OpenCloudOS-Kernel/kernel/kexec_core.c

1215 lines
31 KiB
C
Raw Normal View History

2015-09-10 06:38:55 +08:00
/*
* kexec.c - kexec system call core code.
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2015-09-10 06:38:55 +08:00
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/kexec.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/reboot.h>
#include <linux/ioport.h>
#include <linux/hardirq.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/utsname.h>
#include <linux/numa.h>
#include <linux/suspend.h>
#include <linux/device.h>
#include <linux/freezer.h>
#include <linux/pm.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/console.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/syscore_ops.h>
#include <linux/compiler.h>
#include <linux/hugetlb.h>
#include <linux/frame.h>
2015-09-10 06:38:55 +08:00
#include <asm/page.h>
#include <asm/sections.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include "kexec_internal.h"
DEFINE_MUTEX(kexec_mutex);
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;
/* Flag to indicate we are going to kexec a new kernel */
bool kexec_in_progress = false;
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
.desc = IORES_DESC_CRASH_KERNEL
2015-09-10 06:38:55 +08:00
};
struct resource crashk_low_res = {
.name = "Crash kernel",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
.desc = IORES_DESC_CRASH_KERNEL
2015-09-10 06:38:55 +08:00
};
int kexec_should_crash(struct task_struct *p)
{
/*
* If crash_kexec_post_notifiers is enabled, don't run
* crash_kexec() here yet, which must be run after panic
* notifiers in panic().
*/
if (crash_kexec_post_notifiers)
return 0;
/*
* There are 4 panic() calls in do_exit() path, each of which
* corresponds to each of these 4 conditions.
*/
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
return 1;
return 0;
}
int kexec_crash_loaded(void)
{
return !!kexec_crash_image;
}
EXPORT_SYMBOL_GPL(kexec_crash_loaded);
2015-09-10 06:38:55 +08:00
/*
* When kexec transitions to the new kernel there is a one-to-one
* mapping between physical and virtual addresses. On processors
* where you can disable the MMU this is trivial, and easy. For
* others it is still a simple predictable page table to setup.
*
* In that environment kexec copies the new kernel to its final
* resting place. This means I can only support memory whose
* physical address can fit in an unsigned long. In particular
* addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
* If the assembly stub has more restrictive requirements
* KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
* defined more restrictively in <asm/kexec.h>.
*
* The code for the transition from the current kernel to the
* the new kernel is placed in the control_code_buffer, whose size
* is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
* page of memory is necessary, but some architectures require more.
* Because this memory must be identity mapped in the transition from
* virtual to physical addresses it must live in the range
* 0 - TASK_SIZE, as only the user space mappings are arbitrarily
* modifiable.
*
* The assembly stub in the control code buffer is passed a linked list
* of descriptor pages detailing the source pages of the new kernel,
* and the destination addresses of those source pages. As this data
* structure is not used in the context of the current OS, it must
* be self-contained.
*
* The code has been made to work with highmem pages and will use a
* destination page in its final resting place (if it happens
* to allocate it). The end product of this is that most of the
* physical address space, and most of RAM can be used.
*
* Future directions include:
* - allocating a page table with the control code buffer identity
* mapped, to simplify machine_kexec and make kexec_on_panic more
* reliable.
*/
/*
* KIMAGE_NO_DEST is an impossible destination address..., for
* allocating pages whose destination address we do not care about.
*/
#define KIMAGE_NO_DEST (-1UL)
#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
2015-09-10 06:38:55 +08:00
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long dest);
int sanity_check_segment_list(struct kimage *image)
{
int i;
2015-09-10 06:38:55 +08:00
unsigned long nr_segments = image->nr_segments;
unsigned long total_pages = 0;
2015-09-10 06:38:55 +08:00
/*
* Verify we have good destination addresses. The caller is
* responsible for making certain we don't attempt to load
* the new image into invalid or reserved areas of RAM. This
* just verifies it is an address we can use.
*
* Since the kernel does everything in page size chunks ensure
* the destination addresses are page aligned. Too many
* special cases crop of when we don't do this. The most
* insidious is getting overlapping destination addresses
* simply because addresses are changed to page size
* granularity.
*/
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if (mstart > mend)
return -EADDRNOTAVAIL;
2015-09-10 06:38:55 +08:00
if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
return -EADDRNOTAVAIL;
2015-09-10 06:38:55 +08:00
if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
return -EADDRNOTAVAIL;
2015-09-10 06:38:55 +08:00
}
/* Verify our destination addresses do not overlap.
* If we alloed overlapping destination addresses
* through very weird things can happen with no
* easy explanation as one segment stops on another.
*/
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
unsigned long j;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
for (j = 0; j < i; j++) {
unsigned long pstart, pend;
pstart = image->segment[j].mem;
pend = pstart + image->segment[j].memsz;
/* Do the segments overlap ? */
if ((mend > pstart) && (mstart < pend))
return -EINVAL;
2015-09-10 06:38:55 +08:00
}
}
/* Ensure our buffer sizes are strictly less than
* our memory sizes. This should always be the case,
* and it is easier to check up front than to be surprised
* later on.
*/
for (i = 0; i < nr_segments; i++) {
if (image->segment[i].bufsz > image->segment[i].memsz)
return -EINVAL;
2015-09-10 06:38:55 +08:00
}
/*
* Verify that no more than half of memory will be consumed. If the
* request from userspace is too large, a large amount of time will be
* wasted allocating pages, which can cause a soft lockup.
*/
for (i = 0; i < nr_segments; i++) {
if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
return -EINVAL;
total_pages += PAGE_COUNT(image->segment[i].memsz);
}
if (total_pages > totalram_pages / 2)
return -EINVAL;
2015-09-10 06:38:55 +08:00
/*
* Verify we have good destination addresses. Normally
* the caller is responsible for making certain we don't
* attempt to load the new image into invalid or reserved
* areas of RAM. But crash kernels are preloaded into a
* reserved area of ram. We must ensure the addresses
* are in the reserved area otherwise preloading the
* kernel could corrupt things.
*/
if (image->type == KEXEC_TYPE_CRASH) {
for (i = 0; i < nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
/* Ensure we are within the crash kernel limits */
if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
(mend > phys_to_boot_phys(crashk_res.end)))
return -EADDRNOTAVAIL;
2015-09-10 06:38:55 +08:00
}
}
return 0;
}
struct kimage *do_kimage_alloc_init(void)
{
struct kimage *image;
/* Allocate a controlling structure */
image = kzalloc(sizeof(*image), GFP_KERNEL);
if (!image)
return NULL;
image->head = 0;
image->entry = &image->head;
image->last_entry = &image->head;
image->control_page = ~0; /* By default this does not apply */
image->type = KEXEC_TYPE_DEFAULT;
/* Initialize the list of control pages */
INIT_LIST_HEAD(&image->control_pages);
/* Initialize the list of destination pages */
INIT_LIST_HEAD(&image->dest_pages);
/* Initialize the list of unusable pages */
INIT_LIST_HEAD(&image->unusable_pages);
return image;
}
int kimage_is_destination_range(struct kimage *image,
unsigned long start,
unsigned long end)
{
unsigned long i;
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz;
if ((end > mstart) && (start < mend))
return 1;
}
return 0;
}
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *pages;
x86/mm, kexec: Allow kexec to be used with SME Provide support so that kexec can be used to boot a kernel when SME is enabled. Support is needed to allocate pages for kexec without encryption. This is needed in order to be able to reboot in the kernel in the same manner as originally booted. Additionally, when shutting down all of the CPUs we need to be sure to flush the caches and then halt. This is needed when booting from a state where SME was not active into a state where SME is active (or vice-versa). Without these steps, it is possible for cache lines to exist for the same physical location but tagged both with and without the encryption bit. This can cause random memory corruption when caches are flushed depending on which cacheline is written last. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: <kexec@lists.infradead.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b95ff075db3e7cd545313f2fb609a49619a09625.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 05:10:28 +08:00
pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
2015-09-10 06:38:55 +08:00
if (pages) {
unsigned int count, i;
pages->mapping = NULL;
set_page_private(pages, order);
count = 1 << order;
for (i = 0; i < count; i++)
SetPageReserved(pages + i);
x86/mm, kexec: Allow kexec to be used with SME Provide support so that kexec can be used to boot a kernel when SME is enabled. Support is needed to allocate pages for kexec without encryption. This is needed in order to be able to reboot in the kernel in the same manner as originally booted. Additionally, when shutting down all of the CPUs we need to be sure to flush the caches and then halt. This is needed when booting from a state where SME was not active into a state where SME is active (or vice-versa). Without these steps, it is possible for cache lines to exist for the same physical location but tagged both with and without the encryption bit. This can cause random memory corruption when caches are flushed depending on which cacheline is written last. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: <kexec@lists.infradead.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b95ff075db3e7cd545313f2fb609a49619a09625.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 05:10:28 +08:00
arch_kexec_post_alloc_pages(page_address(pages), count,
gfp_mask);
if (gfp_mask & __GFP_ZERO)
for (i = 0; i < count; i++)
clear_highpage(pages + i);
2015-09-10 06:38:55 +08:00
}
return pages;
}
static void kimage_free_pages(struct page *page)
{
unsigned int order, count, i;
order = page_private(page);
count = 1 << order;
x86/mm, kexec: Allow kexec to be used with SME Provide support so that kexec can be used to boot a kernel when SME is enabled. Support is needed to allocate pages for kexec without encryption. This is needed in order to be able to reboot in the kernel in the same manner as originally booted. Additionally, when shutting down all of the CPUs we need to be sure to flush the caches and then halt. This is needed when booting from a state where SME was not active into a state where SME is active (or vice-versa). Without these steps, it is possible for cache lines to exist for the same physical location but tagged both with and without the encryption bit. This can cause random memory corruption when caches are flushed depending on which cacheline is written last. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: <kexec@lists.infradead.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/b95ff075db3e7cd545313f2fb609a49619a09625.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-18 05:10:28 +08:00
arch_kexec_pre_free_pages(page_address(page), count);
2015-09-10 06:38:55 +08:00
for (i = 0; i < count; i++)
ClearPageReserved(page + i);
__free_pages(page, order);
}
void kimage_free_page_list(struct list_head *list)
{
struct page *page, *next;
2015-09-10 06:38:55 +08:00
list_for_each_entry_safe(page, next, list, lru) {
2015-09-10 06:38:55 +08:00
list_del(&page->lru);
kimage_free_pages(page);
}
}
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* At worst this runs in O(N) of the image size.
*/
struct list_head extra_pages;
struct page *pages;
unsigned int count;
count = 1 << order;
INIT_LIST_HEAD(&extra_pages);
/* Loop while I can allocate a page and the page allocated
* is a destination page.
*/
do {
unsigned long pfn, epfn, addr, eaddr;
pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
if (!pages)
break;
pfn = page_to_boot_pfn(pages);
2015-09-10 06:38:55 +08:00
epfn = pfn + count;
addr = pfn << PAGE_SHIFT;
eaddr = epfn << PAGE_SHIFT;
if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
kimage_is_destination_range(image, addr, eaddr)) {
list_add(&pages->lru, &extra_pages);
pages = NULL;
}
} while (!pages);
if (pages) {
/* Remember the allocated page... */
list_add(&pages->lru, &image->control_pages);
/* Because the page is already in it's destination
* location we will never allocate another page at
* that address. Therefore kimage_alloc_pages
* will not return it (again) and we don't need
* to give it an entry in image->segment[].
*/
}
/* Deal with the destination pages I have inadvertently allocated.
*
* Ideally I would convert multi-page allocations into single
* page allocations, and add everything to image->dest_pages.
*
* For now it is simpler to just free the pages.
*/
kimage_free_page_list(&extra_pages);
return pages;
}
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
unsigned int order)
{
/* Control pages are special, they are the intermediaries
* that are needed while we copy the rest of the pages
* to their final resting place. As such they must
* not conflict with either the destination addresses
* or memory the kernel is already using.
*
* Control pages are also the only pags we must allocate
* when loading a crash kernel. All of the other pages
* are specified by the segments and we just memcpy
* into them directly.
*
* The only case where we really need more than one of
* these are for architectures where we cannot disable
* the MMU and must instead generate an identity mapped
* page table for all of the memory.
*
* Given the low demand this implements a very simple
* allocator that finds the first hole of the appropriate
* size in the reserved memory region, and allocates all
* of the memory up to and including the hole.
*/
unsigned long hole_start, hole_end, size;
struct page *pages;
pages = NULL;
size = (1 << order) << PAGE_SHIFT;
hole_start = (image->control_page + (size - 1)) & ~(size - 1);
hole_end = hole_start + size - 1;
while (hole_end <= crashk_res.end) {
unsigned long i;
kexec: add cond_resched into kimage_alloc_crash_control_pages A soft lookup will occur when I run trinity in syscall kexec_load. the corresponding stack information is as follows. BUG: soft lockup - CPU#6 stuck for 22s! [trinity-c6:13859] Kernel panic - not syncing: softlockup: hung tasks CPU: 6 PID: 13859 Comm: trinity-c6 Tainted: G O L ----V------- 3.10.0-327.28.3.35.zhongjiang.x86_64 #1 Hardware name: Huawei Technologies Co., Ltd. Tecal BH622 V2/BC01SRSA0, BIOS RMIBV386 06/30/2014 Call Trace: <IRQ> dump_stack+0x19/0x1b panic+0xd8/0x214 watchdog_timer_fn+0x1cc/0x1e0 __hrtimer_run_queues+0xd2/0x260 hrtimer_interrupt+0xb0/0x1e0 ? call_softirq+0x1c/0x30 local_apic_timer_interrupt+0x37/0x60 smp_apic_timer_interrupt+0x3f/0x60 apic_timer_interrupt+0x6d/0x80 <EOI> ? kimage_alloc_control_pages+0x80/0x270 ? kmem_cache_alloc_trace+0x1ce/0x1f0 ? do_kimage_alloc_init+0x1f/0x90 kimage_alloc_init+0x12a/0x180 SyS_kexec_load+0x20a/0x260 system_call_fastpath+0x16/0x1b the first time allocation of control pages may take too much time because crash_res.end can be set to a higher value. we need to add cond_resched to avoid the issue. The patch have been tested and above issue is not appear. Link: http://lkml.kernel.org/r/1481164674-42775-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Xunlei Pang <xpang@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 07:04:23 +08:00
cond_resched();
2015-09-10 06:38:55 +08:00
if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
break;
/* See if I overlap any of the segments */
for (i = 0; i < image->nr_segments; i++) {
unsigned long mstart, mend;
mstart = image->segment[i].mem;
mend = mstart + image->segment[i].memsz - 1;
if ((hole_end >= mstart) && (hole_start <= mend)) {
/* Advance the hole to the end of the segment */
hole_start = (mend + (size - 1)) & ~(size - 1);
hole_end = hole_start + size - 1;
break;
}
}
/* If I don't overlap any segments I have found my hole! */
if (i == image->nr_segments) {
pages = pfn_to_page(hole_start >> PAGE_SHIFT);
image->control_page = hole_end;
2015-09-10 06:38:55 +08:00
break;
}
}
/* Ensure that these pages are decrypted if SME is enabled. */
if (pages)
arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
2015-09-10 06:38:55 +08:00
return pages;
}
struct page *kimage_alloc_control_pages(struct kimage *image,
unsigned int order)
{
struct page *pages = NULL;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
pages = kimage_alloc_normal_control_pages(image, order);
break;
case KEXEC_TYPE_CRASH:
pages = kimage_alloc_crash_control_pages(image, order);
break;
}
return pages;
}
kdump: protect vmcoreinfo data under the crash memory Currently vmcoreinfo data is updated at boot time subsys_initcall(), it has the risk of being modified by some wrong code during system is running. As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on, when using "crash", "makedumpfile", etc utility to parse this vmcore, we probably will get "Segmentation fault" or other unexpected errors. E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the system; 3) trigger kdump, then we obviously will fail to recognize the crash context correctly due to the corrupted vmcoreinfo. Now except for vmcoreinfo, all the crash data is well protected(including the cpu note which is fully updated in the crash path, thus its correctness is guaranteed). Given that vmcoreinfo data is a large chunk prepared for kdump, we better protect it as well. To solve this, we relocate and copy vmcoreinfo_data to the crash memory when kdump is loading via kexec syscalls. Because the whole crash memory will be protected by existing arch_kexec_protect_crashkres() mechanism, we naturally protect vmcoreinfo_data from write(even read) access under kernel direct mapping after kdump is loaded. Since kdump is usually loaded at the very early stage after boot, we can trust the correctness of the vmcoreinfo data copied. On the other hand, we still need to operate the vmcoreinfo safe copy when crash happens to generate vmcoreinfo_note again, we rely on vmap() to map out a new kernel virtual address and update to use this new one instead in the following crash_save_vmcoreinfo(). BTW, we do not touch vmcoreinfo_note, because it will be fully updated using the protected vmcoreinfo_data after crash which is surely correct just like the cpu crash note. Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com Signed-off-by: Xunlei Pang <xlpang@redhat.com> Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:33:21 +08:00
int kimage_crash_copy_vmcoreinfo(struct kimage *image)
{
struct page *vmcoreinfo_page;
void *safecopy;
if (image->type != KEXEC_TYPE_CRASH)
return 0;
/*
* For kdump, allocate one vmcoreinfo safe copy from the
* crash memory. as we have arch_kexec_protect_crashkres()
* after kexec syscall, we naturally protect it from write
* (even read) access under kernel direct mapping. But on
* the other hand, we still need to operate it when crash
* happens to generate vmcoreinfo note, hereby we rely on
* vmap for this purpose.
*/
vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
if (!vmcoreinfo_page) {
pr_warn("Could not allocate vmcoreinfo buffer\n");
return -ENOMEM;
}
safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
if (!safecopy) {
pr_warn("Could not vmap vmcoreinfo buffer\n");
return -ENOMEM;
}
image->vmcoreinfo_data_copy = safecopy;
crash_update_vmcoreinfo_safecopy(safecopy);
return 0;
}
2015-09-10 06:38:55 +08:00
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
{
if (*image->entry != 0)
image->entry++;
if (image->entry == image->last_entry) {
kimage_entry_t *ind_page;
struct page *page;
page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
if (!page)
return -ENOMEM;
ind_page = page_address(page);
*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
2015-09-10 06:38:55 +08:00
image->entry = ind_page;
image->last_entry = ind_page +
((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
}
*image->entry = entry;
image->entry++;
*image->entry = 0;
return 0;
}
static int kimage_set_destination(struct kimage *image,
unsigned long destination)
{
int result;
destination &= PAGE_MASK;
result = kimage_add_entry(image, destination | IND_DESTINATION);
return result;
}
static int kimage_add_page(struct kimage *image, unsigned long page)
{
int result;
page &= PAGE_MASK;
result = kimage_add_entry(image, page | IND_SOURCE);
return result;
}
static void kimage_free_extra_pages(struct kimage *image)
{
/* Walk through and free any extra destination pages I may have */
kimage_free_page_list(&image->dest_pages);
/* Walk through and free any unusable pages I have cached */
kimage_free_page_list(&image->unusable_pages);
}
void kimage_terminate(struct kimage *image)
{
if (*image->entry != 0)
image->entry++;
*image->entry = IND_DONE;
}
#define for_each_kimage_entry(image, ptr, entry) \
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
ptr = (entry & IND_INDIRECTION) ? \
boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
2015-09-10 06:38:55 +08:00
static void kimage_free_entry(kimage_entry_t entry)
{
struct page *page;
page = boot_pfn_to_page(entry >> PAGE_SHIFT);
2015-09-10 06:38:55 +08:00
kimage_free_pages(page);
}
void kimage_free(struct kimage *image)
{
kimage_entry_t *ptr, entry;
kimage_entry_t ind = 0;
if (!image)
return;
kdump: protect vmcoreinfo data under the crash memory Currently vmcoreinfo data is updated at boot time subsys_initcall(), it has the risk of being modified by some wrong code during system is running. As a result, vmcore dumped may contain the wrong vmcoreinfo. Later on, when using "crash", "makedumpfile", etc utility to parse this vmcore, we probably will get "Segmentation fault" or other unexpected errors. E.g. 1) wrong code overwrites vmcoreinfo_data; 2) further crashes the system; 3) trigger kdump, then we obviously will fail to recognize the crash context correctly due to the corrupted vmcoreinfo. Now except for vmcoreinfo, all the crash data is well protected(including the cpu note which is fully updated in the crash path, thus its correctness is guaranteed). Given that vmcoreinfo data is a large chunk prepared for kdump, we better protect it as well. To solve this, we relocate and copy vmcoreinfo_data to the crash memory when kdump is loading via kexec syscalls. Because the whole crash memory will be protected by existing arch_kexec_protect_crashkres() mechanism, we naturally protect vmcoreinfo_data from write(even read) access under kernel direct mapping after kdump is loaded. Since kdump is usually loaded at the very early stage after boot, we can trust the correctness of the vmcoreinfo data copied. On the other hand, we still need to operate the vmcoreinfo safe copy when crash happens to generate vmcoreinfo_note again, we rely on vmap() to map out a new kernel virtual address and update to use this new one instead in the following crash_save_vmcoreinfo(). BTW, we do not touch vmcoreinfo_note, because it will be fully updated using the protected vmcoreinfo_data after crash which is surely correct just like the cpu crash note. Link: http://lkml.kernel.org/r/1493281021-20737-3-git-send-email-xlpang@redhat.com Signed-off-by: Xunlei Pang <xlpang@redhat.com> Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Young <dyoung@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Hari Bathini <hbathini@linux.vnet.ibm.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:33:21 +08:00
if (image->vmcoreinfo_data_copy) {
crash_update_vmcoreinfo_safecopy(NULL);
vunmap(image->vmcoreinfo_data_copy);
}
2015-09-10 06:38:55 +08:00
kimage_free_extra_pages(image);
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_INDIRECTION) {
/* Free the previous indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Save this indirection page until we are
* done with it.
*/
ind = entry;
} else if (entry & IND_SOURCE)
kimage_free_entry(entry);
}
/* Free the final indirection page */
if (ind & IND_INDIRECTION)
kimage_free_entry(ind);
/* Handle any machine specific cleanup */
machine_kexec_cleanup(image);
/* Free the kexec control pages... */
kimage_free_page_list(&image->control_pages);
/*
* Free up any temporary buffers allocated. This might hit if
* error occurred much later after buffer allocation.
*/
if (image->file_mode)
kimage_file_post_load_cleanup(image);
kfree(image);
}
static kimage_entry_t *kimage_dst_used(struct kimage *image,
unsigned long page)
{
kimage_entry_t *ptr, entry;
unsigned long destination = 0;
for_each_kimage_entry(image, ptr, entry) {
if (entry & IND_DESTINATION)
destination = entry & PAGE_MASK;
else if (entry & IND_SOURCE) {
if (page == destination)
return ptr;
destination += PAGE_SIZE;
}
}
return NULL;
}
static struct page *kimage_alloc_page(struct kimage *image,
gfp_t gfp_mask,
unsigned long destination)
{
/*
* Here we implement safeguards to ensure that a source page
* is not copied to its destination page before the data on
* the destination page is no longer useful.
*
* To do this we maintain the invariant that a source page is
* either its own destination page, or it is not a
* destination page at all.
*
* That is slightly stronger than required, but the proof
* that no problems will not occur is trivial, and the
* implementation is simply to verify.
*
* When allocating all pages normally this algorithm will run
* in O(N) time, but in the worst case it will run in O(N^2)
* time. If the runtime is a problem the data structures can
* be fixed.
*/
struct page *page;
unsigned long addr;
/*
* Walk through the list of destination pages, and see if I
* have a match.
*/
list_for_each_entry(page, &image->dest_pages, lru) {
addr = page_to_boot_pfn(page) << PAGE_SHIFT;
2015-09-10 06:38:55 +08:00
if (addr == destination) {
list_del(&page->lru);
return page;
}
}
page = NULL;
while (1) {
kimage_entry_t *old;
/* Allocate a page, if we run out of memory give up */
page = kimage_alloc_pages(gfp_mask, 0);
if (!page)
return NULL;
/* If the page cannot be used file it away */
if (page_to_boot_pfn(page) >
2015-09-10 06:38:55 +08:00
(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
list_add(&page->lru, &image->unusable_pages);
continue;
}
addr = page_to_boot_pfn(page) << PAGE_SHIFT;
2015-09-10 06:38:55 +08:00
/* If it is the destination page we want use it */
if (addr == destination)
break;
/* If the page is not a destination page use it */
if (!kimage_is_destination_range(image, addr,
addr + PAGE_SIZE))
break;
/*
* I know that the page is someones destination page.
* See if there is already a source page for this
* destination page. And if so swap the source pages.
*/
old = kimage_dst_used(image, addr);
if (old) {
/* If so move it */
unsigned long old_addr;
struct page *old_page;
old_addr = *old & PAGE_MASK;
old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
2015-09-10 06:38:55 +08:00
copy_highpage(page, old_page);
*old = addr | (*old & ~PAGE_MASK);
/* The old page I have found cannot be a
* destination page, so return it if it's
* gfp_flags honor the ones passed in.
*/
if (!(gfp_mask & __GFP_HIGHMEM) &&
PageHighMem(old_page)) {
kimage_free_pages(old_page);
continue;
}
addr = old_addr;
page = old_page;
break;
}
/* Place the page on the destination list, to be used later */
list_add(&page->lru, &image->dest_pages);
}
return page;
}
static int kimage_load_normal_segment(struct kimage *image,
struct kexec_segment *segment)
{
unsigned long maddr;
size_t ubytes, mbytes;
int result;
unsigned char __user *buf = NULL;
unsigned char *kbuf = NULL;
result = 0;
if (image->file_mode)
kbuf = segment->kbuf;
else
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
result = kimage_set_destination(image, maddr);
if (result < 0)
goto out;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
if (!page) {
result = -ENOMEM;
goto out;
}
result = kimage_add_page(image, page_to_boot_pfn(page)
2015-09-10 06:38:55 +08:00
<< PAGE_SHIFT);
if (result < 0)
goto out;
ptr = kmap(page);
/* Start with a clear page */
clear_page(ptr);
ptr += maddr & ~PAGE_MASK;
mchunk = min_t(size_t, mbytes,
PAGE_SIZE - (maddr & ~PAGE_MASK));
uchunk = min(ubytes, mchunk);
/* For file based kexec, source pages are in kernel memory */
if (image->file_mode)
memcpy(ptr, kbuf, uchunk);
else
result = copy_from_user(ptr, buf, uchunk);
kunmap(page);
if (result) {
result = -EFAULT;
goto out;
}
ubytes -= uchunk;
maddr += mchunk;
if (image->file_mode)
kbuf += mchunk;
else
buf += mchunk;
mbytes -= mchunk;
cond_resched();
2015-09-10 06:38:55 +08:00
}
out:
return result;
}
static int kimage_load_crash_segment(struct kimage *image,
struct kexec_segment *segment)
{
/* For crash dumps kernels we simply copy the data from
* user space to it's destination.
* We do things a page at a time for the sake of kmap.
*/
unsigned long maddr;
size_t ubytes, mbytes;
int result;
unsigned char __user *buf = NULL;
unsigned char *kbuf = NULL;
result = 0;
if (image->file_mode)
kbuf = segment->kbuf;
else
buf = segment->buf;
ubytes = segment->bufsz;
mbytes = segment->memsz;
maddr = segment->mem;
while (mbytes) {
struct page *page;
char *ptr;
size_t uchunk, mchunk;
page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
2015-09-10 06:38:55 +08:00
if (!page) {
result = -ENOMEM;
goto out;
}
arch_kexec_post_alloc_pages(page_address(page), 1, 0);
2015-09-10 06:38:55 +08:00
ptr = kmap(page);
ptr += maddr & ~PAGE_MASK;
mchunk = min_t(size_t, mbytes,
PAGE_SIZE - (maddr & ~PAGE_MASK));
uchunk = min(ubytes, mchunk);
if (mchunk > uchunk) {
/* Zero the trailing part of the page */
memset(ptr + uchunk, 0, mchunk - uchunk);
}
/* For file based kexec, source pages are in kernel memory */
if (image->file_mode)
memcpy(ptr, kbuf, uchunk);
else
result = copy_from_user(ptr, buf, uchunk);
kexec_flush_icache_page(page);
kunmap(page);
arch_kexec_pre_free_pages(page_address(page), 1);
2015-09-10 06:38:55 +08:00
if (result) {
result = -EFAULT;
goto out;
}
ubytes -= uchunk;
maddr += mchunk;
if (image->file_mode)
kbuf += mchunk;
else
buf += mchunk;
mbytes -= mchunk;
cond_resched();
2015-09-10 06:38:55 +08:00
}
out:
return result;
}
int kimage_load_segment(struct kimage *image,
struct kexec_segment *segment)
{
int result = -ENOMEM;
switch (image->type) {
case KEXEC_TYPE_DEFAULT:
result = kimage_load_normal_segment(image, segment);
break;
case KEXEC_TYPE_CRASH:
result = kimage_load_crash_segment(image, segment);
break;
}
return result;
}
struct kimage *kexec_image;
struct kimage *kexec_crash_image;
int kexec_load_disabled;
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 18:19:11 +08:00
/*
* No panic_cpu check version of crash_kexec(). This function is called
* only when panic_cpu holds the current CPU number; this is the only CPU
* which processes crash_kexec routines.
*/
void __noclone __crash_kexec(struct pt_regs *regs)
2015-09-10 06:38:55 +08:00
{
/* Take the kexec_mutex here to prevent sys_kexec_load
* running on one cpu from replacing the crash kernel
* we are using after a panic on a different cpu.
*
* If the crash kernel was not located in a fixed area
* of memory the xchg(&kexec_crash_image) would be
* sufficient. But since I reuse the memory...
*/
if (mutex_trylock(&kexec_mutex)) {
if (kexec_crash_image) {
struct pt_regs fixed_regs;
crash_setup_regs(&fixed_regs, regs);
crash_save_vmcoreinfo();
machine_crash_shutdown(&fixed_regs);
machine_kexec(kexec_crash_image);
}
mutex_unlock(&kexec_mutex);
}
}
STACK_FRAME_NON_STANDARD(__crash_kexec);
2015-09-10 06:38:55 +08:00
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 18:19:11 +08:00
void crash_kexec(struct pt_regs *regs)
{
int old_cpu, this_cpu;
/*
* Only one CPU is allowed to execute the crash_kexec() code as with
* panic(). Otherwise parallel calls of panic() and crash_kexec()
* may stop each other. To exclude them, we use panic_cpu here too.
*/
this_cpu = raw_smp_processor_id();
old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
if (old_cpu == PANIC_CPU_INVALID) {
/* This is the 1st CPU which comes here, so go ahead. */
printk_safe_flush_on_panic();
kexec: Fix race between panic() and crash_kexec() Currently, panic() and crash_kexec() can be called at the same time. For example (x86 case): CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired nmi_shootdown_cpus() // stop other CPUs CPU 1: panic() crash_kexec() mutex_trylock() // failed to acquire smp_send_stop() // stop other CPUs infinite loop If CPU 1 calls smp_send_stop() before nmi_shootdown_cpus(), kdump fails. In another case: CPU 0: oops_end() crash_kexec() mutex_trylock() // acquired <NMI> io_check_error() panic() crash_kexec() mutex_trylock() // failed to acquire infinite loop Clearly, this is an undesirable result. To fix this problem, this patch changes crash_kexec() to exclude others by using the panic_cpu atomic. Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Baoquan He <bhe@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: kexec@lists.infradead.org Cc: linux-doc@vger.kernel.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Minfei Huang <mnfhuang@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Seth Jennings <sjenning@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: x86-ml <x86@kernel.org> Link: http://lkml.kernel.org/r/20151210014630.25437.94161.stgit@softrs Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-14 18:19:11 +08:00
__crash_kexec(regs);
/*
* Reset panic_cpu to allow another panic()/crash_kexec()
* call.
*/
atomic_set(&panic_cpu, PANIC_CPU_INVALID);
}
}
2015-09-10 06:38:55 +08:00
size_t crash_get_memory_size(void)
{
size_t size = 0;
mutex_lock(&kexec_mutex);
if (crashk_res.end != crashk_res.start)
size = resource_size(&crashk_res);
mutex_unlock(&kexec_mutex);
return size;
}
void __weak crash_free_reserved_phys_range(unsigned long begin,
unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE)
free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
2015-09-10 06:38:55 +08:00
}
int crash_shrink_memory(unsigned long new_size)
{
int ret = 0;
unsigned long start, end;
unsigned long old_size;
struct resource *ram_res;
mutex_lock(&kexec_mutex);
if (kexec_crash_image) {
ret = -ENOENT;
goto unlock;
}
start = crashk_res.start;
end = crashk_res.end;
old_size = (end == 0) ? 0 : end - start + 1;
if (new_size >= old_size) {
ret = (new_size == old_size) ? 0 : -EINVAL;
goto unlock;
}
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
if (!ram_res) {
ret = -ENOMEM;
goto unlock;
}
start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
crash_free_reserved_phys_range(end, crashk_res.end);
if ((start == end) && (crashk_res.parent != NULL))
release_resource(&crashk_res);
ram_res->start = end;
ram_res->end = crashk_res.end;
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2015-09-10 06:38:55 +08:00
ram_res->name = "System RAM";
crashk_res.end = end - 1;
insert_resource(&iomem_resource, ram_res);
unlock:
mutex_unlock(&kexec_mutex);
return ret;
}
void crash_save_cpu(struct pt_regs *regs, int cpu)
{
struct elf_prstatus prstatus;
u32 *buf;
if ((cpu < 0) || (cpu >= nr_cpu_ids))
return;
/* Using ELF notes here is opportunistic.
* I need a well defined structure format
* for the data I pass, and I need tags
* on the data to indicate what information I have
* squirrelled away. ELF notes happen to provide
* all of that, so there is no need to invent something new.
*/
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
if (!buf)
return;
memset(&prstatus, 0, sizeof(prstatus));
prstatus.pr_pid = current->pid;
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
&prstatus, sizeof(prstatus));
final_note(buf);
}
static int __init crash_notes_memory_init(void)
{
/* Allocate memory for saving cpu registers. */
kexec: align crash_notes allocation to make it be inside one physical page People reported that crash_notes in /proc/vmcore were corrupted and this cause crash kdump failure. With code debugging and log we got the root cause. This is because percpu variable crash_notes are allocated in 2 vmalloc pages. Currently percpu is based on vmalloc by default. Vmalloc can't guarantee 2 continuous vmalloc pages are also on 2 continuous physical pages. So when 1st kernel exports the starting address and size of crash_notes through sysfs like below: /sys/devices/system/cpu/cpux/crash_notes /sys/devices/system/cpu/cpux/crash_notes_size kdump kernel use them to get the content of crash_notes. However the 2nd part may not be in the next neighbouring physical page as we expected if crash_notes are allocated accross 2 vmalloc pages. That's why nhdr_ptr->n_namesz or nhdr_ptr->n_descsz could be very huge in update_note_header_size_elf64() and cause note header merging failure or some warnings. In this patch change to call __alloc_percpu() to passed in the align value by rounding crash_notes_size up to the nearest power of two. This makes sure the crash_notes is allocated inside one physical page since sizeof(note_buf_t) in all ARCHS is smaller than PAGE_SIZE. Meanwhile add a BUILD_BUG_ON to break compile if size is bigger than PAGE_SIZE since crash_notes definitely will be in 2 pages. That need be avoided, and need be reported if it's unavoidable. [akpm@linux-foundation.org: use correct comment layout] Signed-off-by: Baoquan He <bhe@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Dave Young <dyoung@redhat.com> Cc: Lisa Mitchell <lisa.mitchell@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 06:39:00 +08:00
size_t size, align;
/*
* crash_notes could be allocated across 2 vmalloc pages when percpu
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
* pages are also on 2 continuous physical pages. In this case the
* 2nd part of crash_notes in 2nd page could be lost since only the
* starting address and size of crash_notes are exported through sysfs.
* Here round up the size of crash_notes to the nearest power of two
* and pass it to __alloc_percpu as align value. This can make sure
* crash_notes is allocated inside one physical page.
*/
size = sizeof(note_buf_t);
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
/*
* Break compile if size is bigger than PAGE_SIZE since crash_notes
* definitely will be in 2 pages with that.
*/
BUILD_BUG_ON(size > PAGE_SIZE);
crash_notes = __alloc_percpu(size, align);
2015-09-10 06:38:55 +08:00
if (!crash_notes) {
pr_warn("Memory allocation for saving cpu register states failed\n");
2015-09-10 06:38:55 +08:00
return -ENOMEM;
}
return 0;
}
subsys_initcall(crash_notes_memory_init);
/*
* Move into place and start executing a preloaded standalone
* executable. If nothing was preloaded return an error.
*/
int kernel_kexec(void)
{
int error = 0;
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
if (!kexec_image) {
error = -EINVAL;
goto Unlock;
}
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
lock_system_sleep();
pm_prepare_console();
error = freeze_processes();
if (error) {
error = -EBUSY;
goto Restore_console;
}
suspend_console();
error = dpm_suspend_start(PMSG_FREEZE);
if (error)
goto Resume_console;
/* At this point, dpm_suspend_start() has been called,
* but *not* dpm_suspend_end(). We *must* call
* dpm_suspend_end() now. Otherwise, drivers for
* some devices (e.g. interrupt controllers) become
* desynchronized with the actual state of the
* hardware at resume time, and evil weirdness ensues.
*/
error = dpm_suspend_end(PMSG_FREEZE);
if (error)
goto Resume_devices;
error = disable_nonboot_cpus();
if (error)
goto Enable_cpus;
local_irq_disable();
error = syscore_suspend();
if (error)
goto Enable_irqs;
} else
#endif
{
kexec_in_progress = true;
kernel_restart_prepare(NULL);
migrate_to_reboot_cpu();
/*
* migrate_to_reboot_cpu() disables CPU hotplug assuming that
* no further code needs to use CPU hotplug (which is true in
* the reboot case). However, the kexec path depends on using
* CPU hotplug again; so re-enable it here.
*/
cpu_hotplug_enable();
pr_emerg("Starting new kernel\n");
machine_shutdown();
}
machine_kexec(kexec_image);
#ifdef CONFIG_KEXEC_JUMP
if (kexec_image->preserve_context) {
syscore_resume();
Enable_irqs:
local_irq_enable();
Enable_cpus:
enable_nonboot_cpus();
dpm_resume_start(PMSG_RESTORE);
Resume_devices:
dpm_resume_end(PMSG_RESTORE);
Resume_console:
resume_console();
thaw_processes();
Restore_console:
pm_restore_console();
unlock_system_sleep();
}
#endif
Unlock:
mutex_unlock(&kexec_mutex);
return error;
}
/*
* Protection mechanism for crashkernel reserved memory after
* the kdump kernel is loaded.
2015-09-10 06:38:55 +08:00
*
* Provide an empty default implementation here -- architecture
* code may override this
*/
void __weak arch_kexec_protect_crashkres(void)
{}
void __weak arch_kexec_unprotect_crashkres(void)
{}