2005-04-17 06:20:36 +08:00
|
|
|
/**
|
|
|
|
* @file cpu_buffer.c
|
|
|
|
*
|
|
|
|
* @remark Copyright 2002 OProfile authors
|
|
|
|
* @remark Read the file COPYING
|
|
|
|
*
|
|
|
|
* @author John Levon <levon@movementarian.org>
|
|
|
|
*
|
|
|
|
* Each CPU has a local buffer that stores PC value/event
|
|
|
|
* pairs. We also log context switches when we notice them.
|
|
|
|
* Eventually each CPU's buffer is processed into the global
|
|
|
|
* event buffer by sync_buffer().
|
|
|
|
*
|
|
|
|
* We use a local buffer for two reasons: an NMI or similar
|
|
|
|
* interrupt cannot synchronise, and high sampling rates
|
|
|
|
* would lead to catastrophic global synchronisation if
|
|
|
|
* a global buffer was used.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/oprofile.h>
|
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
|
|
|
|
#include "event_buffer.h"
|
|
|
|
#include "cpu_buffer.h"
|
|
|
|
#include "buffer_sync.h"
|
|
|
|
#include "oprof.h"
|
|
|
|
|
|
|
|
struct oprofile_cpu_buffer cpu_buffer[NR_CPUS] __cacheline_aligned;
|
|
|
|
|
|
|
|
static void wq_sync_buffer(void *);
|
|
|
|
|
|
|
|
#define DEFAULT_TIMER_EXPIRE (HZ / 10)
|
|
|
|
static int work_enabled;
|
|
|
|
|
|
|
|
void free_cpu_buffers(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
2006-03-23 19:01:05 +08:00
|
|
|
for_each_online_cpu(i)
|
2005-04-17 06:20:36 +08:00
|
|
|
vfree(cpu_buffer[i].buffer);
|
|
|
|
}
|
2005-07-28 02:46:09 +08:00
|
|
|
|
2005-04-17 06:20:36 +08:00
|
|
|
int alloc_cpu_buffers(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
unsigned long buffer_size = fs_cpu_buffer_size;
|
|
|
|
|
|
|
|
for_each_online_cpu(i) {
|
|
|
|
struct oprofile_cpu_buffer * b = &cpu_buffer[i];
|
|
|
|
|
2006-01-08 17:03:21 +08:00
|
|
|
b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
|
|
|
|
cpu_to_node(i));
|
2005-04-17 06:20:36 +08:00
|
|
|
if (!b->buffer)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
b->last_task = NULL;
|
|
|
|
b->last_is_kernel = -1;
|
|
|
|
b->tracing = 0;
|
|
|
|
b->buffer_size = buffer_size;
|
|
|
|
b->tail_pos = 0;
|
|
|
|
b->head_pos = 0;
|
|
|
|
b->sample_received = 0;
|
|
|
|
b->sample_lost_overflow = 0;
|
|
|
|
b->cpu = i;
|
|
|
|
INIT_WORK(&b->work, wq_sync_buffer, b);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
free_cpu_buffers();
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
void start_cpu_work(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
work_enabled = 1;
|
|
|
|
|
|
|
|
for_each_online_cpu(i) {
|
|
|
|
struct oprofile_cpu_buffer * b = &cpu_buffer[i];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Spread the work by 1 jiffy per cpu so they dont all
|
|
|
|
* fire at once.
|
|
|
|
*/
|
|
|
|
schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void end_cpu_work(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
work_enabled = 0;
|
|
|
|
|
|
|
|
for_each_online_cpu(i) {
|
|
|
|
struct oprofile_cpu_buffer * b = &cpu_buffer[i];
|
|
|
|
|
|
|
|
cancel_delayed_work(&b->work);
|
|
|
|
}
|
|
|
|
|
|
|
|
flush_scheduled_work();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Resets the cpu buffer to a sane state. */
|
|
|
|
void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf)
|
|
|
|
{
|
|
|
|
/* reset these to invalid values; the next sample
|
|
|
|
* collected will populate the buffer with proper
|
|
|
|
* values to initialize the buffer
|
|
|
|
*/
|
|
|
|
cpu_buf->last_is_kernel = -1;
|
|
|
|
cpu_buf->last_task = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* compute number of available slots in cpu_buffer queue */
|
|
|
|
static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b)
|
|
|
|
{
|
|
|
|
unsigned long head = b->head_pos;
|
|
|
|
unsigned long tail = b->tail_pos;
|
|
|
|
|
|
|
|
if (tail > head)
|
|
|
|
return (tail - head) - 1;
|
|
|
|
|
|
|
|
return tail + (b->buffer_size - head) - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void increment_head(struct oprofile_cpu_buffer * b)
|
|
|
|
{
|
|
|
|
unsigned long new_head = b->head_pos + 1;
|
|
|
|
|
|
|
|
/* Ensure anything written to the slot before we
|
|
|
|
* increment is visible */
|
|
|
|
wmb();
|
|
|
|
|
|
|
|
if (new_head < b->buffer_size)
|
|
|
|
b->head_pos = new_head;
|
|
|
|
else
|
|
|
|
b->head_pos = 0;
|
|
|
|
}
|
|
|
|
|
2005-07-28 02:46:09 +08:00
|
|
|
static inline void
|
2005-04-17 06:20:36 +08:00
|
|
|
add_sample(struct oprofile_cpu_buffer * cpu_buf,
|
|
|
|
unsigned long pc, unsigned long event)
|
|
|
|
{
|
|
|
|
struct op_sample * entry = &cpu_buf->buffer[cpu_buf->head_pos];
|
|
|
|
entry->eip = pc;
|
|
|
|
entry->event = event;
|
|
|
|
increment_head(cpu_buf);
|
|
|
|
}
|
|
|
|
|
2005-07-28 02:46:09 +08:00
|
|
|
static inline void
|
2005-04-17 06:20:36 +08:00
|
|
|
add_code(struct oprofile_cpu_buffer * buffer, unsigned long value)
|
|
|
|
{
|
|
|
|
add_sample(buffer, ESCAPE_CODE, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This must be safe from any context. It's safe writing here
|
|
|
|
* because of the head/tail separation of the writer and reader
|
|
|
|
* of the CPU buffer.
|
|
|
|
*
|
|
|
|
* is_kernel is needed because on some architectures you cannot
|
|
|
|
* tell if you are in kernel or user space simply by looking at
|
|
|
|
* pc. We tag this in the buffer by generating kernel enter/exit
|
|
|
|
* events whenever is_kernel changes
|
|
|
|
*/
|
|
|
|
static int log_sample(struct oprofile_cpu_buffer * cpu_buf, unsigned long pc,
|
|
|
|
int is_kernel, unsigned long event)
|
|
|
|
{
|
|
|
|
struct task_struct * task;
|
|
|
|
|
|
|
|
cpu_buf->sample_received++;
|
|
|
|
|
|
|
|
if (nr_available_slots(cpu_buf) < 3) {
|
|
|
|
cpu_buf->sample_lost_overflow++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
is_kernel = !!is_kernel;
|
|
|
|
|
|
|
|
task = current;
|
|
|
|
|
|
|
|
/* notice a switch from user->kernel or vice versa */
|
|
|
|
if (cpu_buf->last_is_kernel != is_kernel) {
|
|
|
|
cpu_buf->last_is_kernel = is_kernel;
|
|
|
|
add_code(cpu_buf, is_kernel);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* notice a task switch */
|
|
|
|
if (cpu_buf->last_task != task) {
|
|
|
|
cpu_buf->last_task = task;
|
|
|
|
add_code(cpu_buf, (unsigned long)task);
|
|
|
|
}
|
|
|
|
|
|
|
|
add_sample(cpu_buf, pc, event);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf)
|
|
|
|
{
|
|
|
|
if (nr_available_slots(cpu_buf) < 4) {
|
|
|
|
cpu_buf->sample_lost_overflow++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
add_code(cpu_buf, CPU_TRACE_BEGIN);
|
|
|
|
cpu_buf->tracing = 1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)
|
|
|
|
{
|
|
|
|
cpu_buf->tracing = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
|
|
|
|
{
|
|
|
|
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
|
|
|
|
unsigned long pc = profile_pc(regs);
|
|
|
|
int is_kernel = !user_mode(regs);
|
|
|
|
|
|
|
|
if (!backtrace_depth) {
|
|
|
|
log_sample(cpu_buf, pc, is_kernel, event);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!oprofile_begin_trace(cpu_buf))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* if log_sample() fail we can't backtrace since we lost the source
|
|
|
|
* of this event */
|
|
|
|
if (log_sample(cpu_buf, pc, is_kernel, event))
|
|
|
|
oprofile_ops.backtrace(regs, backtrace_depth);
|
|
|
|
oprofile_end_trace(cpu_buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
|
|
|
|
{
|
|
|
|
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
|
|
|
|
log_sample(cpu_buf, pc, is_kernel, event);
|
|
|
|
}
|
|
|
|
|
|
|
|
void oprofile_add_trace(unsigned long pc)
|
|
|
|
{
|
|
|
|
struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()];
|
|
|
|
|
|
|
|
if (!cpu_buf->tracing)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (nr_available_slots(cpu_buf) < 1) {
|
|
|
|
cpu_buf->tracing = 0;
|
|
|
|
cpu_buf->sample_lost_overflow++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* broken frame can give an eip with the same value as an escape code,
|
|
|
|
* abort the trace if we get it */
|
|
|
|
if (pc == ESCAPE_CODE) {
|
|
|
|
cpu_buf->tracing = 0;
|
|
|
|
cpu_buf->backtrace_aborted++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
add_sample(cpu_buf, pc, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This serves to avoid cpu buffer overflow, and makes sure
|
|
|
|
* the task mortuary progresses
|
|
|
|
*
|
|
|
|
* By using schedule_delayed_work_on and then schedule_delayed_work
|
|
|
|
* we guarantee this will stay on the correct cpu
|
|
|
|
*/
|
|
|
|
static void wq_sync_buffer(void * data)
|
|
|
|
{
|
|
|
|
struct oprofile_cpu_buffer * b = data;
|
|
|
|
if (b->cpu != smp_processor_id()) {
|
|
|
|
printk("WQ on CPU%d, prefer CPU%d\n",
|
|
|
|
smp_processor_id(), b->cpu);
|
|
|
|
}
|
|
|
|
sync_buffer(b->cpu);
|
|
|
|
|
|
|
|
/* don't re-add the work if we're shutting down */
|
|
|
|
if (work_enabled)
|
|
|
|
schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
|
|
|
|
}
|