OpenCloudOS-Kernel/arch/openrisc/kernel/setup.c

407 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* OpenRISC setup.c
*
* Linux architectural port borrowing liberally from similar works of
* others. All original copyrights apply as per the original source
* declaration.
*
* Modifications for the OpenRISC architecture:
* Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
* Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
*
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/init.h>
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 06:09:49 +08:00
#include <linux/memblock.h>
#include <linux/seq_file.h>
#include <linux/serial.h>
#include <linux/initrd.h>
#include <linux/of_fdt.h>
#include <linux/of.h>
#include <linux/device.h>
#include <asm/sections.h>
#include <asm/pgtable.h>
#include <asm/types.h>
#include <asm/setup.h>
#include <asm/io.h>
#include <asm/cpuinfo.h>
#include <asm/delay.h>
#include "vmlinux.h"
static void __init setup_memory(void)
{
unsigned long ram_start_pfn;
unsigned long ram_end_pfn;
phys_addr_t memory_start, memory_end;
struct memblock_region *region;
memory_end = memory_start = 0;
/* Find main memory where is the kernel, we assume its the only one */
for_each_memblock(memory, region) {
memory_start = region->base;
memory_end = region->base + region->size;
printk(KERN_INFO "%s: Memory: 0x%x-0x%x\n", __func__,
memory_start, memory_end);
}
if (!memory_end) {
panic("No memory!");
}
ram_start_pfn = PFN_UP(memory_start);
ram_end_pfn = PFN_DOWN(memblock_end_of_DRAM());
/* setup bootmem globals (we use no_bootmem, but mm still depends on this) */
min_low_pfn = ram_start_pfn;
max_low_pfn = ram_end_pfn;
max_pfn = ram_end_pfn;
/*
* initialize the boot-time allocator (with low memory only).
*
* This makes the memory from the end of the kernel to the end of
* RAM usable.
*/
memblock_reserve(__pa(_stext), _end - _stext);
early_init_fdt_reserve_self();
early_init_fdt_scan_reserved_mem();
memblock_dump_all();
}
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
struct cpuinfo_or1k cpuinfo_or1k[NR_CPUS];
static void print_cpuinfo(void)
{
unsigned long upr = mfspr(SPR_UPR);
unsigned long vr = mfspr(SPR_VR);
unsigned int version;
unsigned int revision;
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[smp_processor_id()];
version = (vr & SPR_VR_VER) >> 24;
revision = (vr & SPR_VR_REV);
printk(KERN_INFO "CPU: OpenRISC-%x (revision %d) @%d MHz\n",
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
version, revision, cpuinfo->clock_frequency / 1000000);
if (!(upr & SPR_UPR_UP)) {
printk(KERN_INFO
"-- no UPR register... unable to detect configuration\n");
return;
}
if (upr & SPR_UPR_DCP)
printk(KERN_INFO
"-- dcache: %4d bytes total, %2d bytes/line, %d way(s)\n",
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->dcache_size, cpuinfo->dcache_block_size,
cpuinfo->dcache_ways);
else
printk(KERN_INFO "-- dcache disabled\n");
if (upr & SPR_UPR_ICP)
printk(KERN_INFO
"-- icache: %4d bytes total, %2d bytes/line, %d way(s)\n",
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->icache_size, cpuinfo->icache_block_size,
cpuinfo->icache_ways);
else
printk(KERN_INFO "-- icache disabled\n");
if (upr & SPR_UPR_DMP)
printk(KERN_INFO "-- dmmu: %4d entries, %lu way(s)\n",
1 << ((mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTS) >> 2),
1 + (mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTW));
if (upr & SPR_UPR_IMP)
printk(KERN_INFO "-- immu: %4d entries, %lu way(s)\n",
1 << ((mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTS) >> 2),
1 + (mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTW));
printk(KERN_INFO "-- additional features:\n");
if (upr & SPR_UPR_DUP)
printk(KERN_INFO "-- debug unit\n");
if (upr & SPR_UPR_PCUP)
printk(KERN_INFO "-- performance counters\n");
if (upr & SPR_UPR_PMP)
printk(KERN_INFO "-- power management\n");
if (upr & SPR_UPR_PICP)
printk(KERN_INFO "-- PIC\n");
if (upr & SPR_UPR_TTP)
printk(KERN_INFO "-- timer\n");
if (upr & SPR_UPR_CUP)
printk(KERN_INFO "-- custom unit(s)\n");
}
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
static struct device_node *setup_find_cpu_node(int cpu)
{
u32 hwid;
struct device_node *cpun;
for_each_of_cpu_node(cpun) {
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
if (of_property_read_u32(cpun, "reg", &hwid))
continue;
if (hwid == cpu)
return cpun;
}
return NULL;
}
void __init setup_cpuinfo(void)
{
struct device_node *cpu;
unsigned long iccfgr, dccfgr;
unsigned long cache_set_size;
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
int cpu_id = smp_processor_id();
struct cpuinfo_or1k *cpuinfo = &cpuinfo_or1k[cpu_id];
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpu = setup_find_cpu_node(cpu_id);
if (!cpu)
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
panic("Couldn't find CPU%d in device tree...\n", cpu_id);
iccfgr = mfspr(SPR_ICCFGR);
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->icache_ways = 1 << (iccfgr & SPR_ICCFGR_NCW);
cache_set_size = 1 << ((iccfgr & SPR_ICCFGR_NCS) >> 3);
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->icache_block_size = 16 << ((iccfgr & SPR_ICCFGR_CBS) >> 7);
cpuinfo->icache_size =
cache_set_size * cpuinfo->icache_ways * cpuinfo->icache_block_size;
dccfgr = mfspr(SPR_DCCFGR);
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->dcache_ways = 1 << (dccfgr & SPR_DCCFGR_NCW);
cache_set_size = 1 << ((dccfgr & SPR_DCCFGR_NCS) >> 3);
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->dcache_block_size = 16 << ((dccfgr & SPR_DCCFGR_CBS) >> 7);
cpuinfo->dcache_size =
cache_set_size * cpuinfo->dcache_ways * cpuinfo->dcache_block_size;
if (of_property_read_u32(cpu, "clock-frequency",
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
&cpuinfo->clock_frequency)) {
printk(KERN_WARNING
"Device tree missing CPU 'clock-frequency' parameter."
"Assuming frequency 25MHZ"
"This is probably not what you want.");
}
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpuinfo->coreid = mfspr(SPR_COREID);
of_node_put(cpu);
print_cpuinfo();
}
/**
* or32_early_setup
*
* Handles the pointer to the device tree that this kernel is to use
* for establishing the available platform devices.
*
* Falls back on built-in device tree in case null pointer is passed.
*/
void __init or32_early_setup(void *fdt)
{
if (fdt)
pr_info("FDT at %p\n", fdt);
else {
fdt = __dtb_start;
pr_info("Compiled-in FDT at %p\n", fdt);
}
early_init_devtree(fdt);
}
static inline unsigned long extract_value_bits(unsigned long reg,
short bit_nr, short width)
{
return (reg >> bit_nr) & (0 << width);
}
static inline unsigned long extract_value(unsigned long reg, unsigned long mask)
{
while (!(mask & 0x1)) {
reg = reg >> 1;
mask = mask >> 1;
}
return mask & reg;
}
void __init detect_unit_config(unsigned long upr, unsigned long mask,
char *text, void (*func) (void))
{
if (text != NULL)
printk("%s", text);
if (upr & mask) {
if (func != NULL)
func();
else
printk("present\n");
} else
printk("not present\n");
}
/*
* calibrate_delay
*
* Lightweight calibrate_delay implementation that calculates loops_per_jiffy
* from the clock frequency passed in via the device tree
*
*/
void calibrate_delay(void)
{
const int *val;
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
struct device_node *cpu = setup_find_cpu_node(smp_processor_id());
val = of_get_property(cpu, "clock-frequency", NULL);
if (!val)
panic("no cpu 'clock-frequency' parameter in device tree");
loops_per_jiffy = *val / HZ;
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
loops_per_jiffy / (500000 / HZ),
(loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
}
void __init setup_arch(char **cmdline_p)
{
unflatten_and_copy_device_tree();
setup_cpuinfo();
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
#ifdef CONFIG_SMP
smp_init_cpus();
#endif
/* process 1's initial memory region is the kernel code/data */
init_mm.start_code = (unsigned long)_stext;
init_mm.end_code = (unsigned long)_etext;
init_mm.end_data = (unsigned long)_edata;
init_mm.brk = (unsigned long)_end;
#ifdef CONFIG_BLK_DEV_INITRD
initrd_start = (unsigned long)&__initrd_start;
initrd_end = (unsigned long)&__initrd_end;
if (initrd_start == initrd_end) {
initrd_start = 0;
initrd_end = 0;
}
initrd_below_start_ok = 1;
#endif
/* setup memblock allocator */
setup_memory();
/* paging_init() sets up the MMU and marks all pages as reserved */
paging_init();
#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
if (!conswitchp)
conswitchp = &dummy_con;
#endif
*cmdline_p = boot_command_line;
printk(KERN_INFO "OpenRISC Linux -- http://openrisc.io\n");
}
static int show_cpuinfo(struct seq_file *m, void *v)
{
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
unsigned int vr, cpucfgr;
unsigned int avr;
unsigned int version;
struct cpuinfo_or1k *cpuinfo = v;
vr = mfspr(SPR_VR);
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
cpucfgr = mfspr(SPR_CPUCFGR);
#ifdef CONFIG_SMP
seq_printf(m, "processor\t\t: %d\n", cpuinfo->coreid);
#endif
if (vr & SPR_VR_UVRP) {
vr = mfspr(SPR_VR2);
version = vr & SPR_VR2_VER;
avr = mfspr(SPR_AVR);
seq_printf(m, "cpu architecture\t: "
"OpenRISC 1000 (%d.%d-rev%d)\n",
(avr >> 24) & 0xff,
(avr >> 16) & 0xff,
(avr >> 8) & 0xff);
seq_printf(m, "cpu implementation id\t: 0x%x\n",
(vr & SPR_VR2_CPUID) >> 24);
seq_printf(m, "cpu version\t\t: 0x%x\n", version);
} else {
version = (vr & SPR_VR_VER) >> 24;
seq_printf(m, "cpu\t\t\t: OpenRISC-%x\n", version);
seq_printf(m, "revision\t\t: %d\n", vr & SPR_VR_REV);
}
seq_printf(m, "frequency\t\t: %ld\n", loops_per_jiffy * HZ);
seq_printf(m, "dcache size\t\t: %d bytes\n", cpuinfo->dcache_size);
seq_printf(m, "dcache block size\t: %d bytes\n",
cpuinfo->dcache_block_size);
seq_printf(m, "dcache ways\t\t: %d\n", cpuinfo->dcache_ways);
seq_printf(m, "icache size\t\t: %d bytes\n", cpuinfo->icache_size);
seq_printf(m, "icache block size\t: %d bytes\n",
cpuinfo->icache_block_size);
seq_printf(m, "icache ways\t\t: %d\n", cpuinfo->icache_ways);
seq_printf(m, "immu\t\t\t: %d entries, %lu ways\n",
1 << ((mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTS) >> 2),
1 + (mfspr(SPR_DMMUCFGR) & SPR_DMMUCFGR_NTW));
seq_printf(m, "dmmu\t\t\t: %d entries, %lu ways\n",
1 << ((mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTS) >> 2),
1 + (mfspr(SPR_IMMUCFGR) & SPR_IMMUCFGR_NTW));
seq_printf(m, "bogomips\t\t: %lu.%02lu\n",
(loops_per_jiffy * HZ) / 500000,
((loops_per_jiffy * HZ) / 5000) % 100);
seq_puts(m, "features\t\t: ");
seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OB32S ? "orbis32" : "");
seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OB64S ? "orbis64" : "");
seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OF32S ? "orfpx32" : "");
seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OF64S ? "orfpx64" : "");
seq_printf(m, "%s ", cpucfgr & SPR_CPUCFGR_OV64S ? "orvdx64" : "");
seq_puts(m, "\n");
seq_puts(m, "\n");
return 0;
}
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
static void *c_start(struct seq_file *m, loff_t *pos)
{
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
*pos = cpumask_next(*pos - 1, cpu_online_mask);
if ((*pos) < nr_cpu_ids)
return &cpuinfo_or1k[*pos];
return NULL;
}
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
openrisc: initial SMP support This patch introduces the SMP support for the OpenRISC architecture. The SMP architecture requires cores which have multi-core features which have been introduced a few years back including: - New SPRS SPR_COREID SPR_NUMCORES - Shadow SPRs - Atomic Instructions - Cache Coherency - A wired in IPI controller This patch adds all of the SMP specific changes to core infrastructure, it looks big but it needs to go all together as its hard to split this one up. Boot loader spinning of second cpu is not supported yet, it's assumed that Linux is booted straight after cpu reset. The bulk of these changes are trivial changes to refactor to use per cpu data structures throughout. The addition of the smp.c and changes in time.c are the changes. Some specific notes: MM changes ---------- The reason why this is created as an array, and not with DEFINE_PER_CPU is that doing it this way, we'll save a load in the tlb-miss handler (the load from __per_cpu_offset). TLB Flush --------- The SMP implementation of flush_tlb_* works by sending out a function-call IPI to all the non-local cpus by using the generic on_each_cpu() function. Currently, all flush_tlb_* functions will result in a flush_tlb_all(), which has always been the behaviour in the UP case. CPU INFO -------- This creates a per cpu cpuinfo struct and fills it out accordingly for each activated cpu. show_cpuinfo is also updated to reflect new version information in later versions of the spec. SMP API ------- This imitates the arm64 implementation by having a smp_cross_call callback that can be set by set_smp_cross_call to initiate an IPI and a handle_IPI function that is expected to be called from an IPI irqchip driver. Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> [shorne@gmail.com: added cpu stop, checkpatch fixes, wrote commit message] Signed-off-by: Stafford Horne <shorne@gmail.com>
2014-05-12 02:49:34 +08:00
(*pos)++;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};