OpenCloudOS-Kernel/drivers/infiniband/core/umem.c

325 lines
8.9 KiB
C
Raw Normal View History

/*
* Copyright (c) 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Cisco Systems. All rights reserved.
* Copyright (c) 2005 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/sched/signal.h>
#include <linux/sched/mm.h>
#include <linux/export.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/count_zeros.h>
#include <rdma/ib_umem_odp.h>
#include "uverbs.h"
static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int dirty)
{
struct sg_page_iter sg_iter;
struct page *page;
if (umem->nmap > 0)
ib_dma_unmap_sg(dev, umem->sg_head.sgl, umem->sg_nents,
DMA_BIDIRECTIONAL);
for_each_sg_page(umem->sg_head.sgl, &sg_iter, umem->sg_nents, 0) {
page = sg_page_iter_page(&sg_iter);
unpin_user_pages_dirty_lock(&page, 1, umem->writable && dirty);
}
sg_free_table(&umem->sg_head);
}
/**
* ib_umem_find_best_pgsz - Find best HW page size to use for this MR
*
* @umem: umem struct
* @pgsz_bitmap: bitmap of HW supported page sizes
* @virt: IOVA
*
* This helper is intended for HW that support multiple page
* sizes but can do only a single page size in an MR.
*
* Returns 0 if the umem requires page sizes not supported by
* the driver to be mapped. Drivers always supporting PAGE_SIZE
* or smaller will never see a 0 result.
*/
unsigned long ib_umem_find_best_pgsz(struct ib_umem *umem,
unsigned long pgsz_bitmap,
unsigned long virt)
{
struct scatterlist *sg;
unsigned long va, pgoff;
dma_addr_t mask;
int i;
if (umem->is_odp) {
unsigned int page_size = BIT(to_ib_umem_odp(umem)->page_shift);
/* ODP must always be self consistent. */
if (!(pgsz_bitmap & page_size))
return 0;
return page_size;
}
/* rdma_for_each_block() has a bug if the page size is smaller than the
* page size used to build the umem. For now prevent smaller page sizes
* from being returned.
*/
pgsz_bitmap &= GENMASK(BITS_PER_LONG - 1, PAGE_SHIFT);
/* At minimum, drivers must support PAGE_SIZE or smaller */
if (WARN_ON(!(pgsz_bitmap & GENMASK(PAGE_SHIFT, 0))))
return 0;
umem->iova = va = virt;
/* The best result is the smallest page size that results in the minimum
* number of required pages. Compute the largest page size that could
* work based on VA address bits that don't change.
*/
mask = pgsz_bitmap &
GENMASK(BITS_PER_LONG - 1,
bits_per((umem->length - 1 + virt) ^ virt));
/* offset into first SGL */
pgoff = umem->address & ~PAGE_MASK;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
/* Walk SGL and reduce max page size if VA/PA bits differ
* for any address.
*/
mask |= (sg_dma_address(sg) + pgoff) ^ va;
va += sg_dma_len(sg) - pgoff;
/* Except for the last entry, the ending iova alignment sets
* the maximum possible page size as the low bits of the iova
* must be zero when starting the next chunk.
*/
if (i != (umem->nmap - 1))
mask |= va;
pgoff = 0;
}
/* The mask accumulates 1's in each position where the VA and physical
* address differ, thus the length of trailing 0 is the largest page
* size that can pass the VA through to the physical.
*/
if (mask)
pgsz_bitmap &= GENMASK(count_trailing_zeros(mask), 0);
return rounddown_pow_of_two(pgsz_bitmap);
}
EXPORT_SYMBOL(ib_umem_find_best_pgsz);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
/**
* ib_umem_get - Pin and DMA map userspace memory.
*
* @device: IB device to connect UMEM
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
* @addr: userspace virtual address to start at
* @size: length of region to pin
* @access: IB_ACCESS_xxx flags for memory being pinned
*/
struct ib_umem *ib_umem_get(struct ib_device *device, unsigned long addr,
size_t size, int access)
{
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
struct ib_umem *umem;
struct page **page_list;
unsigned long lock_limit;
unsigned long new_pinned;
unsigned long cur_base;
unsigned long dma_attr = 0;
struct mm_struct *mm;
unsigned long npages;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
int ret;
struct scatterlist *sg = NULL;
unsigned int gup_flags = FOLL_WRITE;
/*
* If the combination of the addr and size requested for this memory
* region causes an integer overflow, return error.
*/
if (((addr + size) < addr) ||
PAGE_ALIGN(addr + size) < (addr + size))
return ERR_PTR(-EINVAL);
if (!can_do_mlock())
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
return ERR_PTR(-EPERM);
if (access & IB_ACCESS_ON_DEMAND)
return ERR_PTR(-EOPNOTSUPP);
umem = kzalloc(sizeof(*umem), GFP_KERNEL);
if (!umem)
return ERR_PTR(-ENOMEM);
umem->ibdev = device;
umem->length = size;
umem->address = addr;
/*
* Drivers should call ib_umem_find_best_pgsz() to set the iova
* correctly.
*/
umem->iova = addr;
umem->writable = ib_access_writable(access);
umem->owning_mm = mm = current->mm;
mmgrab(mm);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
page_list = (struct page **) __get_free_page(GFP_KERNEL);
if (!page_list) {
ret = -ENOMEM;
goto umem_kfree;
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
}
npages = ib_umem_num_pages(umem);
if (npages == 0 || npages > UINT_MAX) {
ret = -EINVAL;
goto out;
}
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
new_pinned = atomic64_add_return(npages, &mm->pinned_vm);
if (new_pinned > lock_limit && !capable(CAP_IPC_LOCK)) {
atomic64_sub(npages, &mm->pinned_vm);
ret = -ENOMEM;
goto out;
}
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
cur_base = addr & PAGE_MASK;
if (!umem->writable)
gup_flags |= FOLL_FORCE;
while (npages) {
cond_resched();
IB/{core,hw,umem}: set FOLL_PIN via pin_user_pages*(), fix up ODP Convert infiniband to use the new pin_user_pages*() calls. Also, revert earlier changes to Infiniband ODP that had it using put_user_page(). ODP is "Case 3" in Documentation/core-api/pin_user_pages.rst, which is to say, normal get_user_pages() and put_page() is the API to use there. The new pin_user_pages*() calls replace corresponding get_user_pages*() calls, and set the FOLL_PIN flag. The FOLL_PIN flag requires that the caller must return the pages via put_user_page*() calls, but infiniband was already doing that as part of an earlier commit. Link: http://lkml.kernel.org/r/20200107224558.2362728-14-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Björn Töpel <bjorn.topel@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hans Verkuil <hverkuil-cisco@xs4all.nl> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Leon Romanovsky <leonro@mellanox.com> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 14:13:02 +08:00
ret = pin_user_pages_fast(cur_base,
min_t(unsigned long, npages,
PAGE_SIZE /
sizeof(struct page *)),
gup_flags | FOLL_LONGTERM, page_list);
if (ret < 0)
goto umem_release;
cur_base += ret * PAGE_SIZE;
npages -= ret;
sg = __sg_alloc_table_from_pages(
&umem->sg_head, page_list, ret, 0, ret << PAGE_SHIFT,
dma_get_max_seg_size(device->dma_device), sg, npages,
GFP_KERNEL);
umem->sg_nents = umem->sg_head.nents;
if (IS_ERR(sg)) {
unpin_user_pages_dirty_lock(page_list, ret, 0);
ret = PTR_ERR(sg);
goto umem_release;
}
}
if (access & IB_ACCESS_RELAXED_ORDERING)
dma_attr |= DMA_ATTR_WEAK_ORDERING;
umem->nmap =
ib_dma_map_sg_attrs(device, umem->sg_head.sgl, umem->sg_nents,
DMA_BIDIRECTIONAL, dma_attr);
if (!umem->nmap) {
ret = -ENOMEM;
goto umem_release;
}
ret = 0;
goto out;
umem_release:
__ib_umem_release(device, umem, 0);
atomic64_sub(ib_umem_num_pages(umem), &mm->pinned_vm);
out:
free_page((unsigned long) page_list);
umem_kfree:
if (ret) {
mmdrop(umem->owning_mm);
kfree(umem);
}
return ret ? ERR_PTR(ret) : umem;
}
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
EXPORT_SYMBOL(ib_umem_get);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
/**
* ib_umem_release - release memory pinned with ib_umem_get
* @umem: umem struct to release
*/
void ib_umem_release(struct ib_umem *umem)
{
if (!umem)
return;
if (umem->is_odp)
return ib_umem_odp_release(to_ib_umem_odp(umem));
__ib_umem_release(umem->ibdev, umem, 1);
atomic64_sub(ib_umem_num_pages(umem), &umem->owning_mm->pinned_vm);
mmdrop(umem->owning_mm);
kfree(umem);
IB/uverbs: Export ib_umem_get()/ib_umem_release() to modules Export ib_umem_get()/ib_umem_release() and put low-level drivers in control of when to call ib_umem_get() to pin and DMA map userspace, rather than always calling it in ib_uverbs_reg_mr() before calling the low-level driver's reg_user_mr method. Also move these functions to be in the ib_core module instead of ib_uverbs, so that driver modules using them do not depend on ib_uverbs. This has a number of advantages: - It is better design from the standpoint of making generic code a library that can be used or overridden by device-specific code as the details of specific devices dictate. - Drivers that do not need to pin userspace memory regions do not need to take the performance hit of calling ib_mem_get(). For example, although I have not tried to implement it in this patch, the ipath driver should be able to avoid pinning memory and just use copy_{to,from}_user() to access userspace memory regions. - Buffers that need special mapping treatment can be identified by the low-level driver. For example, it may be possible to solve some Altix-specific memory ordering issues with mthca CQs in userspace by mapping CQ buffers with extra flags. - Drivers that need to pin and DMA map userspace memory for things other than memory regions can use ib_umem_get() directly, instead of hacks using extra parameters to their reg_phys_mr method. For example, the mlx4 driver that is pending being merged needs to pin and DMA map QP and CQ buffers, but it does not need to create a memory key for these buffers. So the cleanest solution is for mlx4 to call ib_umem_get() in the create_qp and create_cq methods. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-03-05 08:15:11 +08:00
}
EXPORT_SYMBOL(ib_umem_release);
/*
* Copy from the given ib_umem's pages to the given buffer.
*
* umem - the umem to copy from
* offset - offset to start copying from
* dst - destination buffer
* length - buffer length
*
* Returns 0 on success, or an error code.
*/
int ib_umem_copy_from(void *dst, struct ib_umem *umem, size_t offset,
size_t length)
{
size_t end = offset + length;
int ret;
if (offset > umem->length || length > umem->length - offset) {
pr_err("ib_umem_copy_from not in range. offset: %zd umem length: %zd end: %zd\n",
offset, umem->length, end);
return -EINVAL;
}
ret = sg_pcopy_to_buffer(umem->sg_head.sgl, umem->sg_nents, dst, length,
offset + ib_umem_offset(umem));
if (ret < 0)
return ret;
else if (ret != length)
return -EINVAL;
else
return 0;
}
EXPORT_SYMBOL(ib_umem_copy_from);