174 lines
4.9 KiB
C
174 lines
4.9 KiB
C
|
/*
|
||
|
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/crc32.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/libfdt.h>
|
||
|
#include <linux/mm_types.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
#include <asm/fixmap.h>
|
||
|
#include <asm/kernel-pgtable.h>
|
||
|
#include <asm/memory.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/sections.h>
|
||
|
|
||
|
u64 __read_mostly module_alloc_base;
|
||
|
|
||
|
static __init u64 get_kaslr_seed(void *fdt)
|
||
|
{
|
||
|
int node, len;
|
||
|
u64 *prop;
|
||
|
u64 ret;
|
||
|
|
||
|
node = fdt_path_offset(fdt, "/chosen");
|
||
|
if (node < 0)
|
||
|
return 0;
|
||
|
|
||
|
prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
|
||
|
if (!prop || len != sizeof(u64))
|
||
|
return 0;
|
||
|
|
||
|
ret = fdt64_to_cpu(*prop);
|
||
|
*prop = 0;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static __init const u8 *get_cmdline(void *fdt)
|
||
|
{
|
||
|
static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
|
||
|
int node;
|
||
|
const u8 *prop;
|
||
|
|
||
|
node = fdt_path_offset(fdt, "/chosen");
|
||
|
if (node < 0)
|
||
|
goto out;
|
||
|
|
||
|
prop = fdt_getprop(fdt, node, "bootargs", NULL);
|
||
|
if (!prop)
|
||
|
goto out;
|
||
|
return prop;
|
||
|
}
|
||
|
out:
|
||
|
return default_cmdline;
|
||
|
}
|
||
|
|
||
|
extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
|
||
|
pgprot_t prot);
|
||
|
|
||
|
/*
|
||
|
* This routine will be executed with the kernel mapped at its default virtual
|
||
|
* address, and if it returns successfully, the kernel will be remapped, and
|
||
|
* start_kernel() will be executed from a randomized virtual offset. The
|
||
|
* relocation will result in all absolute references (e.g., static variables
|
||
|
* containing function pointers) to be reinitialized, and zero-initialized
|
||
|
* .bss variables will be reset to 0.
|
||
|
*/
|
||
|
u64 __init kaslr_early_init(u64 dt_phys)
|
||
|
{
|
||
|
void *fdt;
|
||
|
u64 seed, offset, mask, module_range;
|
||
|
const u8 *cmdline, *str;
|
||
|
int size;
|
||
|
|
||
|
/*
|
||
|
* Set a reasonable default for module_alloc_base in case
|
||
|
* we end up running with module randomization disabled.
|
||
|
*/
|
||
|
module_alloc_base = (u64)_etext - MODULES_VSIZE;
|
||
|
|
||
|
/*
|
||
|
* Try to map the FDT early. If this fails, we simply bail,
|
||
|
* and proceed with KASLR disabled. We will make another
|
||
|
* attempt at mapping the FDT in setup_machine()
|
||
|
*/
|
||
|
early_fixmap_init();
|
||
|
fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
|
||
|
if (!fdt)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Retrieve (and wipe) the seed from the FDT
|
||
|
*/
|
||
|
seed = get_kaslr_seed(fdt);
|
||
|
if (!seed)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Check if 'nokaslr' appears on the command line, and
|
||
|
* return 0 if that is the case.
|
||
|
*/
|
||
|
cmdline = get_cmdline(fdt);
|
||
|
str = strstr(cmdline, "nokaslr");
|
||
|
if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
|
||
|
* kernel image offset from the seed. Let's place the kernel in the
|
||
|
* lower half of the VMALLOC area (VA_BITS - 2).
|
||
|
* Even if we could randomize at page granularity for 16k and 64k pages,
|
||
|
* let's always round to 2 MB so we don't interfere with the ability to
|
||
|
* map using contiguous PTEs
|
||
|
*/
|
||
|
mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
|
||
|
offset = seed & mask;
|
||
|
|
||
|
/*
|
||
|
* The kernel Image should not extend across a 1GB/32MB/512MB alignment
|
||
|
* boundary (for 4KB/16KB/64KB granule kernels, respectively). If this
|
||
|
* happens, increase the KASLR offset by the size of the kernel image.
|
||
|
*/
|
||
|
if ((((u64)_text + offset) >> SWAPPER_TABLE_SHIFT) !=
|
||
|
(((u64)_end + offset) >> SWAPPER_TABLE_SHIFT))
|
||
|
offset = (offset + (u64)(_end - _text)) & mask;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_KASAN))
|
||
|
/*
|
||
|
* KASAN does not expect the module region to intersect the
|
||
|
* vmalloc region, since shadow memory is allocated for each
|
||
|
* module at load time, whereas the vmalloc region is shadowed
|
||
|
* by KASAN zero pages. So keep modules out of the vmalloc
|
||
|
* region if KASAN is enabled.
|
||
|
*/
|
||
|
return offset;
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
|
||
|
/*
|
||
|
* Randomize the module region independently from the core
|
||
|
* kernel. This prevents modules from leaking any information
|
||
|
* about the address of the kernel itself, but results in
|
||
|
* branches between modules and the core kernel that are
|
||
|
* resolved via PLTs. (Branches between modules will be
|
||
|
* resolved normally.)
|
||
|
*/
|
||
|
module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE;
|
||
|
module_alloc_base = VMALLOC_START;
|
||
|
} else {
|
||
|
/*
|
||
|
* Randomize the module region by setting module_alloc_base to
|
||
|
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
|
||
|
* _stext) . This guarantees that the resulting region still
|
||
|
* covers [_stext, _etext], and that all relative branches can
|
||
|
* be resolved without veneers.
|
||
|
*/
|
||
|
module_range = MODULES_VSIZE - (u64)(_etext - _stext);
|
||
|
module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
|
||
|
}
|
||
|
|
||
|
/* use the lower 21 bits to randomize the base of the module region */
|
||
|
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
|
||
|
module_alloc_base &= PAGE_MASK;
|
||
|
|
||
|
return offset;
|
||
|
}
|