OpenCloudOS-Kernel/scripts/Makefile.build

521 lines
17 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
# SPDX-License-Identifier: GPL-2.0
# ==========================================================================
# Building
# ==========================================================================
src := $(obj)
PHONY := __build
__build:
# Init all relevant variables used in kbuild files so
# 1) they have correct type
# 2) they do not inherit any value from the environment
obj-y :=
obj-m :=
lib-y :=
lib-m :=
always :=
always-y :=
always-m :=
targets :=
subdir-y :=
subdir-m :=
EXTRA_AFLAGS :=
EXTRA_CFLAGS :=
EXTRA_CPPFLAGS :=
EXTRA_LDFLAGS :=
asflags-y :=
ccflags-y :=
cppflags-y :=
ldflags-y :=
subdir-asflags-y :=
subdir-ccflags-y :=
# Read auto.conf if it exists, otherwise ignore
-include include/config/auto.conf
include scripts/Kbuild.include
# The filename Kbuild has precedence over Makefile
kbuild-dir := $(if $(filter /%,$(src)),$(src),$(srctree)/$(src))
kbuild-file := $(if $(wildcard $(kbuild-dir)/Kbuild),$(kbuild-dir)/Kbuild,$(kbuild-dir)/Makefile)
include $(kbuild-file)
include scripts/Makefile.lib
# Do not include host rules unless needed
ifneq ($(hostprogs)$(hostcxxlibs-y)$(hostcxxlibs-m),)
include scripts/Makefile.host
endif
ifndef obj
$(warning kbuild: Makefile.build is included improperly)
endif
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
ifeq ($(need-modorder),)
ifneq ($(obj-m),)
$(warning $(patsubst %.o,'%.ko',$(obj-m)) will not be built even though obj-m is specified.)
$(warning You cannot use subdir-y/m to visit a module Makefile. Use obj-y/m instead.)
endif
endif
# ===========================================================================
ifneq ($(strip $(lib-y) $(lib-m) $(lib-)),)
lib-target := $(obj)/lib.a
endif
ifdef need-builtin
builtin-target := $(obj)/built-in.a
endif
ifeq ($(CONFIG_MODULES)$(need-modorder),y1)
modorder-target := $(obj)/modules.order
endif
mod-targets := $(patsubst %.o, %.mod, $(obj-m))
# Linus' kernel sanity checking tool
ifeq ($(KBUILD_CHECKSRC),1)
quiet_cmd_checksrc = CHECK $<
cmd_checksrc = $(CHECK) $(CHECKFLAGS) $(c_flags) $<
else ifeq ($(KBUILD_CHECKSRC),2)
quiet_cmd_force_checksrc = CHECK $<
cmd_force_checksrc = $(CHECK) $(CHECKFLAGS) $(c_flags) $<
endif
ifneq ($(KBUILD_EXTRA_WARN),)
cmd_checkdoc = $(srctree)/scripts/kernel-doc -none $<
endif
# Compile C sources (.c)
# ---------------------------------------------------------------------------
quiet_cmd_cc_s_c = CC $(quiet_modtag) $@
kbuild: Disable extra debugging info in .s output Modern gcc adds view assignments, reset assertion checking in .loc directives and a couple more additional debug markers, which clutters the asm output unnecessarily: For example: bsp_resume: .LFB3466: .loc 1 1868 1 is_stmt 1 view -0 .cfi_startproc .loc 1 1869 2 view .LVU73 # arch/x86/kernel/cpu/common.c:1869: if (this_cpu->c_bsp_resume) .loc 1 1869 14 is_stmt 0 view .LVU74 movq this_cpu(%rip), %rax # this_cpu, this_cpu movq 64(%rax), %rax # this_cpu.94_1->c_bsp_resume, _2 # arch/x86/kernel/cpu/common.c:1869: if (this_cpu->c_bsp_resume) .loc 1 1869 5 view .LVU75 testq %rax, %rax # _2 je .L8 #, .loc 1 1870 3 is_stmt 1 view .LVU76 movq $boot_cpu_data, %rdi #, jmp __x86_indirect_thunk_rax or .loc 2 57 9 view .LVU478 .loc 2 57 9 view .LVU479 .loc 2 57 9 view .LVU480 .loc 2 57 9 view .LVU481 .LBB1385: .LBB1383: .LBB1379: .LBB1377: .LBB1375: .loc 2 57 9 view .LVU482 .loc 2 57 9 view .LVU483 movl %edi, %edx # cpu, cpu .LVL87: .loc 2 57 9 is_stmt 0 view .LVU484 That MOV in there is drowned in debugging information and latter makes it hard to follow the asm. And that DWARF info is not really needed for asm output staring. Disable the debug information generation which clutters the asm output unnecessarily: bsp_resume: # arch/x86/kernel/cpu/common.c:1869: if (this_cpu->c_bsp_resume) movq this_cpu(%rip), %rax # this_cpu, this_cpu movq 64(%rax), %rax # this_cpu.94_1->c_bsp_resume, _2 # arch/x86/kernel/cpu/common.c:1869: if (this_cpu->c_bsp_resume) testq %rax, %rax # _2 je .L8 #, # arch/x86/kernel/cpu/common.c:1870: this_cpu->c_bsp_resume(&boot_cpu_data); movq $boot_cpu_data, %rdi #, jmp __x86_indirect_thunk_rax .L8: # arch/x86/kernel/cpu/common.c:1871: } rep ret .size bsp_resume, .-bsp_resume [ bp: write commit message. ] Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2019-02-10 14:51:00 +08:00
cmd_cc_s_c = $(CC) $(filter-out $(DEBUG_CFLAGS), $(c_flags)) $(DISABLE_LTO) -fverbose-asm -S -o $@ $<
$(obj)/%.s: $(src)/%.c FORCE
$(call if_changed_dep,cc_s_c)
quiet_cmd_cpp_i_c = CPP $(quiet_modtag) $@
cmd_cpp_i_c = $(CPP) $(c_flags) -o $@ $<
$(obj)/%.i: $(src)/%.c FORCE
$(call if_changed_dep,cpp_i_c)
# These mirror gensymtypes_S and co below, keep them in synch.
cmd_gensymtypes_c = \
$(CPP) -D__GENKSYMS__ $(c_flags) $< | \
scripts/genksyms/genksyms $(if $(1), -T $(2)) \
$(patsubst y,-R,$(CONFIG_MODULE_REL_CRCS)) \
$(if $(KBUILD_PRESERVE),-p) \
-r $(firstword $(wildcard $(2:.symtypes=.symref) /dev/null))
kbuild: support for %.symtypes files Here is a patch that adds a new -T option to genksyms for generating dumps of the type definition that makes up the symbol version hashes. This allows to trace modversion changes back to what caused them. The dump format is the name of the type defined, followed by its definition (which is almost C): s#list_head struct list_head { s#list_head * next , * prev ; } The s#, u#, e#, and t# prefixes stand for struct, union, enum, and typedef. The exported symbols do not define types, and thus do not have an x# prefix: nfs4_acl_get_whotype int nfs4_acl_get_whotype ( char * , t#u32 ) The symbol type defintion of a single file can be generated with: make fs/jbd/journal.symtypes If KBUILD_SYMTYPES is defined, all the *.symtypes of all object files that export symbols are generated. The single *.symtypes files can be combined into a single file after a kernel build with a script like the following: for f in $(find -name '*.symtypes' | sort); do f=${f#./} echo "/* ${f%.symtypes}.o */" cat $f echo done \ | sed -e '\:UNKNOWN:d' \ -e 's:[,;] }:}:g' \ -e 's:\([[({]\) :\1:g' \ -e 's: \([])},;]\):\1:g' \ -e 's: $::' \ $f \ | awk ' /^.#/ { if (defined[$1] == $0) { print $1 next } defined[$1] = $0 } { print } ' When the kernel ABI changes, diffing individual *.symtype files, or the combined files, against each other will show which symbol changes caused the ABI changes. This can save a tremendous amount of time. Dump the types that make up modversions Signed-off-by: Andreas Gruenbacher <agruen@suse.de> Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2006-05-10 02:37:30 +08:00
quiet_cmd_cc_symtypes_c = SYM $(quiet_modtag) $@
cmd_cc_symtypes_c = \
$(call cmd_gensymtypes_c,true,$@) >/dev/null; \
test -s $@ || rm -f $@
kbuild: support for %.symtypes files Here is a patch that adds a new -T option to genksyms for generating dumps of the type definition that makes up the symbol version hashes. This allows to trace modversion changes back to what caused them. The dump format is the name of the type defined, followed by its definition (which is almost C): s#list_head struct list_head { s#list_head * next , * prev ; } The s#, u#, e#, and t# prefixes stand for struct, union, enum, and typedef. The exported symbols do not define types, and thus do not have an x# prefix: nfs4_acl_get_whotype int nfs4_acl_get_whotype ( char * , t#u32 ) The symbol type defintion of a single file can be generated with: make fs/jbd/journal.symtypes If KBUILD_SYMTYPES is defined, all the *.symtypes of all object files that export symbols are generated. The single *.symtypes files can be combined into a single file after a kernel build with a script like the following: for f in $(find -name '*.symtypes' | sort); do f=${f#./} echo "/* ${f%.symtypes}.o */" cat $f echo done \ | sed -e '\:UNKNOWN:d' \ -e 's:[,;] }:}:g' \ -e 's:\([[({]\) :\1:g' \ -e 's: \([])},;]\):\1:g' \ -e 's: $::' \ $f \ | awk ' /^.#/ { if (defined[$1] == $0) { print $1 next } defined[$1] = $0 } { print } ' When the kernel ABI changes, diffing individual *.symtype files, or the combined files, against each other will show which symbol changes caused the ABI changes. This can save a tremendous amount of time. Dump the types that make up modversions Signed-off-by: Andreas Gruenbacher <agruen@suse.de> Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2006-05-10 02:37:30 +08:00
$(obj)/%.symtypes : $(src)/%.c FORCE
$(call cmd,cc_symtypes_c)
kbuild: support for %.symtypes files Here is a patch that adds a new -T option to genksyms for generating dumps of the type definition that makes up the symbol version hashes. This allows to trace modversion changes back to what caused them. The dump format is the name of the type defined, followed by its definition (which is almost C): s#list_head struct list_head { s#list_head * next , * prev ; } The s#, u#, e#, and t# prefixes stand for struct, union, enum, and typedef. The exported symbols do not define types, and thus do not have an x# prefix: nfs4_acl_get_whotype int nfs4_acl_get_whotype ( char * , t#u32 ) The symbol type defintion of a single file can be generated with: make fs/jbd/journal.symtypes If KBUILD_SYMTYPES is defined, all the *.symtypes of all object files that export symbols are generated. The single *.symtypes files can be combined into a single file after a kernel build with a script like the following: for f in $(find -name '*.symtypes' | sort); do f=${f#./} echo "/* ${f%.symtypes}.o */" cat $f echo done \ | sed -e '\:UNKNOWN:d' \ -e 's:[,;] }:}:g' \ -e 's:\([[({]\) :\1:g' \ -e 's: \([])},;]\):\1:g' \ -e 's: $::' \ $f \ | awk ' /^.#/ { if (defined[$1] == $0) { print $1 next } defined[$1] = $0 } { print } ' When the kernel ABI changes, diffing individual *.symtype files, or the combined files, against each other will show which symbol changes caused the ABI changes. This can save a tremendous amount of time. Dump the types that make up modversions Signed-off-by: Andreas Gruenbacher <agruen@suse.de> Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2006-05-10 02:37:30 +08:00
# LLVM assembly
# Generate .ll files from .c
quiet_cmd_cc_ll_c = CC $(quiet_modtag) $@
cmd_cc_ll_c = $(CC) $(c_flags) -emit-llvm -S -o $@ $<
$(obj)/%.ll: $(src)/%.c FORCE
$(call if_changed_dep,cc_ll_c)
# C (.c) files
# The C file is compiled and updated dependency information is generated.
# (See cmd_cc_o_c + relevant part of rule_cc_o_c)
quiet_cmd_cc_o_c = CC $(quiet_modtag) $@
cmd_cc_o_c = $(CC) $(c_flags) -c -o $@ $<
ifdef CONFIG_MODVERSIONS
# When module versioning is enabled the following steps are executed:
# o compile a <file>.o from <file>.c
# o if <file>.o doesn't contain a __ksymtab version, i.e. does
# not export symbols, it's done.
# o otherwise, we calculate symbol versions using the good old
# genksyms on the preprocessed source and postprocess them in a way
# that they are usable as a linker script
# o generate .tmp_<file>.o from <file>.o using the linker to
# replace the unresolved symbols __crc_exported_symbol with
# the actual value of the checksum generated by genksyms
# o remove .tmp_<file>.o to <file>.o
cmd_modversions_c = \
if $(OBJDUMP) -h $@ | grep -q __ksymtab; then \
$(call cmd_gensymtypes_c,$(KBUILD_SYMTYPES),$(@:.o=.symtypes)) \
> $(@D)/.tmp_$(@F:.o=.ver); \
\
$(LD) $(KBUILD_LDFLAGS) -r -o $(@D)/.tmp_$(@F) $@ \
-T $(@D)/.tmp_$(@F:.o=.ver); \
mv -f $(@D)/.tmp_$(@F) $@; \
rm -f $(@D)/.tmp_$(@F:.o=.ver); \
fi
endif
ftrace: create __mcount_loc section This patch creates a section in the kernel called "__mcount_loc". This will hold a list of pointers to the mcount relocation for each call site of mcount. For example: objdump -dr init/main.o [...] Disassembly of section .text: 0000000000000000 <do_one_initcall>: 0: 55 push %rbp [...] 000000000000017b <init_post>: 17b: 55 push %rbp 17c: 48 89 e5 mov %rsp,%rbp 17f: 53 push %rbx 180: 48 83 ec 08 sub $0x8,%rsp 184: e8 00 00 00 00 callq 189 <init_post+0xe> 185: R_X86_64_PC32 mcount+0xfffffffffffffffc [...] We will add a section to point to each function call. .section __mcount_loc,"a",@progbits [...] .quad .text + 0x185 [...] The offset to of the mcount call site in init_post is an offset from the start of the section, and not the start of the function init_post. The mcount relocation is at the call site 0x185 from the start of the .text section. .text + 0x185 == init_post + 0xa We need a way to add this __mcount_loc section in a way that we do not lose the relocations after final link. The .text section here will be attached to all other .text sections after final link and the offsets will be meaningless. We need to keep track of where these .text sections are. To do this, we use the start of the first function in the section. do_one_initcall. We can make a tmp.s file with this function as a reference to the start of the .text section. .section __mcount_loc,"a",@progbits [...] .quad do_one_initcall + 0x185 [...] Then we can compile the tmp.s into a tmp.o gcc -c tmp.s -o tmp.o And link it into back into main.o. ld -r main.o tmp.o -o tmp_main.o mv tmp_main.o main.o But we have a problem. What happens if the first function in a section is not exported, and is a static function. The linker will not let the tmp.o use it. This case exists in main.o as well. Disassembly of section .init.text: 0000000000000000 <set_reset_devices>: 0: 55 push %rbp 1: 48 89 e5 mov %rsp,%rbp 4: e8 00 00 00 00 callq 9 <set_reset_devices+0x9> 5: R_X86_64_PC32 mcount+0xfffffffffffffffc The first function in .init.text is a static function. 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 t set_reset_devices The lowercase 't' means that set_reset_devices is local and is not exported. If we simply try to link the tmp.o with the set_reset_devices we end up with two symbols: one local and one global. .section __mcount_loc,"a",@progbits .quad set_reset_devices + 0x10 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 t set_reset_devices U set_reset_devices We still have an undefined reference to set_reset_devices, and if we try to compile the kernel, we will end up with an undefined reference to set_reset_devices, or even worst, it could be exported someplace else, and then we will have a reference to the wrong location. To handle this case, we make an intermediate step using objcopy. We convert set_reset_devices into a global exported symbol before linking it with tmp.o and set it back afterwards. 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 T set_reset_devices 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 T set_reset_devices 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 t set_reset_devices Now we have a section in main.o called __mcount_loc that we can place somewhere in the kernel using vmlinux.ld.S and access it to convert all these locations that call mcount into nops before starting SMP and thus, eliminating the need to do this with kstop_machine. Note, A well documented perl script (scripts/recordmcount.pl) is used to do all this in one location. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-15 03:45:07 +08:00
ifdef CONFIG_FTRACE_MCOUNT_RECORD
ifndef CC_USING_RECORD_MCOUNT
# compiler will not generate __mcount_loc use recordmcount or recordmcount.pl
ifdef BUILD_C_RECORDMCOUNT
ifeq ("$(origin RECORDMCOUNT_WARN)", "command line")
RECORDMCOUNT_FLAGS = -w
endif
# Due to recursion, we must skip empty.o.
# The empty.o file is created in the make process in order to determine
# the target endianness and word size. It is made before all other C
# files, including recordmcount.
sub_cmd_record_mcount = \
if [ $(@) != "scripts/mod/empty.o" ]; then \
$(objtree)/scripts/recordmcount $(RECORDMCOUNT_FLAGS) "$(@)"; \
fi;
recordmcount_source := $(srctree)/scripts/recordmcount.c \
$(srctree)/scripts/recordmcount.h
else
sub_cmd_record_mcount = perl $(srctree)/scripts/recordmcount.pl "$(ARCH)" \
"$(if $(CONFIG_CPU_BIG_ENDIAN),big,little)" \
"$(if $(CONFIG_64BIT),64,32)" \
"$(OBJDUMP)" "$(OBJCOPY)" "$(CC) $(KBUILD_CPPFLAGS) $(KBUILD_CFLAGS)" \
"$(LD) $(KBUILD_LDFLAGS)" "$(NM)" "$(RM)" "$(MV)" \
"$(if $(part-of-module),1,0)" "$(@)";
recordmcount_source := $(srctree)/scripts/recordmcount.pl
endif # BUILD_C_RECORDMCOUNT
cmd_record_mcount = $(if $(findstring $(strip $(CC_FLAGS_FTRACE)),$(_c_flags)), \
$(sub_cmd_record_mcount))
endif # CC_USING_RECORD_MCOUNT
endif # CONFIG_FTRACE_MCOUNT_RECORD
ftrace: create __mcount_loc section This patch creates a section in the kernel called "__mcount_loc". This will hold a list of pointers to the mcount relocation for each call site of mcount. For example: objdump -dr init/main.o [...] Disassembly of section .text: 0000000000000000 <do_one_initcall>: 0: 55 push %rbp [...] 000000000000017b <init_post>: 17b: 55 push %rbp 17c: 48 89 e5 mov %rsp,%rbp 17f: 53 push %rbx 180: 48 83 ec 08 sub $0x8,%rsp 184: e8 00 00 00 00 callq 189 <init_post+0xe> 185: R_X86_64_PC32 mcount+0xfffffffffffffffc [...] We will add a section to point to each function call. .section __mcount_loc,"a",@progbits [...] .quad .text + 0x185 [...] The offset to of the mcount call site in init_post is an offset from the start of the section, and not the start of the function init_post. The mcount relocation is at the call site 0x185 from the start of the .text section. .text + 0x185 == init_post + 0xa We need a way to add this __mcount_loc section in a way that we do not lose the relocations after final link. The .text section here will be attached to all other .text sections after final link and the offsets will be meaningless. We need to keep track of where these .text sections are. To do this, we use the start of the first function in the section. do_one_initcall. We can make a tmp.s file with this function as a reference to the start of the .text section. .section __mcount_loc,"a",@progbits [...] .quad do_one_initcall + 0x185 [...] Then we can compile the tmp.s into a tmp.o gcc -c tmp.s -o tmp.o And link it into back into main.o. ld -r main.o tmp.o -o tmp_main.o mv tmp_main.o main.o But we have a problem. What happens if the first function in a section is not exported, and is a static function. The linker will not let the tmp.o use it. This case exists in main.o as well. Disassembly of section .init.text: 0000000000000000 <set_reset_devices>: 0: 55 push %rbp 1: 48 89 e5 mov %rsp,%rbp 4: e8 00 00 00 00 callq 9 <set_reset_devices+0x9> 5: R_X86_64_PC32 mcount+0xfffffffffffffffc The first function in .init.text is a static function. 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 t set_reset_devices The lowercase 't' means that set_reset_devices is local and is not exported. If we simply try to link the tmp.o with the set_reset_devices we end up with two symbols: one local and one global. .section __mcount_loc,"a",@progbits .quad set_reset_devices + 0x10 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 t set_reset_devices U set_reset_devices We still have an undefined reference to set_reset_devices, and if we try to compile the kernel, we will end up with an undefined reference to set_reset_devices, or even worst, it could be exported someplace else, and then we will have a reference to the wrong location. To handle this case, we make an intermediate step using objcopy. We convert set_reset_devices into a global exported symbol before linking it with tmp.o and set it back afterwards. 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 T set_reset_devices 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 T set_reset_devices 00000000000000a8 t __setup_set_reset_devices 000000000000105f t __setup_str_set_reset_devices 0000000000000000 t set_reset_devices Now we have a section in main.o called __mcount_loc that we can place somewhere in the kernel using vmlinux.ld.S and access it to convert all these locations that call mcount into nops before starting SMP and thus, eliminating the need to do this with kstop_machine. Note, A well documented perl script (scripts/recordmcount.pl) is used to do all this in one location. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-15 03:45:07 +08:00
ifdef CONFIG_STACK_VALIDATION
ifneq ($(SKIP_STACK_VALIDATION),1)
__objtool_obj := $(objtree)/tools/objtool/objtool
objtool_args = $(if $(CONFIG_UNWINDER_ORC),orc generate,check)
objtool_args += $(if $(part-of-module), --module,)
ifndef CONFIG_FRAME_POINTER
objtool_args += --no-fp
endif
ifdef CONFIG_GCOV_KERNEL
objtool_args += --no-unreachable
endif
ifdef CONFIG_RETPOLINE
objtool_args += --retpoline
endif
ifdef CONFIG_X86_SMAP
objtool_args += --uaccess
endif
# 'OBJECT_FILES_NON_STANDARD := y': skip objtool checking for a directory
# 'OBJECT_FILES_NON_STANDARD_foo.o := 'y': skip objtool checking for a file
# 'OBJECT_FILES_NON_STANDARD_foo.o := 'n': override directory skip for a file
cmd_objtool = $(if $(patsubst y%,, \
$(OBJECT_FILES_NON_STANDARD_$(basetarget).o)$(OBJECT_FILES_NON_STANDARD)n), \
$(__objtool_obj) $(objtool_args) $@)
objtool_obj = $(if $(patsubst y%,, \
$(OBJECT_FILES_NON_STANDARD_$(basetarget).o)$(OBJECT_FILES_NON_STANDARD)n), \
$(__objtool_obj))
endif # SKIP_STACK_VALIDATION
endif # CONFIG_STACK_VALIDATION
# Rebuild all objects when objtool changes, or is enabled/disabled.
objtool_dep = $(objtool_obj) \
$(wildcard include/config/orc/unwinder.h \
include/config/stack/validation.h)
ifdef CONFIG_TRIM_UNUSED_KSYMS
cmd_gen_ksymdeps = \
$(CONFIG_SHELL) $(srctree)/scripts/gen_ksymdeps.sh $@ >> $(dot-target).cmd
endif
define rule_cc_o_c
kbuild: change if_changed_rule for multi-line recipe The 'define' ... 'endef' directive is useful to confine a series of shell commands into a single macro: define foo [action1] [action2] [action3] endif Each action is executed in a separate subshell. However, rule_cc_o_c and rule_as_o_S in scripts/Makefile.build are written as follows (with a trailing semicolon in each cmd_*): define rule_cc_o_c [action1] ; \ [action2] ; \ [action3] ; endef All shell commands are concatenated with '; \' so that it looks like a single command from the Makefile point of view. This does not exploit the benefits of 'define' ... 'endef' form because a single shell command can be more simply written, like this: rule_cc_o_c = \ [action1] ; \ [action2] ; \ [action3] ; I guess the intention for the command concatenation was to let the '@set -e' in if_changed_rule cover all the commands. We can improve the readability by moving '@set -e' to the 'cmd' macro. The combo of $(call echo-cmd,*) $(cmd_*) in rule_cc_o_c and rule_as_o_S have been replaced with $(call cmd,*). The trailing back-slashes have been removed. Here is a note about the performance: the commands in rule_cc_o_c and rule_as_o_S were previously executed all together in a single subshell, but now each line in a separate subshell. This means Make will spawn extra subshells [1]. I measured the build performance for x86_64_defconfig + CONFIG_MODVERSIONS + CONFIG_TRIM_UNUSED_KSYMS and I saw slight performance regression, but I believe code readability and maintainability wins. [1] Precisely, GNU Make may optimize this by executing the command directly instead of forking a subshell, if no shell special characters are found in the command line and omitting the subshell will not change the behavior. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-11-30 09:05:27 +08:00
$(call cmd,checksrc)
$(call cmd_and_fixdep,cc_o_c)
$(call cmd,gen_ksymdeps)
$(call cmd,checkdoc)
$(call cmd,objtool)
$(call cmd,modversions_c)
$(call cmd,record_mcount)
endef
define rule_as_o_S
kbuild: change if_changed_rule for multi-line recipe The 'define' ... 'endef' directive is useful to confine a series of shell commands into a single macro: define foo [action1] [action2] [action3] endif Each action is executed in a separate subshell. However, rule_cc_o_c and rule_as_o_S in scripts/Makefile.build are written as follows (with a trailing semicolon in each cmd_*): define rule_cc_o_c [action1] ; \ [action2] ; \ [action3] ; endef All shell commands are concatenated with '; \' so that it looks like a single command from the Makefile point of view. This does not exploit the benefits of 'define' ... 'endef' form because a single shell command can be more simply written, like this: rule_cc_o_c = \ [action1] ; \ [action2] ; \ [action3] ; I guess the intention for the command concatenation was to let the '@set -e' in if_changed_rule cover all the commands. We can improve the readability by moving '@set -e' to the 'cmd' macro. The combo of $(call echo-cmd,*) $(cmd_*) in rule_cc_o_c and rule_as_o_S have been replaced with $(call cmd,*). The trailing back-slashes have been removed. Here is a note about the performance: the commands in rule_cc_o_c and rule_as_o_S were previously executed all together in a single subshell, but now each line in a separate subshell. This means Make will spawn extra subshells [1]. I measured the build performance for x86_64_defconfig + CONFIG_MODVERSIONS + CONFIG_TRIM_UNUSED_KSYMS and I saw slight performance regression, but I believe code readability and maintainability wins. [1] Precisely, GNU Make may optimize this by executing the command directly instead of forking a subshell, if no shell special characters are found in the command line and omitting the subshell will not change the behavior. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-11-30 09:05:27 +08:00
$(call cmd_and_fixdep,as_o_S)
$(call cmd,gen_ksymdeps)
$(call cmd,objtool)
$(call cmd,modversions_S)
endef
# List module undefined symbols (or empty line if not enabled)
ifdef CONFIG_TRIM_UNUSED_KSYMS
cmd_undef_syms = $(NM) $< | sed -n 's/^ *U //p' | xargs echo
else
cmd_undef_syms = echo
endif
# Built-in and composite module parts
$(obj)/%.o: $(src)/%.c $(recordmcount_source) $(objtool_dep) FORCE
$(call cmd,force_checksrc)
$(call if_changed_rule,cc_o_c)
cmd_mod = { \
echo $(if $($*-objs)$($*-y)$($*-m), $(addprefix $(obj)/, $($*-objs) $($*-y) $($*-m)), $(@:.mod=.o)); \
$(cmd_undef_syms); \
} > $@
$(obj)/%.mod: $(obj)/%.o FORCE
$(call if_changed,mod)
targets += $(mod-targets)
quiet_cmd_cc_lst_c = MKLST $@
cmd_cc_lst_c = $(CC) $(c_flags) -g -c -o $*.o $< && \
$(CONFIG_SHELL) $(srctree)/scripts/makelst $*.o \
System.map $(OBJDUMP) > $@
$(obj)/%.lst: $(src)/%.c FORCE
$(call if_changed_dep,cc_lst_c)
# Compile assembler sources (.S)
# ---------------------------------------------------------------------------
# .S file exports must have their C prototypes defined in asm/asm-prototypes.h
# or a file that it includes, in order to get versioned symbols. We build a
# dummy C file that includes asm-prototypes and the EXPORT_SYMBOL lines from
# the .S file (with trailing ';'), and run genksyms on that, to extract vers.
#
# This is convoluted. The .S file must first be preprocessed to run guards and
# expand names, then the resulting exports must be constructed into plain
# EXPORT_SYMBOL(symbol); to build our dummy C file, and that gets preprocessed
# to make the genksyms input.
#
# These mirror gensymtypes_c and co above, keep them in synch.
cmd_gensymtypes_S = \
{ echo "\#include <linux/kernel.h>" ; \
echo "\#include <asm/asm-prototypes.h>" ; \
$(CPP) $(a_flags) $< | \
grep "\<___EXPORT_SYMBOL\>" | \
sed 's/.*___EXPORT_SYMBOL[[:space:]]*\([a-zA-Z0-9_]*\)[[:space:]]*,.*/EXPORT_SYMBOL(\1);/' ; } | \
$(CPP) -D__GENKSYMS__ $(c_flags) -xc - | \
scripts/genksyms/genksyms $(if $(1), -T $(2)) \
$(patsubst y,-R,$(CONFIG_MODULE_REL_CRCS)) \
$(if $(KBUILD_PRESERVE),-p) \
-r $(firstword $(wildcard $(2:.symtypes=.symref) /dev/null))
quiet_cmd_cc_symtypes_S = SYM $(quiet_modtag) $@
cmd_cc_symtypes_S = \
$(call cmd_gensymtypes_S,true,$@) >/dev/null; \
test -s $@ || rm -f $@
$(obj)/%.symtypes : $(src)/%.S FORCE
$(call cmd,cc_symtypes_S)
quiet_cmd_cpp_s_S = CPP $(quiet_modtag) $@
cmd_cpp_s_S = $(CPP) $(a_flags) -o $@ $<
$(obj)/%.s: $(src)/%.S FORCE
$(call if_changed_dep,cpp_s_S)
quiet_cmd_as_o_S = AS $(quiet_modtag) $@
cmd_as_o_S = $(CC) $(a_flags) -c -o $@ $<
ifdef CONFIG_ASM_MODVERSIONS
# versioning matches the C process described above, with difference that
# we parse asm-prototypes.h C header to get function definitions.
cmd_modversions_S = \
if $(OBJDUMP) -h $@ | grep -q __ksymtab; then \
$(call cmd_gensymtypes_S,$(KBUILD_SYMTYPES),$(@:.o=.symtypes)) \
> $(@D)/.tmp_$(@F:.o=.ver); \
\
$(LD) $(KBUILD_LDFLAGS) -r -o $(@D)/.tmp_$(@F) $@ \
-T $(@D)/.tmp_$(@F:.o=.ver); \
mv -f $(@D)/.tmp_$(@F) $@; \
rm -f $(@D)/.tmp_$(@F:.o=.ver); \
fi
endif
$(obj)/%.o: $(src)/%.S $(objtool_dep) FORCE
$(call if_changed_rule,as_o_S)
targets += $(filter-out $(subdir-obj-y), $(real-obj-y)) $(real-obj-m) $(lib-y)
targets += $(extra-y) $(always-y) $(MAKECMDGOALS)
# Linker scripts preprocessor (.lds.S -> .lds)
# ---------------------------------------------------------------------------
quiet_cmd_cpp_lds_S = LDS $@
cmd_cpp_lds_S = $(CPP) $(cpp_flags) -P -U$(ARCH) \
-D__ASSEMBLY__ -DLINKER_SCRIPT -o $@ $<
$(obj)/%.lds: $(src)/%.lds.S FORCE
$(call if_changed_dep,cpp_lds_S)
# ASN.1 grammar
# ---------------------------------------------------------------------------
quiet_cmd_asn1_compiler = ASN.1 $(basename $@).[ch]
cmd_asn1_compiler = $(objtree)/scripts/asn1_compiler $< \
$(basename $@).c $(basename $@).h
$(obj)/%.asn1.c $(obj)/%.asn1.h: $(src)/%.asn1 $(objtree)/scripts/asn1_compiler
$(call cmd,asn1_compiler)
# Build the compiled-in targets
# ---------------------------------------------------------------------------
# To build objects in subdirs, we need to descend into the directories
$(obj)/%/built-in.a: $(obj)/% ;
#
# Rule to compile a set of .o files into one .a file (without symbol table)
#
ifdef builtin-target
kbuild: allow architectures to use thin archives instead of ld -r ld -r is an incremental link used to create built-in.o files in build subdirectories. It produces relocatable object files containing all its input files, and these are are then pulled together and relocated in the final link. Aside from the bloat, this constrains the final link relocations, which has bitten large powerpc builds with unresolvable relocations in the final link. Alan Modra has recommended the kernel use thin archives for linking. This is an alternative and means that the linker has more information available to it when it links the kernel. This patch enables a config option architectures can select, which causes all built-in.o files to be built as thin archives. built-in.o files in subdirectories do not get symbol table or index attached, which improves speed and size. The final link pass creates a built-in.o archive in the root output directory which includes the symbol table and index. The linker then uses takes this file to link. The --whole-archive linker option is required, because the linker now has visibility to every individual object file, and it will otherwise just completely avoid including those without external references (consider a file with EXPORT_SYMBOL or initcall or hardware exceptions as its only entry points). The traditional built works "by luck" as built-in.o files are large enough that they're going to get external references. However this optimisation is unpredictable for the kernel (due to above external references), ineffective at culling unused, and costly because the .o files have to be searched for references. Superior alternatives for link-time culling should be used instead. Build characteristics for inclink vs thinarc, on a small powerpc64le pseries VM with a modest .config: inclink thinarc sizes vmlinux 15 618 680 15 625 028 sum of all built-in.o 56 091 808 1 054 334 sum excluding root built-in.o 151 430 find -name built-in.o | xargs rm ; time make vmlinux real 22.772s 21.143s user 13.280s 13.430s sys 4.310s 2.750s - Final kernel pulled in only about 6K more, which shows how ineffective the object file culling is. - Build performance looks improved due to less pagecache activity. On IO constrained systems it could be a bigger win. - Build size saving is significant. Side note, the toochain understands archives, so there's some tricks, $ ar t built-in.o # list all files you linked with $ size built-in.o # and their sizes $ objdump -d built-in.o # disassembly (unrelocated) with filenames Implementation by sfr, minor tweaks by npiggin. Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 20:29:19 +08:00
quiet_cmd_ar_builtin = AR $@
cmd_ar_builtin = rm -f $@; $(AR) cDPrST $@ $(real-prereqs)
$(builtin-target): $(real-obj-y) FORCE
$(call if_changed,ar_builtin)
targets += $(builtin-target)
endif # builtin-target
#
# Rule to create modules.order file
#
# Create commands to either record .ko file or cat modules.order from
# a subdirectory
$(modorder-target): $(subdir-ym) FORCE
$(Q){ $(foreach m, $(modorder), \
$(if $(filter %/modules.order, $m), cat $m, echo $m);) :; } \
| $(AWK) '!x[$$0]++' - > $@
#
# Rule to compile a set of .o files into one .a file (with symbol table)
#
ifdef lib-target
$(lib-target): $(lib-y) FORCE
$(call if_changed,ar)
targets += $(lib-target)
endif
# NOTE:
# Do not replace $(filter %.o,^) with $(real-prereqs). When a single object
# module is turned into a multi object module, $^ will contain header file
# dependencies recorded in the .*.cmd file.
quiet_cmd_link_multi-m = LD [M] $@
kbuild: create *.mod with full directory path and remove MODVERDIR While descending directories, Kbuild produces objects for modules, but do not link final *.ko files; it is done in the modpost. To keep track of modules, Kbuild creates a *.mod file in $(MODVERDIR) for every module it is building. Some post-processing steps read the necessary information from *.mod files. This avoids descending into directories again. This mechanism was introduced in 2003 or so. Later, commit 551559e13af1 ("kbuild: implement modules.order") added modules.order. So, we can simply read it out to know all the modules with directory paths. This is easier than parsing the first line of *.mod files. $(MODVERDIR) has a flat directory structure, that is, *.mod files are named only with base names. This is based on the assumption that the module name is unique across the tree. This assumption is really fragile. Stephen Rothwell reported a race condition caused by a module name conflict: https://lkml.org/lkml/2019/5/13/991 In parallel building, two different threads could write to the same $(MODVERDIR)/*.mod simultaneously. Non-unique module names are the source of all kind of troubles, hence commit 3a48a91901c5 ("kbuild: check uniqueness of module names") introduced a new checker script. However, it is still fragile in the build system point of view because this race happens before scripts/modules-check.sh is invoked. If it happens again, the modpost will emit unclear error messages. To fix this issue completely, create *.mod with full directory path so that two threads never attempt to write to the same file. $(MODVERDIR) is no longer needed. Since modules with directory paths are listed in modules.order, Kbuild is still able to find *.mod files without additional descending. I also killed cmd_secanalysis; scripts/mod/sumversion.c computes MD4 hash for modules with MODULE_VERSION(). When CONFIG_DEBUG_SECTION_MISMATCH=y, it occurs not only in the modpost stage, but also during directory descending, where sumversion.c may parse stale *.mod files. It would emit 'No such file or directory' warning when an object consisting a module is renamed, or when a single-obj module is turned into a multi-obj module or vice versa. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Nicolas Pitre <nico@fluxnic.net>
2019-07-17 14:17:57 +08:00
cmd_link_multi-m = $(LD) $(ld_flags) -r -o $@ $(filter %.o,$^)
$(multi-used-m): FORCE
$(call if_changed,link_multi-m)
$(call multi_depend, $(multi-used-m), .o, -objs -y -m)
targets += $(multi-used-m)
targets := $(filter-out $(PHONY), $(targets))
# Add intermediate targets:
# When building objects with specific suffix patterns, add intermediate
# targets that the final targets are derived from.
intermediate_targets = $(foreach sfx, $(2), \
$(patsubst %$(strip $(1)),%$(sfx), \
$(filter %$(strip $(1)), $(targets))))
kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markers GNU Make automatically deletes intermediate files that are updated in a chain of pattern rules. Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts Example 2) %.o <- %.c <- %.c_shipped A couple of makefiles mark such targets as .PRECIOUS to prevent Make from deleting them, but the correct way is to use .SECONDARY. .SECONDARY Prerequisites of this special target are treated as intermediate files but are never automatically deleted. .PRECIOUS When make is interrupted during execution, it may delete the target file it is updating if the file was modified since make started. If you mark the file as precious, make will never delete the file if interrupted. Both can avoid deletion of intermediate files, but the difference is the behavior when Make is interrupted; .SECONDARY deletes the target, but .PRECIOUS does not. The use of .PRECIOUS is relatively rare since we do not want to keep partially constructed (possibly corrupted) targets. Another difference is that .PRECIOUS works with pattern rules whereas .SECONDARY does not. .PRECIOUS: $(obj)/%.lex.c works, but .SECONDARY: $(obj)/%.lex.c has no effect. However, for the reason above, I do not want to use .PRECIOUS which could cause obscure build breakage. The targets specified as .SECONDARY must be explicit. $(targets) contains all targets that need to include .*.cmd files. So, the intermediates you want to keep are mostly in there. Therefore, mark $(targets) as .SECONDARY. It means primary targets are also marked as .SECONDARY, but I do not see any drawback for this. I replaced some .SECONDARY / .PRECIOUS markers with 'targets'. This will make Kbuild search for non-existing .*.cmd files, but this is not a noticeable performance issue. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Frank Rowand <frowand.list@gmail.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-03-23 21:04:39 +08:00
# %.asn1.o <- %.asn1.[ch] <- %.asn1
# %.dtb.o <- %.dtb.S <- %.dtb <- %.dts
# %.lex.o <- %.lex.c <- %.l
# %.tab.o <- %.tab.[ch] <- %.y
kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markers GNU Make automatically deletes intermediate files that are updated in a chain of pattern rules. Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts Example 2) %.o <- %.c <- %.c_shipped A couple of makefiles mark such targets as .PRECIOUS to prevent Make from deleting them, but the correct way is to use .SECONDARY. .SECONDARY Prerequisites of this special target are treated as intermediate files but are never automatically deleted. .PRECIOUS When make is interrupted during execution, it may delete the target file it is updating if the file was modified since make started. If you mark the file as precious, make will never delete the file if interrupted. Both can avoid deletion of intermediate files, but the difference is the behavior when Make is interrupted; .SECONDARY deletes the target, but .PRECIOUS does not. The use of .PRECIOUS is relatively rare since we do not want to keep partially constructed (possibly corrupted) targets. Another difference is that .PRECIOUS works with pattern rules whereas .SECONDARY does not. .PRECIOUS: $(obj)/%.lex.c works, but .SECONDARY: $(obj)/%.lex.c has no effect. However, for the reason above, I do not want to use .PRECIOUS which could cause obscure build breakage. The targets specified as .SECONDARY must be explicit. $(targets) contains all targets that need to include .*.cmd files. So, the intermediates you want to keep are mostly in there. Therefore, mark $(targets) as .SECONDARY. It means primary targets are also marked as .SECONDARY, but I do not see any drawback for this. I replaced some .SECONDARY / .PRECIOUS markers with 'targets'. This will make Kbuild search for non-existing .*.cmd files, but this is not a noticeable performance issue. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Frank Rowand <frowand.list@gmail.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-03-23 21:04:39 +08:00
targets += $(call intermediate_targets, .asn1.o, .asn1.c .asn1.h) \
$(call intermediate_targets, .dtb.o, .dtb.S .dtb) \
$(call intermediate_targets, .lex.o, .lex.c) \
$(call intermediate_targets, .tab.o, .tab.c .tab.h)
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
# Build
# ---------------------------------------------------------------------------
ifdef single-build
KBUILD_SINGLE_TARGETS := $(filter $(obj)/%, $(KBUILD_SINGLE_TARGETS))
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
curdir-single := $(sort $(foreach x, $(KBUILD_SINGLE_TARGETS), \
$(if $(filter $(x) $(basename $(x)).o, $(targets)), $(x))))
# Handle single targets without any rule: show "Nothing to be done for ..." or
# "No rule to make target ..." depending on whether the target exists.
unknown-single := $(filter-out $(addsuffix /%, $(subdir-ym)), \
$(filter-out $(curdir-single), $(KBUILD_SINGLE_TARGETS)))
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
single-subdirs := $(foreach d, $(subdir-ym), \
$(if $(filter $(d)/%, $(KBUILD_SINGLE_TARGETS)), $(d)))
__build: $(curdir-single) $(single-subdirs)
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
ifneq ($(unknown-single),)
$(Q)$(MAKE) -f /dev/null $(unknown-single)
endif
@:
ifeq ($(curdir-single),)
# Nothing to do in this directory. Do not include any .*.cmd file for speed-up
targets :=
else
targets += $(curdir-single)
endif
else
__build: $(if $(KBUILD_BUILTIN),$(builtin-target) $(lib-target) $(extra-y)) \
$(if $(KBUILD_MODULES),$(obj-m) $(mod-targets) $(modorder-target)) \
$(subdir-ym) $(always-y)
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
@:
endif
# Descending
# ---------------------------------------------------------------------------
PHONY += $(subdir-ym)
$(subdir-ym):
$(Q)$(MAKE) $(build)=$@ \
kbuild: make single targets work more correctly Currently, the single target build directly descends into the directory of the target. For example, $ make foo/bar/baz.o ... directly descends into foo/bar/. On the other hand, the normal build usually descends one directory at a time, i.e. descends into foo/, and then foo/bar/. This difference causes some problems. [1] miss subdir-asflags-y, subdir-ccflags-y in upper Makefiles The options in subdir-{as,cc}flags-y take effect in the current and its sub-directories. In other words, they are inherited downward. In the example above, the single target will miss subdir-{as,cc}flags-y if they are defined in foo/Makefile. [2] could be built in a different directory As Documentation/kbuild/modules.rst section 4.3 says, Kbuild can handle files that are spread over several sub-directories. The build rule of foo/bar/baz.o may not necessarily be specified in foo/bar/Makefile. It might be specifies in foo/Makefile as follows: [foo/Makefile] obj-y := bar/baz.o This often happens when a module is so big that its source files are divided into sub-directories. In this case, there is no Makefile in the foo/bar/ directory, yet the single target descends into foo/bar/, then fails due to the missing Makefile. You can still do 'make foo/bar/' for partial building, but cannot do 'make foo/bar/baz.s'. I believe the single target '%.s' is a useful feature for inspecting the compiler output. Some modules work around this issue by putting an empty Makefile in every sub-directory. This commit fixes those problems by making the single target build descend in the same way as the normal build does. Another change is the single target build will observe the CONFIG options. Previously, it allowed users to build the foo.o even when the corresponding CONFIG_FOO is disabled: obj-$(CONFIG_FOO) += foo.o In the new behavior, the single target build will just fail and show "No rule to make target ..." (or "Nothing to be done for ..." if the stale object already exists, but cannot be updated). The disadvantage of this commit is the build speed. Now that the single target build visits every directory and parses lots of Makefiles, it is slower than before. (But, I hope it will not be too slow.) Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-08-14 23:19:18 +08:00
$(if $(filter $@/, $(KBUILD_SINGLE_TARGETS)),single-build=) \
need-builtin=$(if $(filter $@/built-in.a, $(subdir-obj-y)),1) \
need-modorder=$(if $(need-modorder),$(if $(filter $@/modules.order, $(modorder)),1))
# Add FORCE to the prequisites of a target to force it to be always rebuilt.
# ---------------------------------------------------------------------------
PHONY += FORCE
FORCE:
# Read all saved command lines and dependencies for the $(targets) we
# may be building above, using $(if_changed{,_dep}). As an
# optimization, we don't need to read them if the target does not
# exist, we will rebuild anyway in that case.
kbuild: let fixdep directly write to .*.cmd files Currently, fixdep writes dependencies to .*.tmp, which is renamed to .*.cmd after everything succeeds. This is a very safe way to avoid corrupted .*.cmd files. The if_changed_dep has carried this safety mechanism since it was added in 2002. If fixdep fails for some reasons or a user terminates the build while fixdep is running, the incomplete output from the fixdep could be troublesome. This is my insight about some bad scenarios: [1] If the compiler succeeds to generate *.o file, but fixdep fails to write necessary dependencies to .*.cmd file, Make will miss to rebuild the object when headers or CONFIG options are changed. In this case, fixdep should not generate .*.cmd file at all so that 'arg-check' will surely trigger the rebuild of the object. [2] A partially constructed .*.cmd file may not be a syntactically correct makefile. The next time Make runs, it would include it, then fail to parse it. Once this happens, 'make clean' is be the only way to fix it. In fact, [1] is no longer a problem since commit 9c2af1c7377a ("kbuild: add .DELETE_ON_ERROR special target"). Make deletes a target file on any failure in its recipe. Because fixdep is a part of the recipe of *.o target, if it fails, the *.o is deleted anyway. However, I am a bit worried about the slight possibility of [2]. So, here is a solution. Let fixdep directly write to a .*.cmd file, but allow makefiles to include it only when its corresponding target exists. This effectively reverts commit 2982c953570b ("kbuild: remove redundant $(wildcard ...) for cmd_files calculation"), and commit 00d78ab2ba75 ("kbuild: remove dead code in cmd_files calculation in top Makefile") because now we must check the presence of targets. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-11-30 09:05:22 +08:00
existing-targets := $(wildcard $(sort $(targets)))
kbuild: let fixdep directly write to .*.cmd files Currently, fixdep writes dependencies to .*.tmp, which is renamed to .*.cmd after everything succeeds. This is a very safe way to avoid corrupted .*.cmd files. The if_changed_dep has carried this safety mechanism since it was added in 2002. If fixdep fails for some reasons or a user terminates the build while fixdep is running, the incomplete output from the fixdep could be troublesome. This is my insight about some bad scenarios: [1] If the compiler succeeds to generate *.o file, but fixdep fails to write necessary dependencies to .*.cmd file, Make will miss to rebuild the object when headers or CONFIG options are changed. In this case, fixdep should not generate .*.cmd file at all so that 'arg-check' will surely trigger the rebuild of the object. [2] A partially constructed .*.cmd file may not be a syntactically correct makefile. The next time Make runs, it would include it, then fail to parse it. Once this happens, 'make clean' is be the only way to fix it. In fact, [1] is no longer a problem since commit 9c2af1c7377a ("kbuild: add .DELETE_ON_ERROR special target"). Make deletes a target file on any failure in its recipe. Because fixdep is a part of the recipe of *.o target, if it fails, the *.o is deleted anyway. However, I am a bit worried about the slight possibility of [2]. So, here is a solution. Let fixdep directly write to a .*.cmd file, but allow makefiles to include it only when its corresponding target exists. This effectively reverts commit 2982c953570b ("kbuild: remove redundant $(wildcard ...) for cmd_files calculation"), and commit 00d78ab2ba75 ("kbuild: remove dead code in cmd_files calculation in top Makefile") because now we must check the presence of targets. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-11-30 09:05:22 +08:00
-include $(foreach f,$(existing-targets),$(dir $(f)).$(notdir $(f)).cmd)
ifdef building_out_of_srctree
# Create directories for object files if they do not exist
obj-dirs := $(sort $(obj) $(patsubst %/,%, $(dir $(targets))))
kbuild: let fixdep directly write to .*.cmd files Currently, fixdep writes dependencies to .*.tmp, which is renamed to .*.cmd after everything succeeds. This is a very safe way to avoid corrupted .*.cmd files. The if_changed_dep has carried this safety mechanism since it was added in 2002. If fixdep fails for some reasons or a user terminates the build while fixdep is running, the incomplete output from the fixdep could be troublesome. This is my insight about some bad scenarios: [1] If the compiler succeeds to generate *.o file, but fixdep fails to write necessary dependencies to .*.cmd file, Make will miss to rebuild the object when headers or CONFIG options are changed. In this case, fixdep should not generate .*.cmd file at all so that 'arg-check' will surely trigger the rebuild of the object. [2] A partially constructed .*.cmd file may not be a syntactically correct makefile. The next time Make runs, it would include it, then fail to parse it. Once this happens, 'make clean' is be the only way to fix it. In fact, [1] is no longer a problem since commit 9c2af1c7377a ("kbuild: add .DELETE_ON_ERROR special target"). Make deletes a target file on any failure in its recipe. Because fixdep is a part of the recipe of *.o target, if it fails, the *.o is deleted anyway. However, I am a bit worried about the slight possibility of [2]. So, here is a solution. Let fixdep directly write to a .*.cmd file, but allow makefiles to include it only when its corresponding target exists. This effectively reverts commit 2982c953570b ("kbuild: remove redundant $(wildcard ...) for cmd_files calculation"), and commit 00d78ab2ba75 ("kbuild: remove dead code in cmd_files calculation in top Makefile") because now we must check the presence of targets. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-11-30 09:05:22 +08:00
# If targets exist, their directories apparently exist. Skip mkdir.
existing-dirs := $(sort $(patsubst %/,%, $(dir $(existing-targets))))
obj-dirs := $(strip $(filter-out $(existing-dirs), $(obj-dirs)))
ifneq ($(obj-dirs),)
$(shell mkdir -p $(obj-dirs))
endif
endif
.PHONY: $(PHONY)