OpenCloudOS-Kernel/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c

5144 lines
146 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <asm/unaligned.h>
#include "hw.h"
#include "ar9003_phy.h"
#include "ar9003_eeprom.h"
#define COMP_HDR_LEN 4
#define COMP_CKSUM_LEN 2
#define LE16(x) __constant_cpu_to_le16(x)
#define LE32(x) __constant_cpu_to_le32(x)
/* Local defines to distinguish between extension and control CTL's */
#define EXT_ADDITIVE (0x8000)
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
#define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */
#define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */
#define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
#define EEPROM_DATA_LEN_9485 1088
static int ar9003_hw_power_interpolate(int32_t x,
int32_t *px, int32_t *py, u_int16_t np);
static const struct ar9300_eeprom ar9300_default = {
.eepromVersion = 2,
.templateVersion = 2,
.macAddr = {0, 2, 3, 4, 5, 6},
.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = 0,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0c,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 3,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x22222),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 36,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {0, 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2484, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {36, 36, 36, 36} },
{ {36, 36, 36, 36} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {32, 32, 28, 24} },
{ {32, 32, 28, 24} },
{ {32, 32, 28, 24} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
},
.calTargetPower2GHT40 = {
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x22222),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x000), LE16(0x000), LE16(0x000),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 68,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 0,
.tempSlopeHigh = 0,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
{ {20, 20, 20, 10} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_x113 = {
.eepromVersion = 2,
.templateVersion = 6,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"x113-023-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11A,
.eepMisc = 0,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x21,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x44444),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 25,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {34, 34, 34, 34} },
{ {34, 34, 34, 34} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
},
.calTargetPower2GHT40 = {
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x220),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x11111),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x150), LE16(0x150), LE16(0x150),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 68,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0xf,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 72,
.tempSlopeHigh = 105,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5785, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5190, 0),
FREQ2FBIN(5230, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5410, 0),
FREQ2FBIN(5510, 0),
FREQ2FBIN(5670, 0),
FREQ2FBIN(5755, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
{ {42, 40, 40, 34} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_h112 = {
.eepromVersion = 2,
.templateVersion = 3,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"h112-241-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = 0,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x10,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x44444),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 25,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2462, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {34, 34, 34, 34} },
{ {34, 34, 34, 34} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
},
.calTargetPower2GHT40 = {
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x220),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x44444),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x150), LE16(0x150), LE16(0x150),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0, 0, 0},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0, 0, 0},
.tempSlope = 45,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 40,
.tempSlopeHigh = 50,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_x112 = {
.eepromVersion = 2,
.templateVersion = 5,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"x112-041-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = 0,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastclock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x0,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x22222),
/*
* antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
/*
* xatten1DB[AR9300_max_chains]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0x1b, 0x1b, 0x1b},
/*
* xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x15, 0x15, 0x15},
.tempSlope = 50,
.voltSlope = 0,
/*
* spurChans[OSPrey_eeprom_modal_sPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80c080),
.papdRateMaskHt40 = LE32(0x0080c080),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11s */
{ {38, 38, 38, 38} },
{ {38, 38, 38, 38} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {38, 38, 36, 34} },
{ {38, 38, 36, 34} },
{ {38, 38, 34, 32} },
},
.calTargetPower2GHT20 = {
{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
},
.calTargetPower2GHT40 = {
{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x22222),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x0), LE16(0x0), LE16(0x0),
},
/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0x13, 0x19, 0x17},
/*
* xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x19, 0x19, 0x19},
.tempSlope = 70,
.voltSlope = 15,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshch check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 72,
.tempSlopeHigh = 105,
.xatten1DBLow = {0x10, 0x14, 0x10},
.xatten1MarginLow = {0x19, 0x19 , 0x19},
.xatten1DBHigh = {0x1d, 0x20, 0x24},
.xatten1MarginHigh = {0x10, 0x10, 0x10}
},
.calFreqPier5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5725, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {32, 32, 28, 26} },
{ {32, 32, 28, 26} },
{ {32, 32, 28, 26} },
{ {32, 32, 26, 24} },
{ {32, 32, 26, 24} },
{ {32, 32, 24, 22} },
{ {30, 30, 24, 22} },
{ {30, 30, 24, 22} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctledges[6].bchannel */ 0xFF,
/* Data[3].ctledges[7].bchannel */ 0xFF,
},
{
/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctledges[4].bchannel */ 0xFF,
/* Data[4].ctledges[5].bchannel */ 0xFF,
/* Data[4].ctledges[6].bchannel */ 0xFF,
/* Data[4].ctledges[7].bchannel */ 0xFF,
},
{
/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctledges[6].bchannel */ 0xFF,
/* Data[5].ctledges[7].bchannel */ 0xFF
},
{
/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom ar9300_h116 = {
.eepromVersion = 2,
.templateVersion = 4,
.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
.custData = {"h116-041-f0000"},
.baseEepHeader = {
.regDmn = { LE16(0), LE16(0x1f) },
.txrxMask = 0x33, /* 4 bits tx and 4 bits rx */
.opCapFlags = {
.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
.eepMisc = 0,
},
.rfSilent = 0,
.blueToothOptions = 0,
.deviceCap = 0,
.deviceType = 5, /* takes lower byte in eeprom location */
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
.params_for_tuning_caps = {0, 0},
.featureEnable = 0x0d,
/*
* bit0 - enable tx temp comp - disabled
* bit1 - enable tx volt comp - disabled
* bit2 - enable fastClock - enabled
* bit3 - enable doubling - enabled
* bit4 - enable internal regulator - disabled
* bit5 - enable pa predistortion - disabled
*/
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
.eepromWriteEnableGpio = 6,
.wlanDisableGpio = 0,
.wlanLedGpio = 8,
.rxBandSelectGpio = 0xff,
.txrxgain = 0x10,
.swreg = 0,
},
.modalHeader2G = {
/* ar9300_modal_eep_header 2g */
/* 4 idle,t1,t2,b(4 bits per setting) */
.antCtrlCommon = LE32(0x110),
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
.antCtrlCommon2 = LE32(0x44444),
/*
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
* rx1, rx12, b (2 bits each)
*/
.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
/*
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
* for ar9280 (0xa20c/b20c 5:0)
*/
.xatten1DB = {0x1f, 0x1f, 0x1f},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for ar9280 (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x12, 0x12, 0x12},
.tempSlope = 25,
.voltSlope = 0,
/*
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
* channels in usual fbin coding format
*/
.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
/*
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
* if the register is per chain
*/
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2c,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0c80C080),
.papdRateMaskHt40 = LE32(0x0080C080),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext1 = {
.ant_div_control = 0,
.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
},
.calFreqPier2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2462, 1),
},
/* ar9300_cal_data_per_freq_op_loop 2g */
.calPierData2G = {
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
},
.calTarget_freqbin_Cck = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2472, 1),
},
.calTarget_freqbin_2G = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT20 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTarget_freqbin_2GHT40 = {
FREQ2FBIN(2412, 1),
FREQ2FBIN(2437, 1),
FREQ2FBIN(2472, 1)
},
.calTargetPowerCck = {
/* 1L-5L,5S,11L,11S */
{ {34, 34, 34, 34} },
{ {34, 34, 34, 34} },
},
.calTargetPower2G = {
/* 6-24,36,48,54 */
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
{ {34, 34, 32, 32} },
},
.calTargetPower2GHT20 = {
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
},
.calTargetPower2GHT40 = {
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
},
.ctlIndex_2G = {
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
},
.ctl_freqbin_2G = {
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2457, 1),
FREQ2FBIN(2462, 1)
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2412, 1),
FREQ2FBIN(2417, 1),
FREQ2FBIN(2462, 1),
0xFF,
},
{
FREQ2FBIN(2422, 1),
FREQ2FBIN(2427, 1),
FREQ2FBIN(2447, 1),
FREQ2FBIN(2452, 1)
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0,
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
FREQ2FBIN(2472, 1),
0,
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
},
{
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
0
},
{
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
}
},
.ctlPowerData_2G = {
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
},
.modalHeader5G = {
/* 4 idle,t1,t2,b (4 bits per setting) */
.antCtrlCommon = LE32(0x220),
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
.antCtrlCommon2 = LE32(0x44444),
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
.antCtrlChain = {
LE16(0x150), LE16(0x150), LE16(0x150),
},
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
.xatten1DB = {0x19, 0x19, 0x19},
/*
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
* for merlin (0xa20c/b20c 16:12
*/
.xatten1Margin = {0x14, 0x14, 0x14},
.tempSlope = 70,
.voltSlope = 0,
/* spurChans spur channels in usual fbin coding format */
.spurChans = {0, 0, 0, 0, 0},
/* noiseFloorThreshCh Check if the register is per chain */
.noiseFloorThreshCh = {-1, 0, 0},
.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
.quick_drop = 0,
.xpaBiasLvl = 0,
.txFrameToDataStart = 0x0e,
.txFrameToPaOn = 0x0e,
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
.antennaGain = 0,
.switchSettling = 0x2d,
.adcDesiredSize = -30,
.txEndToXpaOff = 0,
.txEndToRxOn = 0x2,
.txFrameToXpaOn = 0xe,
.thresh62 = 28,
.papdRateMaskHt20 = LE32(0x0cf0e0e0),
.papdRateMaskHt40 = LE32(0x6cf0e0e0),
.futureModal = {
0, 0, 0, 0, 0, 0, 0, 0,
},
},
.base_ext2 = {
.tempSlopeLow = 35,
.tempSlopeHigh = 50,
.xatten1DBLow = {0, 0, 0},
.xatten1MarginLow = {0, 0, 0},
.xatten1DBHigh = {0, 0, 0},
.xatten1MarginHigh = {0, 0, 0}
},
.calFreqPier5G = {
FREQ2FBIN(5160, 0),
FREQ2FBIN(5220, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5785, 0)
},
.calPierData5G = {
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
{
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
},
},
.calTarget_freqbin_5G = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5600, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT20 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTarget_freqbin_5GHT40 = {
FREQ2FBIN(5180, 0),
FREQ2FBIN(5240, 0),
FREQ2FBIN(5320, 0),
FREQ2FBIN(5400, 0),
FREQ2FBIN(5500, 0),
FREQ2FBIN(5700, 0),
FREQ2FBIN(5745, 0),
FREQ2FBIN(5825, 0)
},
.calTargetPower5G = {
/* 6-24,36,48,54 */
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
{ {30, 30, 28, 24} },
},
.calTargetPower5GHT20 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
},
.calTargetPower5GHT40 = {
/*
* 0_8_16,1-3_9-11_17-19,
* 4,5,6,7,12,13,14,15,20,21,22,23
*/
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
},
.ctlIndex_5G = {
0x10, 0x16, 0x18, 0x40, 0x46,
0x48, 0x30, 0x36, 0x38
},
.ctl_freqbin_5G = {
{
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
},
{
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
},
{
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
/* Data[5].ctlEdges[7].bChannel */ 0xFF
},
{
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
},
{
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
},
{
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
}
},
.ctlPowerData_5G = {
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
}
},
{
{
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
}
},
{
{
CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
}
},
}
};
static const struct ar9300_eeprom *ar9300_eep_templates[] = {
&ar9300_default,
&ar9300_x112,
&ar9300_h116,
&ar9300_h112,
&ar9300_x113,
};
static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
{
#define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
int it;
for (it = 0; it < N_LOOP; it++)
if (ar9300_eep_templates[it]->templateVersion == id)
return ar9300_eep_templates[it];
return NULL;
#undef N_LOOP
}
static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
{
if (fbin == AR5416_BCHAN_UNUSED)
return fbin;
return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
}
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
{
return 0;
}
static int interpolate(int x, int xa, int xb, int ya, int yb)
{
int bf, factor, plus;
bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
factor = bf / 2;
plus = bf % 2;
return ya + factor + plus;
}
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
enum eeprom_param param)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
switch (param) {
case EEP_MAC_LSW:
return get_unaligned_be16(eep->macAddr);
case EEP_MAC_MID:
return get_unaligned_be16(eep->macAddr + 2);
case EEP_MAC_MSW:
return get_unaligned_be16(eep->macAddr + 4);
case EEP_REG_0:
return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
return pBase->deviceCap;
case EEP_OP_MODE:
return pBase->opCapFlags.opFlags;
case EEP_RF_SILENT:
return pBase->rfSilent;
case EEP_TX_MASK:
return (pBase->txrxMask >> 4) & 0xf;
case EEP_RX_MASK:
return pBase->txrxMask & 0xf;
case EEP_DRIVE_STRENGTH:
#define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
case EEP_INTERNAL_REGULATOR:
/* Bit 4 is internal regulator flag */
return (pBase->featureEnable & 0x10) >> 4;
case EEP_SWREG:
return le32_to_cpu(pBase->swreg);
case EEP_PAPRD:
return !!(pBase->featureEnable & BIT(5));
case EEP_CHAIN_MASK_REDUCE:
return (pBase->miscConfiguration >> 0x3) & 0x1;
case EEP_ANT_DIV_CTL1:
return eep->base_ext1.ant_div_control;
case EEP_ANTENNA_GAIN_5G:
return eep->modalHeader5G.antennaGain;
case EEP_ANTENNA_GAIN_2G:
return eep->modalHeader2G.antennaGain;
case EEP_QUICK_DROP:
return pBase->miscConfiguration & BIT(1);
default:
return 0;
}
}
static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
u8 *buffer)
{
u16 val;
if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
return false;
*buffer = (val >> (8 * (address % 2))) & 0xff;
return true;
}
static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
u8 *buffer)
{
u16 val;
if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
return false;
buffer[0] = val >> 8;
buffer[1] = val & 0xff;
return true;
}
static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
int count)
{
struct ath_common *common = ath9k_hw_common(ah);
int i;
if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
ath_dbg(common, EEPROM, "eeprom address not in range\n");
return false;
}
/*
* Since we're reading the bytes in reverse order from a little-endian
* word stream, an even address means we only use the lower half of
* the 16-bit word at that address
*/
if (address % 2 == 0) {
if (!ar9300_eeprom_read_byte(common, address--, buffer++))
goto error;
count--;
}
for (i = 0; i < count / 2; i++) {
if (!ar9300_eeprom_read_word(common, address, buffer))
goto error;
address -= 2;
buffer += 2;
}
if (count % 2)
if (!ar9300_eeprom_read_byte(common, address, buffer))
goto error;
return true;
error:
ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
address);
return false;
}
static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
{
REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
AR9300_OTP_STATUS_VALID, 1000))
return false;
*data = REG_READ(ah, AR9300_OTP_READ_DATA);
return true;
}
static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
int count)
{
u32 data;
int i;
for (i = 0; i < count; i++) {
int offset = 8 * ((address - i) % 4);
if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
return false;
buffer[i] = (data >> offset) & 0xff;
}
return true;
}
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
int *length, int *major, int *minor)
{
unsigned long value[4];
value[0] = best[0];
value[1] = best[1];
value[2] = best[2];
value[3] = best[3];
*code = ((value[0] >> 5) & 0x0007);
*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
*major = (value[2] & 0x000f);
*minor = (value[3] & 0x00ff);
}
static u16 ar9300_comp_cksum(u8 *data, int dsize)
{
int it, checksum = 0;
for (it = 0; it < dsize; it++) {
checksum += data[it];
checksum &= 0xffff;
}
return checksum;
}
static bool ar9300_uncompress_block(struct ath_hw *ah,
u8 *mptr,
int mdataSize,
u8 *block,
int size)
{
int it;
int spot;
int offset;
int length;
struct ath_common *common = ath9k_hw_common(ah);
spot = 0;
for (it = 0; it < size; it += (length+2)) {
offset = block[it];
offset &= 0xff;
spot += offset;
length = block[it+1];
length &= 0xff;
if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
ath_dbg(common, EEPROM,
"Restore at %d: spot=%d offset=%d length=%d\n",
it, spot, offset, length);
memcpy(&mptr[spot], &block[it+2], length);
spot += length;
} else if (length > 0) {
ath_dbg(common, EEPROM,
"Bad restore at %d: spot=%d offset=%d length=%d\n",
it, spot, offset, length);
return false;
}
}
return true;
}
static int ar9300_compress_decision(struct ath_hw *ah,
int it,
int code,
int reference,
u8 *mptr,
u8 *word, int length, int mdata_size)
{
struct ath_common *common = ath9k_hw_common(ah);
const struct ar9300_eeprom *eep = NULL;
switch (code) {
case _CompressNone:
if (length != mdata_size) {
ath_dbg(common, EEPROM,
"EEPROM structure size mismatch memory=%d eeprom=%d\n",
mdata_size, length);
return -1;
}
memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
ath_dbg(common, EEPROM,
"restored eeprom %d: uncompressed, length %d\n",
it, length);
break;
case _CompressBlock:
if (reference == 0) {
} else {
eep = ar9003_eeprom_struct_find_by_id(reference);
if (eep == NULL) {
ath_dbg(common, EEPROM,
"can't find reference eeprom struct %d\n",
reference);
return -1;
}
memcpy(mptr, eep, mdata_size);
}
ath_dbg(common, EEPROM,
"restore eeprom %d: block, reference %d, length %d\n",
it, reference, length);
ar9300_uncompress_block(ah, mptr, mdata_size,
(u8 *) (word + COMP_HDR_LEN), length);
break;
default:
ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
return -1;
}
return 0;
}
typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
int count);
static bool ar9300_check_header(void *data)
{
u32 *word = data;
return !(*word == 0 || *word == ~0);
}
static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
int base_addr)
{
u8 header[4];
if (!read(ah, base_addr, header, 4))
return false;
return ar9300_check_header(header);
}
static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
int mdata_size)
{
struct ath_common *common = ath9k_hw_common(ah);
u16 *data = (u16 *) mptr;
int i;
for (i = 0; i < mdata_size / 2; i++, data++)
ath9k_hw_nvram_read(common, i, data);
return 0;
}
/*
* Read the configuration data from the eeprom.
* The data can be put in any specified memory buffer.
*
* Returns -1 on error.
* Returns address of next memory location on success.
*/
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
u8 *mptr, int mdata_size)
{
#define MDEFAULT 15
#define MSTATE 100
int cptr;
u8 *word;
int code;
int reference, length, major, minor;
int osize;
int it;
u16 checksum, mchecksum;
struct ath_common *common = ath9k_hw_common(ah);
eeprom_read_op read;
if (ath9k_hw_use_flash(ah))
return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
word = kzalloc(2048, GFP_KERNEL);
if (!word)
return -ENOMEM;
memcpy(mptr, &ar9300_default, mdata_size);
read = ar9300_read_eeprom;
if (AR_SREV_9485(ah))
cptr = AR9300_BASE_ADDR_4K;
else if (AR_SREV_9330(ah))
cptr = AR9300_BASE_ADDR_512;
else
cptr = AR9300_BASE_ADDR;
ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
cptr = AR9300_BASE_ADDR_512;
ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
read = ar9300_read_otp;
cptr = AR9300_BASE_ADDR;
ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
cptr = AR9300_BASE_ADDR_512;
ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
if (ar9300_check_eeprom_header(ah, read, cptr))
goto found;
goto fail;
found:
ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
for (it = 0; it < MSTATE; it++) {
if (!read(ah, cptr, word, COMP_HDR_LEN))
goto fail;
if (!ar9300_check_header(word))
break;
ar9300_comp_hdr_unpack(word, &code, &reference,
&length, &major, &minor);
ath_dbg(common, EEPROM,
"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
cptr, code, reference, length, major, minor);
if ((!AR_SREV_9485(ah) && length >= 1024) ||
(AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
ath_dbg(common, EEPROM, "Skipping bad header\n");
cptr -= COMP_HDR_LEN;
continue;
}
osize = length;
read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
ath_dbg(common, EEPROM, "checksum %x %x\n",
checksum, mchecksum);
if (checksum == mchecksum) {
ar9300_compress_decision(ah, it, code, reference, mptr,
word, length, mdata_size);
} else {
ath_dbg(common, EEPROM,
"skipping block with bad checksum\n");
}
cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
}
kfree(word);
return cptr;
fail:
kfree(word);
return -1;
}
/*
* Restore the configuration structure by reading the eeprom.
* This function destroys any existing in-memory structure
* content.
*/
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
{
u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
if (ar9300_eeprom_restore_internal(ah, mptr,
sizeof(struct ar9300_eeprom)) < 0)
return false;
return true;
}
#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
struct ar9300_modal_eep_header *modal_hdr)
{
PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
PR_EEP("Ant. Gain", modal_hdr->antennaGain);
PR_EEP("Switch Settle", modal_hdr->switchSettling);
PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
PR_EEP("Temp Slope", modal_hdr->tempSlope);
PR_EEP("Volt Slope", modal_hdr->voltSlope);
PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
PR_EEP("Quick Drop", modal_hdr->quick_drop);
PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
PR_EEP("txClip", modal_hdr->txClip);
PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
return len;
}
static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_base_eep_hdr *pBase;
if (!dump_base_hdr) {
len += snprintf(buf + len, size - len,
"%20s :\n", "2GHz modal Header");
len += ar9003_dump_modal_eeprom(buf, len, size,
&eep->modalHeader2G);
len += snprintf(buf + len, size - len,
"%20s :\n", "5GHz modal Header");
len += ar9003_dump_modal_eeprom(buf, len, size,
&eep->modalHeader5G);
goto out;
}
pBase = &eep->baseEepHeader;
PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", (pBase->txrxMask >> 4));
PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_11A));
PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_11G));
PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_2G_HT20));
PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_2G_HT40));
PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_5G_HT20));
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
PR_EEP("RF Silent", pBase->rfSilent);
PR_EEP("BT option", pBase->blueToothOptions);
PR_EEP("Device Cap", pBase->deviceCap);
PR_EEP("Device Type", pBase->deviceType);
PR_EEP("Power Table Offset", pBase->pwrTableOffset);
PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
PR_EEP("Tx Gain", pBase->txrxgain >> 4);
PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
ah->eeprom.ar9300_eep.macAddr);
out:
if (len > size)
len = size;
return len;
}
#else
static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
u8 *buf, u32 len, u32 size)
{
return 0;
}
#endif
/* XXX: review hardware docs */
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
{
return ah->eeprom.ar9300_eep.eepromVersion;
}
/* XXX: could be read from the eepromVersion, not sure yet */
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
{
return 0;
}
static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (is2ghz)
return eep->modalHeader2G.xpaBiasLvl;
else
return eep->modalHeader5G.xpaBiasLvl;
}
static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
{
int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
else if (AR_SREV_9462(ah))
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
else {
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
REG_RMW_FIELD(ah, AR_CH0_THERM,
AR_CH0_THERM_XPABIASLVL_MSB,
bias >> 2);
REG_RMW_FIELD(ah, AR_CH0_THERM,
AR_CH0_THERM_XPASHORT2GND, 1);
}
}
static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is_2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le16 val;
if (is_2ghz)
val = eep->modalHeader2G.switchcomspdt;
else
val = eep->modalHeader5G.switchcomspdt;
return le16_to_cpu(val);
}
static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le32 val;
if (is2ghz)
val = eep->modalHeader2G.antCtrlCommon;
else
val = eep->modalHeader5G.antCtrlCommon;
return le32_to_cpu(val);
}
static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le32 val;
if (is2ghz)
val = eep->modalHeader2G.antCtrlCommon2;
else
val = eep->modalHeader5G.antCtrlCommon2;
return le32_to_cpu(val);
}
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
int chain,
bool is2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
__le16 val = 0;
if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
if (is2ghz)
val = eep->modalHeader2G.antCtrlChain[chain];
else
val = eep->modalHeader5G.antCtrlChain[chain];
}
return le16_to_cpu(val);
}
static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
{
int chain;
u32 regval;
u32 ant_div_ctl1;
static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
AR_PHY_SWITCH_CHAIN_0,
AR_PHY_SWITCH_CHAIN_1,
AR_PHY_SWITCH_CHAIN_2,
};
u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
if (AR_SREV_9462(ah)) {
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_AR9462_ALL, value);
} else
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
AR_SWITCH_TABLE_COM_ALL, value);
/*
* AR9462 defines new switch table for BT/WLAN,
* here's new field name in XXX.ref for both 2G and 5G.
* Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
* 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX
* SWITCH_TABLE_COM_SPDT_WLAN_RX
*
* 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX
* SWITCH_TABLE_COM_SPDT_WLAN_TX
*
* 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE
* SWITCH_TABLE_COM_SPDT_WLAN_IDLE
*/
if (AR_SREV_9462_20_OR_LATER(ah)) {
value = ar9003_switch_com_spdt_get(ah, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
AR_SWITCH_TABLE_COM_SPDT_ALL, value);
}
value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
if ((ah->rxchainmask & BIT(chain)) ||
(ah->txchainmask & BIT(chain))) {
value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
is2ghz);
REG_RMW_FIELD(ah, switch_chain_reg[chain],
AR_SWITCH_TABLE_ALL, value);
}
}
if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
/*
* main_lnaconf, alt_lnaconf, main_tb, alt_tb
* are the fields present
*/
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
regval &= (~AR_ANT_DIV_CTRL_ALL);
regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
/* enable_lnadiv */
regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
regval |= ((value >> 6) & 0x1) <<
AR_PHY_9485_ANT_DIV_LNADIV_S;
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
/*enable fast_div */
regval = REG_READ(ah, AR_PHY_CCK_DETECT);
regval &= (~AR_FAST_DIV_ENABLE);
regval |= ((value >> 7) & 0x1) <<
AR_FAST_DIV_ENABLE_S;
REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
ant_div_ctl1 =
ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
/* check whether antenna diversity is enabled */
if ((ant_div_ctl1 >> 0x6) == 0x3) {
regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
/*
* clear bits 25-30 main_lnaconf, alt_lnaconf,
* main_tb, alt_tb
*/
regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
AR_PHY_9485_ANT_DIV_ALT_LNACONF |
AR_PHY_9485_ANT_DIV_ALT_GAINTB |
AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
/* by default use LNA1 for the main antenna */
regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
}
}
}
static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
{
int drive_strength;
unsigned long reg;
drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
if (!drive_strength)
return;
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
reg &= ~0x00ffffc0;
reg |= 0x5 << 21;
reg |= 0x5 << 18;
reg |= 0x5 << 15;
reg |= 0x5 << 12;
reg |= 0x5 << 9;
reg |= 0x5 << 6;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
reg &= ~0xffffffe0;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
reg |= 0x5 << 20;
reg |= 0x5 << 17;
reg |= 0x5 << 14;
reg |= 0x5 << 11;
reg |= 0x5 << 8;
reg |= 0x5 << 5;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
reg &= ~0xff800000;
reg |= 0x5 << 29;
reg |= 0x5 << 26;
reg |= 0x5 << 23;
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
}
static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
struct ath9k_channel *chan)
{
int f[3], t[3];
u16 value;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (chain >= 0 && chain < 3) {
if (IS_CHAN_2GHZ(chan))
return eep->modalHeader2G.xatten1DB[chain];
else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
t[0] = eep->base_ext2.xatten1DBLow[chain];
f[0] = 5180;
t[1] = eep->modalHeader5G.xatten1DB[chain];
f[1] = 5500;
t[2] = eep->base_ext2.xatten1DBHigh[chain];
f[2] = 5785;
value = ar9003_hw_power_interpolate((s32) chan->channel,
f, t, 3);
return value;
} else
return eep->modalHeader5G.xatten1DB[chain];
}
return 0;
}
static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
struct ath9k_channel *chan)
{
int f[3], t[3];
u16 value;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (chain >= 0 && chain < 3) {
if (IS_CHAN_2GHZ(chan))
return eep->modalHeader2G.xatten1Margin[chain];
else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
t[0] = eep->base_ext2.xatten1MarginLow[chain];
f[0] = 5180;
t[1] = eep->modalHeader5G.xatten1Margin[chain];
f[1] = 5500;
t[2] = eep->base_ext2.xatten1MarginHigh[chain];
f[2] = 5785;
value = ar9003_hw_power_interpolate((s32) chan->channel,
f, t, 3);
return value;
} else
return eep->modalHeader5G.xatten1Margin[chain];
}
return 0;
}
static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
{
int i;
u16 value;
unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
AR_PHY_EXT_ATTEN_CTL_1,
AR_PHY_EXT_ATTEN_CTL_2,
};
/* Test value. if 0 then attenuation is unused. Don't load anything. */
for (i = 0; i < 3; i++) {
if (ah->txchainmask & BIT(i)) {
value = ar9003_hw_atten_chain_get(ah, i, chan);
REG_RMW_FIELD(ah, ext_atten_reg[i],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
REG_RMW_FIELD(ah, ext_atten_reg[i],
AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
value);
}
}
}
static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
{
int timeout = 100;
while (pmu_set != REG_READ(ah, pmu_reg)) {
if (timeout-- == 0)
return false;
REG_WRITE(ah, pmu_reg, pmu_set);
udelay(10);
}
return true;
}
static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
{
int internal_regulator =
ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
u32 reg_val;
if (internal_regulator) {
if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
int reg_pmu_set;
reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
return;
if (AR_SREV_9330(ah)) {
if (ah->is_clk_25mhz) {
reg_pmu_set = (3 << 1) | (8 << 4) |
(3 << 8) | (1 << 14) |
(6 << 17) | (1 << 20) |
(3 << 24);
} else {
reg_pmu_set = (4 << 1) | (7 << 4) |
(3 << 8) | (1 << 14) |
(6 << 17) | (1 << 20) |
(3 << 24);
}
} else {
reg_pmu_set = (5 << 1) | (7 << 4) |
(2 << 8) | (2 << 14) |
(6 << 17) | (1 << 20) |
(3 << 24) | (1 << 28);
}
REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
return;
reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
| (4 << 26);
REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
return;
reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
| (1 << 21);
REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
return;
} else if (AR_SREV_9462(ah)) {
reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
REG_WRITE(ah, AR_PHY_PMU1, reg_val);
} else {
/* Internal regulator is ON. Write swreg register. */
reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
REG_READ(ah, AR_RTC_REG_CONTROL1) &
(~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
/* Set REG_CONTROL1.SWREG_PROGRAM */
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
REG_READ(ah,
AR_RTC_REG_CONTROL1) |
AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
}
} else {
if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
while (REG_READ_FIELD(ah, AR_PHY_PMU2,
AR_PHY_PMU2_PGM))
udelay(10);
REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
AR_PHY_PMU1_PWD))
udelay(10);
REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
AR_PHY_PMU2_PGM))
udelay(10);
} else if (AR_SREV_9462(ah))
REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
else {
reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
AR_RTC_FORCE_SWREG_PRD;
REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
}
}
}
static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
if (eep->baseEepHeader.featureEnable & 0x40) {
tuning_caps_param &= 0x7f;
REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
tuning_caps_param);
REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
tuning_caps_param);
}
}
static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
int quick_drop = ath9k_hw_ar9300_get_eeprom(ah, EEP_QUICK_DROP);
s32 t[3], f[3] = {5180, 5500, 5785};
if (!quick_drop)
return;
if (freq < 4000)
quick_drop = eep->modalHeader2G.quick_drop;
else {
t[0] = eep->base_ext1.quick_drop_low;
t[1] = eep->modalHeader5G.quick_drop;
t[2] = eep->base_ext1.quick_drop_high;
quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
}
REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
}
static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, u16 freq)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
u32 value;
value = (freq < 4000) ? eep->modalHeader2G.txEndToXpaOff :
eep->modalHeader5G.txEndToXpaOff;
REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
}
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
struct ath9k_channel *chan)
{
ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
ar9003_hw_drive_strength_apply(ah);
ar9003_hw_atten_apply(ah, chan);
ar9003_hw_quick_drop_apply(ah, chan->channel);
if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
ar9003_hw_internal_regulator_apply(ah);
if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
ar9003_hw_apply_tuning_caps(ah);
ar9003_hw_txend_to_xpa_off_apply(ah, chan->channel);
}
static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
struct ath9k_channel *chan)
{
}
/*
* Returns the interpolated y value corresponding to the specified x value
* from the np ordered pairs of data (px,py).
* The pairs do not have to be in any order.
* If the specified x value is less than any of the px,
* the returned y value is equal to the py for the lowest px.
* If the specified x value is greater than any of the px,
* the returned y value is equal to the py for the highest px.
*/
static int ar9003_hw_power_interpolate(int32_t x,
int32_t *px, int32_t *py, u_int16_t np)
{
int ip = 0;
int lx = 0, ly = 0, lhave = 0;
int hx = 0, hy = 0, hhave = 0;
int dx = 0;
int y = 0;
lhave = 0;
hhave = 0;
/* identify best lower and higher x calibration measurement */
for (ip = 0; ip < np; ip++) {
dx = x - px[ip];
/* this measurement is higher than our desired x */
if (dx <= 0) {
if (!hhave || dx > (x - hx)) {
/* new best higher x measurement */
hx = px[ip];
hy = py[ip];
hhave = 1;
}
}
/* this measurement is lower than our desired x */
if (dx >= 0) {
if (!lhave || dx < (x - lx)) {
/* new best lower x measurement */
lx = px[ip];
ly = py[ip];
lhave = 1;
}
}
}
/* the low x is good */
if (lhave) {
/* so is the high x */
if (hhave) {
/* they're the same, so just pick one */
if (hx == lx)
y = ly;
else /* interpolate */
y = interpolate(x, lx, hx, ly, hy);
} else /* only low is good, use it */
y = ly;
} else if (hhave) /* only high is good, use it */
y = hy;
else /* nothing is good,this should never happen unless np=0, ???? */
y = -(1 << 30);
return y;
}
static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
u16 rateIndex, u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_legacy *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2G;
pFreqBin = eep->calTarget_freqbin_2G;
} else {
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5G;
pFreqBin = eep->calTarget_freqbin_5G;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
u16 rateIndex,
u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_ht *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2GHT20;
pFreqBin = eep->calTarget_freqbin_2GHT20;
} else {
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5GHT20;
pFreqBin = eep->calTarget_freqbin_5GHT20;
}
/*
* create array of channels and targetpower
* from targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
u16 rateIndex,
u16 freq, bool is2GHz)
{
u16 numPiers, i;
s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_ht *pEepromTargetPwr;
u8 *pFreqBin;
if (is2GHz) {
numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower2GHT40;
pFreqBin = eep->calTarget_freqbin_2GHT40;
} else {
numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
pEepromTargetPwr = eep->calTargetPower5GHT40;
pFreqBin = eep->calTarget_freqbin_5GHT40;
}
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
u16 rateIndex, u16 freq)
{
u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
u8 *pFreqBin = eep->calTarget_freqbin_Cck;
/*
* create array of channels and targetpower from
* targetpower piers stored on eeprom
*/
for (i = 0; i < numPiers; i++) {
freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
}
/* interpolate to get target power for given frequency */
return (u8) ar9003_hw_power_interpolate((s32) freq,
freqArray,
targetPowerArray, numPiers);
}
/* Set tx power registers to array of values passed in */
static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
{
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
/* make sure forced gain is not set */
REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
/* Write the OFDM power per rate set */
/* 6 (LSB), 9, 12, 18 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
/* 24 (LSB), 36, 48, 54 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
/* Write the CCK power per rate set */
/* 1L (LSB), reserved, 2L, 2S (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
/* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the power for duplicated frames - HT40 */
/* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
);
/* Write the HT20 power per rate set */
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
);
/* Mixed HT20 and HT40 rates */
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
);
/*
* Write the HT40 power per rate set
* correct PAR difference between HT40 and HT20/LEGACY
* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
*/
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
);
/* 6 (LSB), 7, 12, 13 (MSB) */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
);
/* 14 (LSB), 15, 20, 21 */
REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
);
return 0;
#undef POW_SM
}
static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
u8 *targetPowerValT2)
{
/* XXX: hard code for now, need to get from eeprom struct */
u8 ht40PowerIncForPdadc = 0;
bool is2GHz = false;
unsigned int i = 0;
struct ath_common *common = ath9k_hw_common(ah);
if (freq < 4000)
is2GHz = true;
targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_36] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_48] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_54] =
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
freq);
targetPowerValT2[ALL_TARGET_LEGACY_5S] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
targetPowerValT2[ALL_TARGET_LEGACY_11L] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
targetPowerValT2[ALL_TARGET_LEGACY_11S] =
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
freq, is2GHz);
targetPowerValT2[ALL_TARGET_HT20_4] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_5] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_6] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_7] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_12] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_13] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_14] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_15] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_20] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_21] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_22] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT20_23] =
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
is2GHz);
targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_4] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_5] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_6] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_7] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_12] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_13] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_14] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_15] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_20] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_21] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_22] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
is2GHz) + ht40PowerIncForPdadc;
targetPowerValT2[ALL_TARGET_HT40_23] =
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
is2GHz) + ht40PowerIncForPdadc;
for (i = 0; i < ar9300RateSize; i++) {
ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
i, targetPowerValT2[i]);
}
}
static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
int mode,
int ipier,
int ichain,
int *pfrequency,
int *pcorrection,
int *ptemperature, int *pvoltage)
{
u8 *pCalPier;
struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
int is2GHz;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ath_common *common = ath9k_hw_common(ah);
if (ichain >= AR9300_MAX_CHAINS) {
ath_dbg(common, EEPROM,
"Invalid chain index, must be less than %d\n",
AR9300_MAX_CHAINS);
return -1;
}
if (mode) { /* 5GHz */
if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
ath_dbg(common, EEPROM,
"Invalid 5GHz cal pier index, must be less than %d\n",
AR9300_NUM_5G_CAL_PIERS);
return -1;
}
pCalPier = &(eep->calFreqPier5G[ipier]);
pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
is2GHz = 0;
} else {
if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
ath_dbg(common, EEPROM,
"Invalid 2GHz cal pier index, must be less than %d\n",
AR9300_NUM_2G_CAL_PIERS);
return -1;
}
pCalPier = &(eep->calFreqPier2G[ipier]);
pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
is2GHz = 1;
}
*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
*pcorrection = pCalPierStruct->refPower;
*ptemperature = pCalPierStruct->tempMeas;
*pvoltage = pCalPierStruct->voltMeas;
return 0;
}
static int ar9003_hw_power_control_override(struct ath_hw *ah,
int frequency,
int *correction,
int *voltage, int *temperature)
{
int tempSlope = 0;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
int f[3], t[3];
REG_RMW(ah, AR_PHY_TPC_11_B0,
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
if (ah->caps.tx_chainmask & BIT(1))
REG_RMW(ah, AR_PHY_TPC_11_B1,
(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
if (ah->caps.tx_chainmask & BIT(2))
REG_RMW(ah, AR_PHY_TPC_11_B2,
(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
AR_PHY_TPC_OLPC_GAIN_DELTA);
/* enable open loop power control on chip */
REG_RMW(ah, AR_PHY_TPC_6_B0,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
if (ah->caps.tx_chainmask & BIT(1))
REG_RMW(ah, AR_PHY_TPC_6_B1,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
if (ah->caps.tx_chainmask & BIT(2))
REG_RMW(ah, AR_PHY_TPC_6_B2,
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
AR_PHY_TPC_6_ERROR_EST_MODE);
/*
* enable temperature compensation
* Need to use register names
*/
if (frequency < 4000)
tempSlope = eep->modalHeader2G.tempSlope;
else if (eep->base_ext2.tempSlopeLow != 0) {
t[0] = eep->base_ext2.tempSlopeLow;
f[0] = 5180;
t[1] = eep->modalHeader5G.tempSlope;
f[1] = 5500;
t[2] = eep->base_ext2.tempSlopeHigh;
f[2] = 5785;
tempSlope = ar9003_hw_power_interpolate((s32) frequency,
f, t, 3);
} else
tempSlope = eep->modalHeader5G.tempSlope;
REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
if (AR_SREV_9462_20(ah))
REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
temperature[0]);
return 0;
}
/* Apply the recorded correction values. */
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
{
int ichain, ipier, npier;
int mode;
int lfrequency[AR9300_MAX_CHAINS],
lcorrection[AR9300_MAX_CHAINS],
ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
int hfrequency[AR9300_MAX_CHAINS],
hcorrection[AR9300_MAX_CHAINS],
htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
int fdiff;
int correction[AR9300_MAX_CHAINS],
voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
int pfrequency, pcorrection, ptemperature, pvoltage;
struct ath_common *common = ath9k_hw_common(ah);
mode = (frequency >= 4000);
if (mode)
npier = AR9300_NUM_5G_CAL_PIERS;
else
npier = AR9300_NUM_2G_CAL_PIERS;
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
lfrequency[ichain] = 0;
hfrequency[ichain] = 100000;
}
/* identify best lower and higher frequency calibration measurement */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
for (ipier = 0; ipier < npier; ipier++) {
if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
&pfrequency, &pcorrection,
&ptemperature, &pvoltage)) {
fdiff = frequency - pfrequency;
/*
* this measurement is higher than
* our desired frequency
*/
if (fdiff <= 0) {
if (hfrequency[ichain] <= 0 ||
hfrequency[ichain] >= 100000 ||
fdiff >
(frequency - hfrequency[ichain])) {
/*
* new best higher
* frequency measurement
*/
hfrequency[ichain] = pfrequency;
hcorrection[ichain] =
pcorrection;
htemperature[ichain] =
ptemperature;
hvoltage[ichain] = pvoltage;
}
}
if (fdiff >= 0) {
if (lfrequency[ichain] <= 0
|| fdiff <
(frequency - lfrequency[ichain])) {
/*
* new best lower
* frequency measurement
*/
lfrequency[ichain] = pfrequency;
lcorrection[ichain] =
pcorrection;
ltemperature[ichain] =
ptemperature;
lvoltage[ichain] = pvoltage;
}
}
}
}
}
/* interpolate */
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
ichain, frequency, lfrequency[ichain],
lcorrection[ichain], hfrequency[ichain],
hcorrection[ichain]);
/* they're the same, so just pick one */
if (hfrequency[ichain] == lfrequency[ichain]) {
correction[ichain] = lcorrection[ichain];
voltage[ichain] = lvoltage[ichain];
temperature[ichain] = ltemperature[ichain];
}
/* the low frequency is good */
else if (frequency - lfrequency[ichain] < 1000) {
/* so is the high frequency, interpolate */
if (hfrequency[ichain] - frequency < 1000) {
correction[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
lcorrection[ichain],
hcorrection[ichain]);
temperature[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
ltemperature[ichain],
htemperature[ichain]);
voltage[ichain] = interpolate(frequency,
lfrequency[ichain],
hfrequency[ichain],
lvoltage[ichain],
hvoltage[ichain]);
}
/* only low is good, use it */
else {
correction[ichain] = lcorrection[ichain];
temperature[ichain] = ltemperature[ichain];
voltage[ichain] = lvoltage[ichain];
}
}
/* only high is good, use it */
else if (hfrequency[ichain] - frequency < 1000) {
correction[ichain] = hcorrection[ichain];
temperature[ichain] = htemperature[ichain];
voltage[ichain] = hvoltage[ichain];
} else { /* nothing is good, presume 0???? */
correction[ichain] = 0;
temperature[ichain] = 0;
voltage[ichain] = 0;
}
}
ar9003_hw_power_control_override(ah, frequency, correction, voltage,
temperature);
ath_dbg(common, EEPROM,
"for frequency=%d, calibration correction = %d %d %d\n",
frequency, correction[0], correction[1], correction[2]);
return 0;
}
static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
int idx,
int edge,
bool is2GHz)
{
struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
if (is2GHz)
return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
else
return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
}
static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
int idx,
unsigned int edge,
u16 freq,
bool is2GHz)
{
struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
u8 *ctl_freqbin = is2GHz ?
&eep->ctl_freqbin_2G[idx][0] :
&eep->ctl_freqbin_5G[idx][0];
if (is2GHz) {
if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
} else {
if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
}
return MAX_RATE_POWER;
}
/*
* Find the maximum conformance test limit for the given channel and CTL info
*/
static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
u16 freq, int idx, bool is2GHz)
{
u16 twiceMaxEdgePower = MAX_RATE_POWER;
u8 *ctl_freqbin = is2GHz ?
&eep->ctl_freqbin_2G[idx][0] :
&eep->ctl_freqbin_5G[idx][0];
u16 num_edges = is2GHz ?
AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
unsigned int edge;
/* Get the edge power */
for (edge = 0;
(edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
edge++) {
/*
* If there's an exact channel match or an inband flag set
* on the lower channel use the given rdEdgePower
*/
if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
twiceMaxEdgePower =
ar9003_hw_get_direct_edge_power(eep, idx,
edge, is2GHz);
break;
} else if ((edge > 0) &&
(freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
is2GHz))) {
twiceMaxEdgePower =
ar9003_hw_get_indirect_edge_power(eep, idx,
edge, freq,
is2GHz);
/*
* Leave loop - no more affecting edges possible in
* this monotonic increasing list
*/
break;
}
}
return twiceMaxEdgePower;
}
static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 *pPwrArray, u16 cfgCtl,
u8 antenna_reduction,
u16 powerLimit)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
u16 twiceMaxEdgePower;
int i;
u16 scaledPower = 0, minCtlPower;
ath9k: Use static const Using static const generally increases object text and decreases data size. It also generally decreases overall object size. text data bss dec hex filename 11161 56 2136 13353 3429 drivers/net/wireless/ath/ath9k/ar9003_paprd.o.new 11167 56 2136 13359 342f drivers/net/wireless/ath/ath9k/ar9003_paprd.o.old 15428 56 3056 18540 486c drivers/net/wireless/ath/ath9k/eeprom_4k.o.old 15451 56 3056 18563 4883 drivers/net/wireless/ath/ath9k/eeprom_4k.o.new 14087 56 2560 16703 413f drivers/net/wireless/ath/ath9k/eeprom_9287.o.old 14036 56 2560 16652 410c drivers/net/wireless/ath/ath9k/eeprom_9287.o.new 10041 56 2384 12481 30c1 drivers/net/wireless/ath/ath9k/ani.o.new 10088 56 2384 12528 30f0 drivers/net/wireless/ath/ath9k/ani.o.old 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.new 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.old 16483 56 3432 19971 4e03 drivers/net/wireless/ath/ath9k/ar9003_phy.o.new 16517 56 3432 20005 4e25 drivers/net/wireless/ath/ath9k/ar9003_phy.o.old 18221 104 2960 21285 5325 drivers/net/wireless/ath/ath9k/rc.o.old 18203 104 2960 21267 5313 drivers/net/wireless/ath/ath9k/rc.o.new 19985 56 4288 24329 5f09 drivers/net/wireless/ath/ath9k/eeprom_def.o.new 20040 56 4288 24384 5f40 drivers/net/wireless/ath/ath9k/eeprom_def.o.old 23997 56 4984 29037 716d drivers/net/wireless/ath/ath9k/ar5008_phy.o.old 23846 56 4984 28886 70d6 drivers/net/wireless/ath/ath9k/ar5008_phy.o.new 24285 56 3184 27525 6b85 drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.old 24101 56 3184 27341 6acd drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.new 6834 56 1032 7922 1ef2 drivers/net/wireless/ath/ath9k/ar9002_phy.o.old 6780 56 1032 7868 1ebc drivers/net/wireless/ath/ath9k/ar9002_phy.o.new 36211 64 8624 44899 af63 drivers/net/wireless/ath/ath9k/hw.o.new 36401 64 8624 45089 b021 drivers/net/wireless/ath/ath9k/hw.o.old 9281 56 1496 10833 2a51 drivers/net/wireless/ath/ath9k/ar9003_calib.o.old 9150 56 1496 10702 29ce drivers/net/wireless/ath/ath9k/ar9003_calib.o.new Use ARRAY_SIZE instead of a magic number. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-11-21 10:38:53 +08:00
static const u16 ctlModesFor11a[] = {
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
};
ath9k: Use static const Using static const generally increases object text and decreases data size. It also generally decreases overall object size. text data bss dec hex filename 11161 56 2136 13353 3429 drivers/net/wireless/ath/ath9k/ar9003_paprd.o.new 11167 56 2136 13359 342f drivers/net/wireless/ath/ath9k/ar9003_paprd.o.old 15428 56 3056 18540 486c drivers/net/wireless/ath/ath9k/eeprom_4k.o.old 15451 56 3056 18563 4883 drivers/net/wireless/ath/ath9k/eeprom_4k.o.new 14087 56 2560 16703 413f drivers/net/wireless/ath/ath9k/eeprom_9287.o.old 14036 56 2560 16652 410c drivers/net/wireless/ath/ath9k/eeprom_9287.o.new 10041 56 2384 12481 30c1 drivers/net/wireless/ath/ath9k/ani.o.new 10088 56 2384 12528 30f0 drivers/net/wireless/ath/ath9k/ani.o.old 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.new 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.old 16483 56 3432 19971 4e03 drivers/net/wireless/ath/ath9k/ar9003_phy.o.new 16517 56 3432 20005 4e25 drivers/net/wireless/ath/ath9k/ar9003_phy.o.old 18221 104 2960 21285 5325 drivers/net/wireless/ath/ath9k/rc.o.old 18203 104 2960 21267 5313 drivers/net/wireless/ath/ath9k/rc.o.new 19985 56 4288 24329 5f09 drivers/net/wireless/ath/ath9k/eeprom_def.o.new 20040 56 4288 24384 5f40 drivers/net/wireless/ath/ath9k/eeprom_def.o.old 23997 56 4984 29037 716d drivers/net/wireless/ath/ath9k/ar5008_phy.o.old 23846 56 4984 28886 70d6 drivers/net/wireless/ath/ath9k/ar5008_phy.o.new 24285 56 3184 27525 6b85 drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.old 24101 56 3184 27341 6acd drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.new 6834 56 1032 7922 1ef2 drivers/net/wireless/ath/ath9k/ar9002_phy.o.old 6780 56 1032 7868 1ebc drivers/net/wireless/ath/ath9k/ar9002_phy.o.new 36211 64 8624 44899 af63 drivers/net/wireless/ath/ath9k/hw.o.new 36401 64 8624 45089 b021 drivers/net/wireless/ath/ath9k/hw.o.old 9281 56 1496 10833 2a51 drivers/net/wireless/ath/ath9k/ar9003_calib.o.old 9150 56 1496 10702 29ce drivers/net/wireless/ath/ath9k/ar9003_calib.o.new Use ARRAY_SIZE instead of a magic number. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-11-21 10:38:53 +08:00
static const u16 ctlModesFor11g[] = {
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
CTL_11G_EXT, CTL_2GHT40
};
ath9k: Use static const Using static const generally increases object text and decreases data size. It also generally decreases overall object size. text data bss dec hex filename 11161 56 2136 13353 3429 drivers/net/wireless/ath/ath9k/ar9003_paprd.o.new 11167 56 2136 13359 342f drivers/net/wireless/ath/ath9k/ar9003_paprd.o.old 15428 56 3056 18540 486c drivers/net/wireless/ath/ath9k/eeprom_4k.o.old 15451 56 3056 18563 4883 drivers/net/wireless/ath/ath9k/eeprom_4k.o.new 14087 56 2560 16703 413f drivers/net/wireless/ath/ath9k/eeprom_9287.o.old 14036 56 2560 16652 410c drivers/net/wireless/ath/ath9k/eeprom_9287.o.new 10041 56 2384 12481 30c1 drivers/net/wireless/ath/ath9k/ani.o.new 10088 56 2384 12528 30f0 drivers/net/wireless/ath/ath9k/ani.o.old 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.new 9316 1580 2304 13200 3390 drivers/net/wireless/ath/ath9k/htc_drv_init.o.old 16483 56 3432 19971 4e03 drivers/net/wireless/ath/ath9k/ar9003_phy.o.new 16517 56 3432 20005 4e25 drivers/net/wireless/ath/ath9k/ar9003_phy.o.old 18221 104 2960 21285 5325 drivers/net/wireless/ath/ath9k/rc.o.old 18203 104 2960 21267 5313 drivers/net/wireless/ath/ath9k/rc.o.new 19985 56 4288 24329 5f09 drivers/net/wireless/ath/ath9k/eeprom_def.o.new 20040 56 4288 24384 5f40 drivers/net/wireless/ath/ath9k/eeprom_def.o.old 23997 56 4984 29037 716d drivers/net/wireless/ath/ath9k/ar5008_phy.o.old 23846 56 4984 28886 70d6 drivers/net/wireless/ath/ath9k/ar5008_phy.o.new 24285 56 3184 27525 6b85 drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.old 24101 56 3184 27341 6acd drivers/net/wireless/ath/ath9k/ar9003_eeprom.o.new 6834 56 1032 7922 1ef2 drivers/net/wireless/ath/ath9k/ar9002_phy.o.old 6780 56 1032 7868 1ebc drivers/net/wireless/ath/ath9k/ar9002_phy.o.new 36211 64 8624 44899 af63 drivers/net/wireless/ath/ath9k/hw.o.new 36401 64 8624 45089 b021 drivers/net/wireless/ath/ath9k/hw.o.old 9281 56 1496 10833 2a51 drivers/net/wireless/ath/ath9k/ar9003_calib.o.old 9150 56 1496 10702 29ce drivers/net/wireless/ath/ath9k/ar9003_calib.o.new Use ARRAY_SIZE instead of a magic number. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-11-21 10:38:53 +08:00
u16 numCtlModes;
const u16 *pCtlMode;
u16 ctlMode, freq;
struct chan_centers centers;
u8 *ctlIndex;
u8 ctlNum;
u16 twiceMinEdgePower;
bool is2ghz = IS_CHAN_2GHZ(chan);
ath9k_hw_get_channel_centers(ah, chan, &centers);
scaledPower = powerLimit - antenna_reduction;
/*
* Reduce scaled Power by number of chains active to get
* to per chain tx power level
*/
switch (ar5416_get_ntxchains(ah->txchainmask)) {
case 1:
break;
case 2:
if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
else
scaledPower = 0;
break;
case 3:
if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
else
scaledPower = 0;
break;
}
scaledPower = max((u16)0, scaledPower);
/*
* Get target powers from EEPROM - our baseline for TX Power
*/
if (is2ghz) {
/* Setup for CTL modes */
/* CTL_11B, CTL_11G, CTL_2GHT20 */
numCtlModes =
ARRAY_SIZE(ctlModesFor11g) -
SUB_NUM_CTL_MODES_AT_2G_40;
pCtlMode = ctlModesFor11g;
if (IS_CHAN_HT40(chan))
/* All 2G CTL's */
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
} else {
/* Setup for CTL modes */
/* CTL_11A, CTL_5GHT20 */
numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
SUB_NUM_CTL_MODES_AT_5G_40;
pCtlMode = ctlModesFor11a;
if (IS_CHAN_HT40(chan))
/* All 5G CTL's */
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
}
/*
* For MIMO, need to apply regulatory caps individually across
* dynamically running modes: CCK, OFDM, HT20, HT40
*
* The outer loop walks through each possible applicable runtime mode.
* The inner loop walks through each ctlIndex entry in EEPROM.
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
*/
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
(pCtlMode[ctlMode] == CTL_2GHT40);
if (isHt40CtlMode)
freq = centers.synth_center;
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
freq = centers.ext_center;
else
freq = centers.ctl_center;
ath_dbg(common, REGULATORY,
"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
ctlMode, numCtlModes, isHt40CtlMode,
(pCtlMode[ctlMode] & EXT_ADDITIVE));
/* walk through each CTL index stored in EEPROM */
if (is2ghz) {
ctlIndex = pEepData->ctlIndex_2G;
ctlNum = AR9300_NUM_CTLS_2G;
} else {
ctlIndex = pEepData->ctlIndex_5G;
ctlNum = AR9300_NUM_CTLS_5G;
}
twiceMaxEdgePower = MAX_RATE_POWER;
for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
ath_dbg(common, REGULATORY,
"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
chan->channel);
/*
* compare test group from regulatory
* channel list with test mode from pCtlMode
* list
*/
if ((((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
ctlIndex[i]) ||
(((cfgCtl & ~CTL_MODE_M) |
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
((ctlIndex[i] & CTL_MODE_M) |
SD_NO_CTL))) {
twiceMinEdgePower =
ar9003_hw_get_max_edge_power(pEepData,
freq, i,
is2ghz);
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
/*
* Find the minimum of all CTL
* edge powers that apply to
* this channel
*/
twiceMaxEdgePower =
min(twiceMaxEdgePower,
twiceMinEdgePower);
else {
/* specific */
twiceMaxEdgePower =
twiceMinEdgePower;
break;
}
}
}
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
ath_dbg(common, REGULATORY,
"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
scaledPower, minCtlPower);
/* Apply ctl mode to correct target power set */
switch (pCtlMode[ctlMode]) {
case CTL_11B:
for (i = ALL_TARGET_LEGACY_1L_5L;
i <= ALL_TARGET_LEGACY_11S; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
break;
case CTL_11A:
case CTL_11G:
for (i = ALL_TARGET_LEGACY_6_24;
i <= ALL_TARGET_LEGACY_54; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
break;
case CTL_5GHT20:
case CTL_2GHT20:
for (i = ALL_TARGET_HT20_0_8_16;
i <= ALL_TARGET_HT20_21; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
pPwrArray[ALL_TARGET_HT20_22] =
(u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
minCtlPower);
pPwrArray[ALL_TARGET_HT20_23] =
(u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
minCtlPower);
break;
case CTL_5GHT40:
case CTL_2GHT40:
for (i = ALL_TARGET_HT40_0_8_16;
i <= ALL_TARGET_HT40_23; i++)
pPwrArray[i] =
(u8)min((u16)pPwrArray[i],
minCtlPower);
break;
default:
break;
}
} /* end ctl mode checking */
}
static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
{
u8 mod_idx = mcs_idx % 8;
if (mod_idx <= 3)
return mod_idx ? (base_pwridx + 1) : base_pwridx;
else
return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
}
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
struct ath9k_channel *chan, u16 cfgCtl,
u8 twiceAntennaReduction,
u8 powerLimit, bool test)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
struct ath_common *common = ath9k_hw_common(ah);
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
struct ar9300_modal_eep_header *modal_hdr;
u8 targetPowerValT2[ar9300RateSize];
u8 target_power_val_t2_eep[ar9300RateSize];
unsigned int i = 0, paprd_scale_factor = 0;
u8 pwr_idx, min_pwridx = 0;
ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
if (IS_CHAN_2GHZ(chan))
modal_hdr = &eep->modalHeader2G;
else
modal_hdr = &eep->modalHeader5G;
ah->paprd_ratemask =
le32_to_cpu(modal_hdr->papdRateMaskHt20) &
AR9300_PAPRD_RATE_MASK;
ah->paprd_ratemask_ht40 =
le32_to_cpu(modal_hdr->papdRateMaskHt40) &
AR9300_PAPRD_RATE_MASK;
paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
ALL_TARGET_HT20_0_8_16;
if (!ah->paprd_table_write_done) {
memcpy(target_power_val_t2_eep, targetPowerValT2,
sizeof(targetPowerValT2));
for (i = 0; i < 24; i++) {
pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
if (ah->paprd_ratemask & (1 << i)) {
if (targetPowerValT2[pwr_idx] &&
targetPowerValT2[pwr_idx] ==
target_power_val_t2_eep[pwr_idx])
targetPowerValT2[pwr_idx] -=
paprd_scale_factor;
}
}
}
memcpy(target_power_val_t2_eep, targetPowerValT2,
sizeof(targetPowerValT2));
}
ar9003_hw_set_power_per_rate_table(ah, chan,
targetPowerValT2, cfgCtl,
twiceAntennaReduction,
powerLimit);
if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
for (i = 0; i < ar9300RateSize; i++) {
if ((ah->paprd_ratemask & (1 << i)) &&
(abs(targetPowerValT2[i] -
target_power_val_t2_eep[i]) >
paprd_scale_factor)) {
ah->paprd_ratemask &= ~(1 << i);
ath_dbg(common, EEPROM,
"paprd disabled for mcs %d\n", i);
}
}
}
regulatory->max_power_level = 0;
for (i = 0; i < ar9300RateSize; i++) {
if (targetPowerValT2[i] > regulatory->max_power_level)
regulatory->max_power_level = targetPowerValT2[i];
}
ath9k_hw_update_regulatory_maxpower(ah);
if (test)
return;
for (i = 0; i < ar9300RateSize; i++) {
ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
i, targetPowerValT2[i]);
}
/* Write target power array to registers */
ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
ar9003_hw_calibration_apply(ah, chan->channel);
if (IS_CHAN_2GHZ(chan)) {
if (IS_CHAN_HT40(chan))
i = ALL_TARGET_HT40_0_8_16;
else
i = ALL_TARGET_HT20_0_8_16;
} else {
if (IS_CHAN_HT40(chan))
i = ALL_TARGET_HT40_7;
else
i = ALL_TARGET_HT20_7;
}
ah->paprd_target_power = targetPowerValT2[i];
}
static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
u16 i, bool is2GHz)
{
return AR_NO_SPUR;
}
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
}
s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
}
u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (is_2ghz)
return eep->modalHeader2G.spurChans;
else
return eep->modalHeader5G.spurChans;
}
unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
if (IS_CHAN_2GHZ(chan))
return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
AR9300_PAPRD_SCALE_1);
else {
if (chan->channel >= 5700)
return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
AR9300_PAPRD_SCALE_1);
else if (chan->channel >= 5400)
return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
AR9300_PAPRD_SCALE_2);
else
return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
AR9300_PAPRD_SCALE_1);
}
}
const struct eeprom_ops eep_ar9300_ops = {
.check_eeprom = ath9k_hw_ar9300_check_eeprom,
.get_eeprom = ath9k_hw_ar9300_get_eeprom,
.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
.set_board_values = ath9k_hw_ar9300_set_board_values,
.set_addac = ath9k_hw_ar9300_set_addac,
.set_txpower = ath9k_hw_ar9300_set_txpower,
.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
};