OpenCloudOS-Kernel/arch/x86/math-emu/reg_u_div.S

475 lines
12 KiB
ArmAsm
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
.file "reg_u_div.S"
/*---------------------------------------------------------------------------+
| reg_u_div.S |
| |
| Divide one FPU_REG by another and put the result in a destination FPU_REG.|
| |
| Copyright (C) 1992,1993,1995,1997 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
| E-mail billm@suburbia.net |
| |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| Call from C as: |
| int FPU_u_div(FPU_REG *a, FPU_REG *b, FPU_REG *dest, |
| unsigned int control_word, char *sign) |
| |
| Does not compute the destination exponent, but does adjust it. |
| |
| Return value is the tag of the answer, or-ed with FPU_Exception if |
| one was raised, or -1 on internal error. |
+---------------------------------------------------------------------------*/
#include "exception.h"
#include "fpu_emu.h"
#include "control_w.h"
/* #define dSIGL(x) (x) */
/* #define dSIGH(x) 4(x) */
#ifndef NON_REENTRANT_FPU
/*
Local storage on the stack:
Result: FPU_accum_3:FPU_accum_2:FPU_accum_1:FPU_accum_0
Overflow flag: ovfl_flag
*/
#define FPU_accum_3 -4(%ebp)
#define FPU_accum_2 -8(%ebp)
#define FPU_accum_1 -12(%ebp)
#define FPU_accum_0 -16(%ebp)
#define FPU_result_1 -20(%ebp)
#define FPU_result_2 -24(%ebp)
#define FPU_ovfl_flag -28(%ebp)
#else
.data
/*
Local storage in a static area:
Result: FPU_accum_3:FPU_accum_2:FPU_accum_1:FPU_accum_0
Overflow flag: ovfl_flag
*/
.align 4,0
FPU_accum_3:
.long 0
FPU_accum_2:
.long 0
FPU_accum_1:
.long 0
FPU_accum_0:
.long 0
FPU_result_1:
.long 0
FPU_result_2:
.long 0
FPU_ovfl_flag:
.byte 0
#endif /* NON_REENTRANT_FPU */
#define REGA PARAM1
#define REGB PARAM2
#define DEST PARAM3
.text
SYM_FUNC_START(FPU_u_div)
pushl %ebp
movl %esp,%ebp
#ifndef NON_REENTRANT_FPU
subl $28,%esp
#endif /* NON_REENTRANT_FPU */
pushl %esi
pushl %edi
pushl %ebx
movl REGA,%esi
movl REGB,%ebx
movl DEST,%edi
movswl EXP(%esi),%edx
movswl EXP(%ebx),%eax
subl %eax,%edx
addl EXP_BIAS,%edx
/* A denormal and a large number can cause an exponent underflow */
cmpl EXP_WAY_UNDER,%edx
jg xExp_not_underflow
/* Set to a really low value allow correct handling */
movl EXP_WAY_UNDER,%edx
xExp_not_underflow:
movw %dx,EXP(%edi)
#ifdef PARANOID
/* testl $0x80000000, SIGH(%esi) // Dividend */
/* je L_bugged */
testl $0x80000000, SIGH(%ebx) /* Divisor */
je L_bugged
#endif /* PARANOID */
/* Check if the divisor can be treated as having just 32 bits */
cmpl $0,SIGL(%ebx)
jnz L_Full_Division /* Can't do a quick divide */
/* We should be able to zip through the division here */
movl SIGH(%ebx),%ecx /* The divisor */
movl SIGH(%esi),%edx /* Dividend */
movl SIGL(%esi),%eax /* Dividend */
cmpl %ecx,%edx
setaeb FPU_ovfl_flag /* Keep a record */
jb L_no_adjust
subl %ecx,%edx /* Prevent the overflow */
L_no_adjust:
/* Divide the 64 bit number by the 32 bit denominator */
divl %ecx
movl %eax,FPU_result_2
/* Work on the remainder of the first division */
xorl %eax,%eax
divl %ecx
movl %eax,FPU_result_1
/* Work on the remainder of the 64 bit division */
xorl %eax,%eax
divl %ecx
testb $255,FPU_ovfl_flag /* was the num > denom ? */
je L_no_overflow
/* Do the shifting here */
/* increase the exponent */
incw EXP(%edi)
/* shift the mantissa right one bit */
stc /* To set the ms bit */
rcrl FPU_result_2
rcrl FPU_result_1
rcrl %eax
L_no_overflow:
jmp LRound_precision /* Do the rounding as required */
/*---------------------------------------------------------------------------+
| Divide: Return arg1/arg2 to arg3. |
| |
| This routine does not use the exponents of arg1 and arg2, but does |
| adjust the exponent of arg3. |
| |
| The maximum returned value is (ignoring exponents) |
| .ffffffff ffffffff |
| ------------------ = 1.ffffffff fffffffe |
| .80000000 00000000 |
| and the minimum is |
| .80000000 00000000 |
| ------------------ = .80000000 00000001 (rounded) |
| .ffffffff ffffffff |
| |
+---------------------------------------------------------------------------*/
L_Full_Division:
/* Save extended dividend in local register */
movl SIGL(%esi),%eax
movl %eax,FPU_accum_2
movl SIGH(%esi),%eax
movl %eax,FPU_accum_3
xorl %eax,%eax
movl %eax,FPU_accum_1 /* zero the extension */
movl %eax,FPU_accum_0 /* zero the extension */
movl SIGL(%esi),%eax /* Get the current num */
movl SIGH(%esi),%edx
/*----------------------------------------------------------------------*/
/* Initialization done.
Do the first 32 bits. */
movb $0,FPU_ovfl_flag
cmpl SIGH(%ebx),%edx /* Test for imminent overflow */
jb LLess_than_1
ja LGreater_than_1
cmpl SIGL(%ebx),%eax
jb LLess_than_1
LGreater_than_1:
/* The dividend is greater or equal, would cause overflow */
setaeb FPU_ovfl_flag /* Keep a record */
subl SIGL(%ebx),%eax
sbbl SIGH(%ebx),%edx /* Prevent the overflow */
movl %eax,FPU_accum_2
movl %edx,FPU_accum_3
LLess_than_1:
/* At this point, we have a dividend < divisor, with a record of
adjustment in FPU_ovfl_flag */
/* We will divide by a number which is too large */
movl SIGH(%ebx),%ecx
addl $1,%ecx
jnc LFirst_div_not_1
/* here we need to divide by 100000000h,
i.e., no division at all.. */
mov %edx,%eax
jmp LFirst_div_done
LFirst_div_not_1:
divl %ecx /* Divide the numerator by the augmented
denom ms dw */
LFirst_div_done:
movl %eax,FPU_result_2 /* Put the result in the answer */
mull SIGH(%ebx) /* mul by the ms dw of the denom */
subl %eax,FPU_accum_2 /* Subtract from the num local reg */
sbbl %edx,FPU_accum_3
movl FPU_result_2,%eax /* Get the result back */
mull SIGL(%ebx) /* now mul the ls dw of the denom */
subl %eax,FPU_accum_1 /* Subtract from the num local reg */
sbbl %edx,FPU_accum_2
sbbl $0,FPU_accum_3
je LDo_2nd_32_bits /* Must check for non-zero result here */
#ifdef PARANOID
jb L_bugged_1
#endif /* PARANOID */
/* need to subtract another once of the denom */
incl FPU_result_2 /* Correct the answer */
movl SIGL(%ebx),%eax
movl SIGH(%ebx),%edx
subl %eax,FPU_accum_1 /* Subtract from the num local reg */
sbbl %edx,FPU_accum_2
#ifdef PARANOID
sbbl $0,FPU_accum_3
jne L_bugged_1 /* Must check for non-zero result here */
#endif /* PARANOID */
/*----------------------------------------------------------------------*/
/* Half of the main problem is done, there is just a reduced numerator
to handle now.
Work with the second 32 bits, FPU_accum_0 not used from now on */
LDo_2nd_32_bits:
movl FPU_accum_2,%edx /* get the reduced num */
movl FPU_accum_1,%eax
/* need to check for possible subsequent overflow */
cmpl SIGH(%ebx),%edx
jb LDo_2nd_div
ja LPrevent_2nd_overflow
cmpl SIGL(%ebx),%eax
jb LDo_2nd_div
LPrevent_2nd_overflow:
/* The numerator is greater or equal, would cause overflow */
/* prevent overflow */
subl SIGL(%ebx),%eax
sbbl SIGH(%ebx),%edx
movl %edx,FPU_accum_2
movl %eax,FPU_accum_1
incl FPU_result_2 /* Reflect the subtraction in the answer */
#ifdef PARANOID
je L_bugged_2 /* Can't bump the result to 1.0 */
#endif /* PARANOID */
LDo_2nd_div:
cmpl $0,%ecx /* augmented denom msw */
jnz LSecond_div_not_1
/* %ecx == 0, we are dividing by 1.0 */
mov %edx,%eax
jmp LSecond_div_done
LSecond_div_not_1:
divl %ecx /* Divide the numerator by the denom ms dw */
LSecond_div_done:
movl %eax,FPU_result_1 /* Put the result in the answer */
mull SIGH(%ebx) /* mul by the ms dw of the denom */
subl %eax,FPU_accum_1 /* Subtract from the num local reg */
sbbl %edx,FPU_accum_2
#ifdef PARANOID
jc L_bugged_2
#endif /* PARANOID */
movl FPU_result_1,%eax /* Get the result back */
mull SIGL(%ebx) /* now mul the ls dw of the denom */
subl %eax,FPU_accum_0 /* Subtract from the num local reg */
sbbl %edx,FPU_accum_1 /* Subtract from the num local reg */
sbbl $0,FPU_accum_2
#ifdef PARANOID
jc L_bugged_2
#endif /* PARANOID */
jz LDo_3rd_32_bits
#ifdef PARANOID
cmpl $1,FPU_accum_2
jne L_bugged_2
#endif /* PARANOID */
/* need to subtract another once of the denom */
movl SIGL(%ebx),%eax
movl SIGH(%ebx),%edx
subl %eax,FPU_accum_0 /* Subtract from the num local reg */
sbbl %edx,FPU_accum_1
sbbl $0,FPU_accum_2
#ifdef PARANOID
jc L_bugged_2
jne L_bugged_2
#endif /* PARANOID */
addl $1,FPU_result_1 /* Correct the answer */
adcl $0,FPU_result_2
#ifdef PARANOID
jc L_bugged_2 /* Must check for non-zero result here */
#endif /* PARANOID */
/*----------------------------------------------------------------------*/
/* The division is essentially finished here, we just need to perform
tidying operations.
Deal with the 3rd 32 bits */
LDo_3rd_32_bits:
movl FPU_accum_1,%edx /* get the reduced num */
movl FPU_accum_0,%eax
/* need to check for possible subsequent overflow */
cmpl SIGH(%ebx),%edx /* denom */
jb LRound_prep
ja LPrevent_3rd_overflow
cmpl SIGL(%ebx),%eax /* denom */
jb LRound_prep
LPrevent_3rd_overflow:
/* prevent overflow */
subl SIGL(%ebx),%eax
sbbl SIGH(%ebx),%edx
movl %edx,FPU_accum_1
movl %eax,FPU_accum_0
addl $1,FPU_result_1 /* Reflect the subtraction in the answer */
adcl $0,FPU_result_2
jne LRound_prep
jnc LRound_prep
/* This is a tricky spot, there is an overflow of the answer */
movb $255,FPU_ovfl_flag /* Overflow -> 1.000 */
LRound_prep:
/*
* Prepare for rounding.
* To test for rounding, we just need to compare 2*accum with the
* denom.
*/
movl FPU_accum_0,%ecx
movl FPU_accum_1,%edx
movl %ecx,%eax
orl %edx,%eax
jz LRound_ovfl /* The accumulator contains zero. */
/* Multiply by 2 */
clc
rcll $1,%ecx
rcll $1,%edx
jc LRound_large /* No need to compare, denom smaller */
subl SIGL(%ebx),%ecx
sbbl SIGH(%ebx),%edx
jnc LRound_not_small
movl $0x70000000,%eax /* Denom was larger */
jmp LRound_ovfl
LRound_not_small:
jnz LRound_large
movl $0x80000000,%eax /* Remainder was exactly 1/2 denom */
jmp LRound_ovfl
LRound_large:
movl $0xff000000,%eax /* Denom was smaller */
LRound_ovfl:
/* We are now ready to deal with rounding, but first we must get
the bits properly aligned */
testb $255,FPU_ovfl_flag /* was the num > denom ? */
je LRound_precision
incw EXP(%edi)
/* shift the mantissa right one bit */
stc /* Will set the ms bit */
rcrl FPU_result_2
rcrl FPU_result_1
rcrl %eax
/* Round the result as required */
LRound_precision:
decw EXP(%edi) /* binary point between 1st & 2nd bits */
movl %eax,%edx
movl FPU_result_1,%ebx
movl FPU_result_2,%eax
jmp fpu_reg_round
#ifdef PARANOID
/* The logic is wrong if we got here */
L_bugged:
pushl EX_INTERNAL|0x202
call EXCEPTION
pop %ebx
jmp L_exit
L_bugged_1:
pushl EX_INTERNAL|0x203
call EXCEPTION
pop %ebx
jmp L_exit
L_bugged_2:
pushl EX_INTERNAL|0x204
call EXCEPTION
pop %ebx
jmp L_exit
L_exit:
movl $-1,%eax
popl %ebx
popl %edi
popl %esi
leave
RET
#endif /* PARANOID */
SYM_FUNC_END(FPU_u_div)