] smpboot_thread_fn+0xff/0x1a0 [119482.315515] [<ffffffff81074e60>] ? lg_local_lock_cpu+0x40/0x40 [119482.320219] [<ffffffff8106d870>] kthread+0xc0/0xd0 [119482.324858] [<ffffffff8106d7b0>] ? insert_kthread_work+0x40/0x40 [119482.329460] [<ffffffff816c32dc>] ret_from_fork+0x7c/0xb0 [119482.334057] [<ffffffff8106d7b0>] ? insert_kthread_work+0x40/0x40 [119482.338661] Code: 00 00 55 48 8b 17 48 b9 00 01 10 00 00 00 ad de 48 8b 47 08 48 89 e5 48 39 ca 74 29 48 b9 00 02 20 00 00 00 ad de 48 39 c8 74 7a <4c> 8b 00 4c 39 c7 75 53 4c 8b 42 08 4c 39 c7 75 2b 48 89 42 08 [119482.343787] RIP [<ffffffff812ede89>] __list_del_entry+0x29/0xd0 [119482.348675] RSP <ffff880216d5db58> [119482.353493] CR2: 0000000000000000 Oops happened on this path: ip_defrag() -> ip_frag_queue() -> inet_frag_lru_move() -> list_move_tail() -> __list_del_entry() Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Florian Westphal <fw@strlen.de> Cc: Eric Dumazet <edumazet@google.com> Cc: David S. Miller <davem@davemloft.net> Acked-by: Florian Westphal <fw@strlen.de> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-05 12:56:22 +08:00
INIT_LIST_HEAD(&q->lru_list);
return q;
}
static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf,
struct inet_frags *f, void *arg)
{
struct inet_frag_queue *q;
q = inet_frag_alloc(nf, f, arg);
if (q == NULL)
return NULL;
return inet_frag_intern(nf, q, f, arg);
}
struct inet_frag_queue *inet_frag_find(struct netns_frags *nf,
struct inet_frags *f, void *key, unsigned int hash)
__releases(&f->lock)
{
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
struct inet_frag_bucket *hb;
struct inet_frag_queue *q;
int depth = 0;
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
hb = &f->hash[hash];
spin_lock(&hb->chain_lock);
hlist_for_each_entry(q, &hb->chain, list) {
if (q->net == nf && f->match(q, key)) {
atomic_inc(&q->refcnt);
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
spin_unlock(&hb->chain_lock);
read_unlock(&f->lock);
return q;
}
depth++;
}
net: frag queue per hash bucket locking This patch implements per hash bucket locking for the frag queue hash. This removes two write locks, and the only remaining write lock is for protecting hash rebuild. This essentially reduce the readers-writer lock to a rebuild lock. This patch is part of "net: frag performance followup" http://thread.gmane.org/gmane.linux.network/263644 of which two patches have already been accepted: Same test setup as previous: (http://thread.gmane.org/gmane.linux.network/257155) Two 10G interfaces, on seperate NUMA nodes, are under-test, and uses Ethernet flow-control. A third interface is used for generating the DoS attack (with trafgen). Notice, I have changed the frag DoS generator script to be more efficient/deadly. Before it would only hit one RX queue, now its sending packets causing multi-queue RX, due to "better" RX hashing. Test types summary (netperf UDP_STREAM): Test-20G64K == 2x10G with 65K fragments Test-20G3F == 2x10G with 3x fragments (3*1472 bytes) Test-20G64K+DoS == Same as 20G64K with frag DoS Test-20G3F+DoS == Same as 20G3F with frag DoS Test-20G64K+MQ == Same as 20G64K with Multi-Queue frag DoS Test-20G3F+MQ == Same as 20G3F with Multi-Queue frag DoS When I rebased this-patch(03) (on top of net-next commit a210576c) and removed the _bh spinlock, I saw a performance regression. BUT this was caused by some unrelated change in-between. See tests below. Test (A) is what I reported before for patch-02, accepted in commit 1b5ab0de. Test (B) verifying-retest of commit 1b5ab0de corrospond to patch-02. Test (C) is what I reported before for this-patch Test (D) is net-next master HEAD (commit a210576c), which reveals some (unknown) performance regression (compared against test (B)). Test (D) function as a new base-test. Performance table summary (in Mbit/s): (#) Test-type: 20G64K 20G3F 20G64K+DoS 20G3F+DoS 20G64K+MQ 20G3F+MQ ---------- ------- ------- ---------- --------- -------- ------- (A) Patch-02 : 18848.7 13230.1 4103.04 5310.36 130.0 440.2 (B) 1b5ab0de : 18841.5 13156.8 4101.08 5314.57 129.0 424.2 (C) Patch-03v1: 18838.0 13490.5 4405.11 6814.72 196.6 461.6 (D) a210576c : 18321.5 11250.4 3635.34 5160.13 119.1 405.2 (E) with _bh : 17247.3 11492.6 3994.74 6405.29 166.7 413.6 (F) without bh: 17471.3 11298.7 3818.05 6102.11 165.7 406.3 Test (E) and (F) is this-patch(03), with(V1) and without(V2) the _bh spinlocks. I cannot explain the slow down for 20G64K (but its an artificial "lab-test" so I'm not worried). But the other results does show improvements. And test (E) "with _bh" version is slightly better. Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Eric Dumazet <edumazet@google.com> ---- V2: - By analysis from Hannes Frederic Sowa and Eric Dumazet, we don't need the spinlock _bh versions, as Netfilter currently does a local_bh_disable() before entering inet_fragment. - Fold-in desc from cover-mail V3: - Drop the chain_len counter per hash bucket. Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-04 07:38:16 +08:00
spin_unlock(&hb->chain_lock);
read_unlock(&f->lock);
if (depth <= INETFRAGS_MAXDEPTH)
return inet_frag_create(nf, f, key);
else
return ERR_PTR(-ENOBUFS);
}
EXPORT_SYMBOL(inet_frag_find);
void inet_frag_maybe_warn_overflow(struct inet_frag_queue *q,
const char *prefix)
{
static const char msg[] = "inet_frag_find: Fragment hash bucket"
" list length grew over limit " __stringify(INETFRAGS_MAXDEPTH)
". Dropping fragment.\n";
if (PTR_ERR(q) == -ENOBUFS)
LIMIT_NETDEBUG(KERN_WARNING "%s%s", prefix, msg);
}
EXPORT_SYMBOL(inet_frag_maybe_warn_overflow);