OpenCloudOS-Kernel/drivers/clk/clk-k210.c

1008 lines
25 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
* Copyright (c) 2019 Western Digital Corporation or its affiliates.
*/
#define pr_fmt(fmt) "k210-clk: " fmt
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_clk.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/clk-provider.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <soc/canaan/k210-sysctl.h>
#include <dt-bindings/clock/k210-clk.h>
struct k210_sysclk;
struct k210_clk {
int id;
struct k210_sysclk *ksc;
struct clk_hw hw;
};
struct k210_clk_cfg {
const char *name;
u8 gate_reg;
u8 gate_bit;
u8 div_reg;
u8 div_shift;
u8 div_width;
u8 div_type;
u8 mux_reg;
u8 mux_bit;
};
enum k210_clk_div_type {
K210_DIV_NONE,
K210_DIV_ONE_BASED,
K210_DIV_DOUBLE_ONE_BASED,
K210_DIV_POWER_OF_TWO,
};
#define K210_GATE(_reg, _bit) \
.gate_reg = (_reg), \
.gate_bit = (_bit)
#define K210_DIV(_reg, _shift, _width, _type) \
.div_reg = (_reg), \
.div_shift = (_shift), \
.div_width = (_width), \
.div_type = (_type)
#define K210_MUX(_reg, _bit) \
.mux_reg = (_reg), \
.mux_bit = (_bit)
static struct k210_clk_cfg k210_clk_cfgs[K210_NUM_CLKS] = {
/* Gated clocks, no mux, no divider */
[K210_CLK_CPU] = {
.name = "cpu",
K210_GATE(K210_SYSCTL_EN_CENT, 0)
},
[K210_CLK_DMA] = {
.name = "dma",
K210_GATE(K210_SYSCTL_EN_PERI, 1)
},
[K210_CLK_FFT] = {
.name = "fft",
K210_GATE(K210_SYSCTL_EN_PERI, 4)
},
[K210_CLK_GPIO] = {
.name = "gpio",
K210_GATE(K210_SYSCTL_EN_PERI, 5)
},
[K210_CLK_UART1] = {
.name = "uart1",
K210_GATE(K210_SYSCTL_EN_PERI, 16)
},
[K210_CLK_UART2] = {
.name = "uart2",
K210_GATE(K210_SYSCTL_EN_PERI, 17)
},
[K210_CLK_UART3] = {
.name = "uart3",
K210_GATE(K210_SYSCTL_EN_PERI, 18)
},
[K210_CLK_FPIOA] = {
.name = "fpioa",
K210_GATE(K210_SYSCTL_EN_PERI, 20)
},
[K210_CLK_SHA] = {
.name = "sha",
K210_GATE(K210_SYSCTL_EN_PERI, 26)
},
[K210_CLK_AES] = {
.name = "aes",
K210_GATE(K210_SYSCTL_EN_PERI, 19)
},
[K210_CLK_OTP] = {
.name = "otp",
K210_GATE(K210_SYSCTL_EN_PERI, 27)
},
[K210_CLK_RTC] = {
.name = "rtc",
K210_GATE(K210_SYSCTL_EN_PERI, 29)
},
/* Gated divider clocks */
[K210_CLK_SRAM0] = {
.name = "sram0",
K210_GATE(K210_SYSCTL_EN_CENT, 1),
K210_DIV(K210_SYSCTL_THR0, 0, 4, K210_DIV_ONE_BASED)
},
[K210_CLK_SRAM1] = {
.name = "sram1",
K210_GATE(K210_SYSCTL_EN_CENT, 2),
K210_DIV(K210_SYSCTL_THR0, 4, 4, K210_DIV_ONE_BASED)
},
[K210_CLK_ROM] = {
.name = "rom",
K210_GATE(K210_SYSCTL_EN_PERI, 0),
K210_DIV(K210_SYSCTL_THR0, 16, 4, K210_DIV_ONE_BASED)
},
[K210_CLK_DVP] = {
.name = "dvp",
K210_GATE(K210_SYSCTL_EN_PERI, 3),
K210_DIV(K210_SYSCTL_THR0, 12, 4, K210_DIV_ONE_BASED)
},
[K210_CLK_APB0] = {
.name = "apb0",
K210_GATE(K210_SYSCTL_EN_CENT, 3),
K210_DIV(K210_SYSCTL_SEL0, 3, 3, K210_DIV_ONE_BASED)
},
[K210_CLK_APB1] = {
.name = "apb1",
K210_GATE(K210_SYSCTL_EN_CENT, 4),
K210_DIV(K210_SYSCTL_SEL0, 6, 3, K210_DIV_ONE_BASED)
},
[K210_CLK_APB2] = {
.name = "apb2",
K210_GATE(K210_SYSCTL_EN_CENT, 5),
K210_DIV(K210_SYSCTL_SEL0, 9, 3, K210_DIV_ONE_BASED)
},
[K210_CLK_AI] = {
.name = "ai",
K210_GATE(K210_SYSCTL_EN_PERI, 2),
K210_DIV(K210_SYSCTL_THR0, 8, 4, K210_DIV_ONE_BASED)
},
[K210_CLK_SPI0] = {
.name = "spi0",
K210_GATE(K210_SYSCTL_EN_PERI, 6),
K210_DIV(K210_SYSCTL_THR1, 0, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_SPI1] = {
.name = "spi1",
K210_GATE(K210_SYSCTL_EN_PERI, 7),
K210_DIV(K210_SYSCTL_THR1, 8, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_SPI2] = {
.name = "spi2",
K210_GATE(K210_SYSCTL_EN_PERI, 8),
K210_DIV(K210_SYSCTL_THR1, 16, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2C0] = {
.name = "i2c0",
K210_GATE(K210_SYSCTL_EN_PERI, 13),
K210_DIV(K210_SYSCTL_THR5, 8, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2C1] = {
.name = "i2c1",
K210_GATE(K210_SYSCTL_EN_PERI, 14),
K210_DIV(K210_SYSCTL_THR5, 16, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2C2] = {
.name = "i2c2",
K210_GATE(K210_SYSCTL_EN_PERI, 15),
K210_DIV(K210_SYSCTL_THR5, 24, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_WDT0] = {
.name = "wdt0",
K210_GATE(K210_SYSCTL_EN_PERI, 24),
K210_DIV(K210_SYSCTL_THR6, 0, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_WDT1] = {
.name = "wdt1",
K210_GATE(K210_SYSCTL_EN_PERI, 25),
K210_DIV(K210_SYSCTL_THR6, 8, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2S0] = {
.name = "i2s0",
K210_GATE(K210_SYSCTL_EN_PERI, 10),
K210_DIV(K210_SYSCTL_THR3, 0, 16, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2S1] = {
.name = "i2s1",
K210_GATE(K210_SYSCTL_EN_PERI, 11),
K210_DIV(K210_SYSCTL_THR3, 16, 16, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2S2] = {
.name = "i2s2",
K210_GATE(K210_SYSCTL_EN_PERI, 12),
K210_DIV(K210_SYSCTL_THR4, 0, 16, K210_DIV_DOUBLE_ONE_BASED)
},
/* Divider clocks, no gate, no mux */
[K210_CLK_I2S0_M] = {
.name = "i2s0_m",
K210_DIV(K210_SYSCTL_THR4, 16, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2S1_M] = {
.name = "i2s1_m",
K210_DIV(K210_SYSCTL_THR4, 24, 8, K210_DIV_DOUBLE_ONE_BASED)
},
[K210_CLK_I2S2_M] = {
.name = "i2s2_m",
K210_DIV(K210_SYSCTL_THR4, 0, 8, K210_DIV_DOUBLE_ONE_BASED)
},
/* Muxed gated divider clocks */
[K210_CLK_SPI3] = {
.name = "spi3",
K210_GATE(K210_SYSCTL_EN_PERI, 9),
K210_DIV(K210_SYSCTL_THR1, 24, 8, K210_DIV_DOUBLE_ONE_BASED),
K210_MUX(K210_SYSCTL_SEL0, 12)
},
[K210_CLK_TIMER0] = {
.name = "timer0",
K210_GATE(K210_SYSCTL_EN_PERI, 21),
K210_DIV(K210_SYSCTL_THR2, 0, 8, K210_DIV_DOUBLE_ONE_BASED),
K210_MUX(K210_SYSCTL_SEL0, 13)
},
[K210_CLK_TIMER1] = {
.name = "timer1",
K210_GATE(K210_SYSCTL_EN_PERI, 22),
K210_DIV(K210_SYSCTL_THR2, 8, 8, K210_DIV_DOUBLE_ONE_BASED),
K210_MUX(K210_SYSCTL_SEL0, 14)
},
[K210_CLK_TIMER2] = {
.name = "timer2",
K210_GATE(K210_SYSCTL_EN_PERI, 23),
K210_DIV(K210_SYSCTL_THR2, 16, 8, K210_DIV_DOUBLE_ONE_BASED),
K210_MUX(K210_SYSCTL_SEL0, 15)
},
};
/*
* PLL control register bits.
*/
#define K210_PLL_CLKR GENMASK(3, 0)
#define K210_PLL_CLKF GENMASK(9, 4)
#define K210_PLL_CLKOD GENMASK(13, 10)
#define K210_PLL_BWADJ GENMASK(19, 14)
#define K210_PLL_RESET (1 << 20)
#define K210_PLL_PWRD (1 << 21)
#define K210_PLL_INTFB (1 << 22)
#define K210_PLL_BYPASS (1 << 23)
#define K210_PLL_TEST (1 << 24)
#define K210_PLL_EN (1 << 25)
#define K210_PLL_SEL GENMASK(27, 26) /* PLL2 only */
/*
* PLL lock register bits.
*/
#define K210_PLL_LOCK 0
#define K210_PLL_CLEAR_SLIP 2
#define K210_PLL_TEST_OUT 3
/*
* Clock selector register bits.
*/
#define K210_ACLK_SEL BIT(0)
#define K210_ACLK_DIV GENMASK(2, 1)
/*
* PLLs.
*/
enum k210_pll_id {
K210_PLL0, K210_PLL1, K210_PLL2, K210_PLL_NUM
};
struct k210_pll {
enum k210_pll_id id;
struct k210_sysclk *ksc;
void __iomem *base;
void __iomem *reg;
void __iomem *lock;
u8 lock_shift;
u8 lock_width;
struct clk_hw hw;
};
#define to_k210_pll(_hw) container_of(_hw, struct k210_pll, hw)
/*
* PLLs configuration: by default PLL0 runs at 780 MHz and PLL1 at 299 MHz.
* The first 2 SRAM banks depend on ACLK/CPU clock which is by default PLL0
* rate divided by 2. Set PLL1 to 390 MHz so that the third SRAM bank has the
* same clock as the first 2.
*/
struct k210_pll_cfg {
u32 reg;
u8 lock_shift;
u8 lock_width;
u32 r;
u32 f;
u32 od;
u32 bwadj;
};
static struct k210_pll_cfg k210_plls_cfg[] = {
{ K210_SYSCTL_PLL0, 0, 2, 0, 59, 1, 59 }, /* 780 MHz */
{ K210_SYSCTL_PLL1, 8, 1, 0, 59, 3, 59 }, /* 390 MHz */
{ K210_SYSCTL_PLL2, 16, 1, 0, 22, 1, 22 }, /* 299 MHz */
};
/**
* struct k210_sysclk - sysclk driver data
* @regs: system controller registers start address
* @clk_lock: clock setting spinlock
* @plls: SoC PLLs descriptors
* @aclk: ACLK clock
* @clks: All other clocks
*/
struct k210_sysclk {
void __iomem *regs;
spinlock_t clk_lock;
struct k210_pll plls[K210_PLL_NUM];
struct clk_hw aclk;
struct k210_clk clks[K210_NUM_CLKS];
};
#define to_k210_sysclk(_hw) container_of(_hw, struct k210_sysclk, aclk)
/*
* Set ACLK parent selector: 0 for IN0, 1 for PLL0.
*/
static void k210_aclk_set_selector(void __iomem *regs, u8 sel)
{
u32 reg = readl(regs + K210_SYSCTL_SEL0);
if (sel)
reg |= K210_ACLK_SEL;
else
reg &= K210_ACLK_SEL;
writel(reg, regs + K210_SYSCTL_SEL0);
}
static void k210_init_pll(void __iomem *regs, enum k210_pll_id pllid,
struct k210_pll *pll)
{
pll->id = pllid;
pll->reg = regs + k210_plls_cfg[pllid].reg;
pll->lock = regs + K210_SYSCTL_PLL_LOCK;
pll->lock_shift = k210_plls_cfg[pllid].lock_shift;
pll->lock_width = k210_plls_cfg[pllid].lock_width;
}
static void k210_pll_wait_for_lock(struct k210_pll *pll)
{
u32 reg, mask = GENMASK(pll->lock_shift + pll->lock_width - 1,
pll->lock_shift);
while (true) {
reg = readl(pll->lock);
if ((reg & mask) == mask)
break;
reg |= BIT(pll->lock_shift + K210_PLL_CLEAR_SLIP);
writel(reg, pll->lock);
}
}
static bool k210_pll_hw_is_enabled(struct k210_pll *pll)
{
u32 reg = readl(pll->reg);
u32 mask = K210_PLL_PWRD | K210_PLL_EN;
if (reg & K210_PLL_RESET)
return false;
return (reg & mask) == mask;
}
static void k210_pll_enable_hw(void __iomem *regs, struct k210_pll *pll)
{
struct k210_pll_cfg *pll_cfg = &k210_plls_cfg[pll->id];
u32 reg;
if (k210_pll_hw_is_enabled(pll))
return;
/*
* For PLL0, we need to re-parent ACLK to IN0 to keep the CPU cores and
* SRAM running.
*/
if (pll->id == K210_PLL0)
k210_aclk_set_selector(regs, 0);
/* Set PLL factors */
reg = readl(pll->reg);
reg &= ~GENMASK(19, 0);
reg |= FIELD_PREP(K210_PLL_CLKR, pll_cfg->r);
reg |= FIELD_PREP(K210_PLL_CLKF, pll_cfg->f);
reg |= FIELD_PREP(K210_PLL_CLKOD, pll_cfg->od);
reg |= FIELD_PREP(K210_PLL_BWADJ, pll_cfg->bwadj);
reg |= K210_PLL_PWRD;
writel(reg, pll->reg);
/*
* Reset the PLL: ensure reset is low before asserting it.
* The magic NOPs come from the Kendryte reference SDK.
*/
reg &= ~K210_PLL_RESET;
writel(reg, pll->reg);
reg |= K210_PLL_RESET;
writel(reg, pll->reg);
nop();
nop();
reg &= ~K210_PLL_RESET;
writel(reg, pll->reg);
k210_pll_wait_for_lock(pll);
reg &= ~K210_PLL_BYPASS;
reg |= K210_PLL_EN;
writel(reg, pll->reg);
if (pll->id == K210_PLL0)
k210_aclk_set_selector(regs, 1);
}
static int k210_pll_enable(struct clk_hw *hw)
{
struct k210_pll *pll = to_k210_pll(hw);
struct k210_sysclk *ksc = pll->ksc;
unsigned long flags;
spin_lock_irqsave(&ksc->clk_lock, flags);
k210_pll_enable_hw(ksc->regs, pll);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
return 0;
}
static void k210_pll_disable(struct clk_hw *hw)
{
struct k210_pll *pll = to_k210_pll(hw);
struct k210_sysclk *ksc = pll->ksc;
unsigned long flags;
u32 reg;
/*
* Bypassing before powering off is important so child clocks do not
* stop working. This is especially important for pll0, the indirect
* parent of the cpu clock.
*/
spin_lock_irqsave(&ksc->clk_lock, flags);
reg = readl(pll->reg);
reg |= K210_PLL_BYPASS;
writel(reg, pll->reg);
reg &= ~K210_PLL_PWRD;
reg &= ~K210_PLL_EN;
writel(reg, pll->reg);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
}
static int k210_pll_is_enabled(struct clk_hw *hw)
{
return k210_pll_hw_is_enabled(to_k210_pll(hw));
}
static unsigned long k210_pll_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct k210_pll *pll = to_k210_pll(hw);
u32 reg = readl(pll->reg);
u32 r, f, od;
if (reg & K210_PLL_BYPASS)
return parent_rate;
if (!(reg & K210_PLL_PWRD))
return 0;
r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
return (u64)parent_rate * f / (r * od);
}
static const struct clk_ops k210_pll_ops = {
.enable = k210_pll_enable,
.disable = k210_pll_disable,
.is_enabled = k210_pll_is_enabled,
.recalc_rate = k210_pll_get_rate,
};
static int k210_pll2_set_parent(struct clk_hw *hw, u8 index)
{
struct k210_pll *pll = to_k210_pll(hw);
struct k210_sysclk *ksc = pll->ksc;
unsigned long flags;
u32 reg;
spin_lock_irqsave(&ksc->clk_lock, flags);
reg = readl(pll->reg);
reg &= ~K210_PLL_SEL;
reg |= FIELD_PREP(K210_PLL_SEL, index);
writel(reg, pll->reg);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
return 0;
}
static u8 k210_pll2_get_parent(struct clk_hw *hw)
{
struct k210_pll *pll = to_k210_pll(hw);
u32 reg = readl(pll->reg);
return FIELD_GET(K210_PLL_SEL, reg);
}
static const struct clk_ops k210_pll2_ops = {
.enable = k210_pll_enable,
.disable = k210_pll_disable,
.is_enabled = k210_pll_is_enabled,
.recalc_rate = k210_pll_get_rate,
.set_parent = k210_pll2_set_parent,
.get_parent = k210_pll2_get_parent,
};
static int __init k210_register_pll(struct device_node *np,
struct k210_sysclk *ksc,
enum k210_pll_id pllid, const char *name,
int num_parents, const struct clk_ops *ops)
{
struct k210_pll *pll = &ksc->plls[pllid];
struct clk_init_data init = {};
const struct clk_parent_data parent_data[] = {
{ /* .index = 0 for in0 */ },
{ .hw = &ksc->plls[K210_PLL0].hw },
{ .hw = &ksc->plls[K210_PLL1].hw },
};
init.name = name;
init.parent_data = parent_data;
init.num_parents = num_parents;
init.ops = ops;
pll->hw.init = &init;
pll->ksc = ksc;
return of_clk_hw_register(np, &pll->hw);
}
static int __init k210_register_plls(struct device_node *np,
struct k210_sysclk *ksc)
{
int i, ret;
for (i = 0; i < K210_PLL_NUM; i++)
k210_init_pll(ksc->regs, i, &ksc->plls[i]);
/* PLL0 and PLL1 only have IN0 as parent */
ret = k210_register_pll(np, ksc, K210_PLL0, "pll0", 1, &k210_pll_ops);
if (ret) {
pr_err("%pOFP: register PLL0 failed\n", np);
return ret;
}
ret = k210_register_pll(np, ksc, K210_PLL1, "pll1", 1, &k210_pll_ops);
if (ret) {
pr_err("%pOFP: register PLL1 failed\n", np);
return ret;
}
/* PLL2 has IN0, PLL0 and PLL1 as parents */
ret = k210_register_pll(np, ksc, K210_PLL2, "pll2", 3, &k210_pll2_ops);
if (ret) {
pr_err("%pOFP: register PLL2 failed\n", np);
return ret;
}
return 0;
}
static int k210_aclk_set_parent(struct clk_hw *hw, u8 index)
{
struct k210_sysclk *ksc = to_k210_sysclk(hw);
unsigned long flags;
spin_lock_irqsave(&ksc->clk_lock, flags);
k210_aclk_set_selector(ksc->regs, index);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
return 0;
}
static u8 k210_aclk_get_parent(struct clk_hw *hw)
{
struct k210_sysclk *ksc = to_k210_sysclk(hw);
u32 sel;
sel = readl(ksc->regs + K210_SYSCTL_SEL0) & K210_ACLK_SEL;
return sel ? 1 : 0;
}
static unsigned long k210_aclk_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct k210_sysclk *ksc = to_k210_sysclk(hw);
u32 reg = readl(ksc->regs + K210_SYSCTL_SEL0);
unsigned int shift;
if (!(reg & 0x1))
return parent_rate;
shift = FIELD_GET(K210_ACLK_DIV, reg);
return parent_rate / (2UL << shift);
}
static const struct clk_ops k210_aclk_ops = {
.set_parent = k210_aclk_set_parent,
.get_parent = k210_aclk_get_parent,
.recalc_rate = k210_aclk_get_rate,
};
/*
* ACLK has IN0 and PLL0 as parents.
*/
static int __init k210_register_aclk(struct device_node *np,
struct k210_sysclk *ksc)
{
struct clk_init_data init = {};
const struct clk_parent_data parent_data[] = {
{ /* .index = 0 for in0 */ },
{ .hw = &ksc->plls[K210_PLL0].hw },
};
int ret;
init.name = "aclk";
init.parent_data = parent_data;
init.num_parents = 2;
init.ops = &k210_aclk_ops;
ksc->aclk.init = &init;
ret = of_clk_hw_register(np, &ksc->aclk);
if (ret) {
pr_err("%pOFP: register aclk failed\n", np);
return ret;
}
return 0;
}
#define to_k210_clk(_hw) container_of(_hw, struct k210_clk, hw)
static int k210_clk_enable(struct clk_hw *hw)
{
struct k210_clk *kclk = to_k210_clk(hw);
struct k210_sysclk *ksc = kclk->ksc;
struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id];
unsigned long flags;
u32 reg;
if (!cfg->gate_reg)
return 0;
spin_lock_irqsave(&ksc->clk_lock, flags);
reg = readl(ksc->regs + cfg->gate_reg);
reg |= BIT(cfg->gate_bit);
writel(reg, ksc->regs + cfg->gate_reg);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
return 0;
}
static void k210_clk_disable(struct clk_hw *hw)
{
struct k210_clk *kclk = to_k210_clk(hw);
struct k210_sysclk *ksc = kclk->ksc;
struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id];
unsigned long flags;
u32 reg;
if (!cfg->gate_reg)
return;
spin_lock_irqsave(&ksc->clk_lock, flags);
reg = readl(ksc->regs + cfg->gate_reg);
reg &= ~BIT(cfg->gate_bit);
writel(reg, ksc->regs + cfg->gate_reg);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
}
static int k210_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct k210_clk *kclk = to_k210_clk(hw);
struct k210_sysclk *ksc = kclk->ksc;
struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id];
unsigned long flags;
u32 reg;
spin_lock_irqsave(&ksc->clk_lock, flags);
reg = readl(ksc->regs + cfg->mux_reg);
if (index)
reg |= BIT(cfg->mux_bit);
else
reg &= ~BIT(cfg->mux_bit);
spin_unlock_irqrestore(&ksc->clk_lock, flags);
return 0;
}
static u8 k210_clk_get_parent(struct clk_hw *hw)
{
struct k210_clk *kclk = to_k210_clk(hw);
struct k210_sysclk *ksc = kclk->ksc;
struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id];
unsigned long flags;
u32 reg, idx;
spin_lock_irqsave(&ksc->clk_lock, flags);
reg = readl(ksc->regs + cfg->mux_reg);
idx = (reg & BIT(cfg->mux_bit)) ? 1 : 0;
spin_unlock_irqrestore(&ksc->clk_lock, flags);
return idx;
}
static unsigned long k210_clk_get_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct k210_clk *kclk = to_k210_clk(hw);
struct k210_sysclk *ksc = kclk->ksc;
struct k210_clk_cfg *cfg = &k210_clk_cfgs[kclk->id];
u32 reg, div_val;
if (!cfg->div_reg)
return parent_rate;
reg = readl(ksc->regs + cfg->div_reg);
div_val = (reg >> cfg->div_shift) & GENMASK(cfg->div_width - 1, 0);
switch (cfg->div_type) {
case K210_DIV_ONE_BASED:
return parent_rate / (div_val + 1);
case K210_DIV_DOUBLE_ONE_BASED:
return parent_rate / ((div_val + 1) * 2);
case K210_DIV_POWER_OF_TWO:
return parent_rate / (2UL << div_val);
case K210_DIV_NONE:
default:
return 0;
}
}
static const struct clk_ops k210_clk_mux_ops = {
.enable = k210_clk_enable,
.disable = k210_clk_disable,
.set_parent = k210_clk_set_parent,
.get_parent = k210_clk_get_parent,
.recalc_rate = k210_clk_get_rate,
};
static const struct clk_ops k210_clk_ops = {
.enable = k210_clk_enable,
.disable = k210_clk_disable,
.recalc_rate = k210_clk_get_rate,
};
static void __init k210_register_clk(struct device_node *np,
struct k210_sysclk *ksc, int id,
const struct clk_parent_data *parent_data,
int num_parents, unsigned long flags)
{
struct k210_clk *kclk = &ksc->clks[id];
struct clk_init_data init = {};
int ret;
init.name = k210_clk_cfgs[id].name;
init.flags = flags;
init.parent_data = parent_data;
init.num_parents = num_parents;
if (num_parents > 1)
init.ops = &k210_clk_mux_ops;
else
init.ops = &k210_clk_ops;
kclk->id = id;
kclk->ksc = ksc;
kclk->hw.init = &init;
ret = of_clk_hw_register(np, &kclk->hw);
if (ret) {
pr_err("%pOFP: register clock %s failed\n",
np, k210_clk_cfgs[id].name);
kclk->id = -1;
}
}
/*
* All muxed clocks have IN0 and PLL0 as parents.
*/
static inline void __init k210_register_mux_clk(struct device_node *np,
struct k210_sysclk *ksc, int id)
{
const struct clk_parent_data parent_data[2] = {
{ /* .index = 0 for in0 */ },
{ .hw = &ksc->plls[K210_PLL0].hw }
};
k210_register_clk(np, ksc, id, parent_data, 2, 0);
}
static inline void __init k210_register_in0_child(struct device_node *np,
struct k210_sysclk *ksc, int id)
{
const struct clk_parent_data parent_data = {
/* .index = 0 for in0 */
};
k210_register_clk(np, ksc, id, &parent_data, 1, 0);
}
static inline void __init k210_register_pll_child(struct device_node *np,
struct k210_sysclk *ksc, int id,
enum k210_pll_id pllid,
unsigned long flags)
{
const struct clk_parent_data parent_data = {
.hw = &ksc->plls[pllid].hw,
};
k210_register_clk(np, ksc, id, &parent_data, 1, flags);
}
static inline void __init k210_register_aclk_child(struct device_node *np,
struct k210_sysclk *ksc, int id,
unsigned long flags)
{
const struct clk_parent_data parent_data = {
.hw = &ksc->aclk,
};
k210_register_clk(np, ksc, id, &parent_data, 1, flags);
}
static inline void __init k210_register_clk_child(struct device_node *np,
struct k210_sysclk *ksc, int id,
int parent_id)
{
const struct clk_parent_data parent_data = {
.hw = &ksc->clks[parent_id].hw,
};
k210_register_clk(np, ksc, id, &parent_data, 1, 0);
}
static struct clk_hw *k210_clk_hw_onecell_get(struct of_phandle_args *clkspec,
void *data)
{
struct k210_sysclk *ksc = data;
unsigned int idx = clkspec->args[0];
if (idx >= K210_NUM_CLKS)
return ERR_PTR(-EINVAL);
return &ksc->clks[idx].hw;
}
static void __init k210_clk_init(struct device_node *np)
{
struct device_node *sysctl_np;
struct k210_sysclk *ksc;
int i, ret;
ksc = kzalloc(sizeof(*ksc), GFP_KERNEL);
if (!ksc)
return;
spin_lock_init(&ksc->clk_lock);
sysctl_np = of_get_parent(np);
ksc->regs = of_iomap(sysctl_np, 0);
of_node_put(sysctl_np);
if (!ksc->regs) {
pr_err("%pOFP: failed to map registers\n", np);
return;
}
ret = k210_register_plls(np, ksc);
if (ret)
return;
ret = k210_register_aclk(np, ksc);
if (ret)
return;
/*
* Critical clocks: there are no consumers of the SRAM clocks,
* including the AI clock for the third SRAM bank. The CPU clock
* is only referenced by the uarths serial device and so would be
* disabled if the serial console is disabled to switch to another
* console. Mark all these clocks as critical so that they are never
* disabled by the core clock management.
*/
k210_register_aclk_child(np, ksc, K210_CLK_CPU, CLK_IS_CRITICAL);
k210_register_aclk_child(np, ksc, K210_CLK_SRAM0, CLK_IS_CRITICAL);
k210_register_aclk_child(np, ksc, K210_CLK_SRAM1, CLK_IS_CRITICAL);
k210_register_pll_child(np, ksc, K210_CLK_AI, K210_PLL1,
CLK_IS_CRITICAL);
/* Clocks with aclk as source */
k210_register_aclk_child(np, ksc, K210_CLK_DMA, 0);
k210_register_aclk_child(np, ksc, K210_CLK_FFT, 0);
k210_register_aclk_child(np, ksc, K210_CLK_ROM, 0);
k210_register_aclk_child(np, ksc, K210_CLK_DVP, 0);
k210_register_aclk_child(np, ksc, K210_CLK_APB0, 0);
k210_register_aclk_child(np, ksc, K210_CLK_APB1, 0);
k210_register_aclk_child(np, ksc, K210_CLK_APB2, 0);
/* Clocks with PLL0 as source */
k210_register_pll_child(np, ksc, K210_CLK_SPI0, K210_PLL0, 0);
k210_register_pll_child(np, ksc, K210_CLK_SPI1, K210_PLL0, 0);
k210_register_pll_child(np, ksc, K210_CLK_SPI2, K210_PLL0, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2C0, K210_PLL0, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2C1, K210_PLL0, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2C2, K210_PLL0, 0);
/* Clocks with PLL2 as source */
k210_register_pll_child(np, ksc, K210_CLK_I2S0, K210_PLL2, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2S1, K210_PLL2, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2S2, K210_PLL2, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2S0_M, K210_PLL2, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2S1_M, K210_PLL2, 0);
k210_register_pll_child(np, ksc, K210_CLK_I2S2_M, K210_PLL2, 0);
/* Clocks with IN0 as source */
k210_register_in0_child(np, ksc, K210_CLK_WDT0);
k210_register_in0_child(np, ksc, K210_CLK_WDT1);
k210_register_in0_child(np, ksc, K210_CLK_RTC);
/* Clocks with APB0 as source */
k210_register_clk_child(np, ksc, K210_CLK_GPIO, K210_CLK_APB0);
k210_register_clk_child(np, ksc, K210_CLK_UART1, K210_CLK_APB0);
k210_register_clk_child(np, ksc, K210_CLK_UART2, K210_CLK_APB0);
k210_register_clk_child(np, ksc, K210_CLK_UART3, K210_CLK_APB0);
k210_register_clk_child(np, ksc, K210_CLK_FPIOA, K210_CLK_APB0);
k210_register_clk_child(np, ksc, K210_CLK_SHA, K210_CLK_APB0);
/* Clocks with APB1 as source */
k210_register_clk_child(np, ksc, K210_CLK_AES, K210_CLK_APB1);
k210_register_clk_child(np, ksc, K210_CLK_OTP, K210_CLK_APB1);
/* Mux clocks with in0 or pll0 as source */
k210_register_mux_clk(np, ksc, K210_CLK_SPI3);
k210_register_mux_clk(np, ksc, K210_CLK_TIMER0);
k210_register_mux_clk(np, ksc, K210_CLK_TIMER1);
k210_register_mux_clk(np, ksc, K210_CLK_TIMER2);
/* Check for registration errors */
for (i = 0; i < K210_NUM_CLKS; i++) {
if (ksc->clks[i].id != i)
return;
}
ret = of_clk_add_hw_provider(np, k210_clk_hw_onecell_get, ksc);
if (ret) {
pr_err("%pOFP: add clock provider failed %d\n", np, ret);
return;
}
pr_info("%pOFP: CPU running at %lu MHz\n",
np, clk_hw_get_rate(&ksc->clks[K210_CLK_CPU].hw) / 1000000);
}
CLK_OF_DECLARE(k210_clk, "canaan,k210-clk", k210_clk_init);
/*
* Enable PLL1 to be able to use the AI SRAM.
*/
void __init k210_clk_early_init(void __iomem *regs)
{
struct k210_pll pll1;
/* Make sure ACLK selector is set to PLL0 */
k210_aclk_set_selector(regs, 1);
/* Startup PLL1 to enable the aisram bank for general memory use */
k210_init_pll(regs, K210_PLL1, &pll1);
k210_pll_enable_hw(regs, &pll1);
}