OpenCloudOS-Kernel/arch/tile/Makefile

78 lines
2.4 KiB
Makefile
Raw Normal View History

#
# This file is subject to the terms and conditions of the GNU General Public
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
# This file is included by the global makefile so that you can add your own
# architecture-specific flags and dependencies. Remember to do have actions
# for "archclean" and "archdep" for cleaning up and making dependencies for
# this architecture
# If building with TILERA_ROOT set (i.e. using the Tilera Multicore
# Development Environment) we can set CROSS_COMPILE based on that.
# If we're not cross-compiling, make sure we're on the right architecture.
# Only bother to test for a few common targets, to avoid useless errors.
ifeq ($(CROSS_COMPILE),)
ifdef TILERA_ROOT
CROSS_COMPILE := $(TILERA_ROOT)/bin/tile-
else
goals := $(if $(MAKECMDGOALS), $(MAKECMDGOALS), all)
ifneq ($(strip $(filter vmlinux modules all,$(goals))),)
HOST_ARCH := $(shell uname -m)
ifneq ($(HOST_ARCH),$(ARCH))
$(error Set TILERA_ROOT or CROSS_COMPILE when building $(ARCH) on $(HOST_ARCH))
endif
endif
endif
endif
# The tile compiler may emit .eh_frame information for backtracing.
# In kernel modules, this causes load failures due to unsupported relocations.
KBUILD_CFLAGS += -fno-asynchronous-unwind-tables
LIBGCC_PATH := \
$(shell $(CC) $(KBUILD_CFLAGS) $(KCFLAGS) -print-libgcc-file-name)
# Provide the path to use for "make defconfig".
# We default to the newer TILE-Gx architecture if only "tile" is given.
ifeq ($(ARCH),tile)
KBUILD_DEFCONFIG := tilegx_defconfig
else
KBUILD_DEFCONFIG := $(ARCH)_defconfig
endif
# Used as a file extension when useful, e.g. head_$(BITS).o
# Not needed for (e.g.) "$(CC) -m32" since the compiler automatically
# uses the right default anyway.
export BITS
ifeq ($(CONFIG_TILEGX),y)
BITS := 64
else
BITS := 32
endif
CHECKFLAGS += -m$(BITS)
head-y := arch/tile/kernel/head_$(BITS).o
libs-y += arch/tile/lib/
libs-y += $(LIBGCC_PATH)
# See arch/tile/Kbuild for content of core part of the kernel
core-y += arch/tile/
arch/tile: introduce GXIO IORPC framework for tilegx The GXIO I/O RPC subsystem handles exporting I/O hardware resources to Linux and to applications running under Linux. For instance, memory which is made available for I/O DMA must be mapped by an I/O TLB; that means that such memory must be locked down by Linux, so that it is not swapped or otherwise reused, as long as those I/O TLB entries are active. Similarly, configuring direct hardware access introduces new validation requirements. If a user application registers memory, Linux must ensure that the supplied virtual addresses are valid, and turn them into client physical addresses. Similarly, when Linux then supplies those client physical addresses to the Tilera hypervisor, it must in turn validate those before turning them into the real physical addresses which are required by the hardware. To the extent that these sorts of activities were required on previous TILE architecture processors, they were implemented in a device-specific fashion. This meant that every I/O device had its own Tilera hypervisor driver, its own Linux driver, and in some cases its own user-level library support. There was a large amount of more-or-less functionally identical code in different places, particularly in the different Linux drivers. For TILE-Gx, this support has been generalized into a common framework, known as the I/O RPC framework or just IORPC. The two "gxio" directories (one for headers, one for sources) start with just a few files in each with this infrastructure commit, but after adding support for the on-board I/O shims for networking, PCI, USB, crypto, compression, I2CS, etc., there end up being about 20 files in each directory. More information on the IORPC framework is in the <hv/iorpc.h> header, included in this commit. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2012-04-05 04:39:58 +08:00
core-$(CONFIG_TILE_GXIO) += arch/tile/gxio/
ifdef TILERA_ROOT
INSTALL_PATH ?= $(TILERA_ROOT)/tile/boot
endif
install:
install -D -m 755 vmlinux $(INSTALL_PATH)/vmlinux-$(KERNELRELEASE)
install -D -m 644 .config $(INSTALL_PATH)/config-$(KERNELRELEASE)
install -D -m 644 System.map $(INSTALL_PATH)/System.map-$(KERNELRELEASE)
define archhelp
echo ' install - install kernel into $(INSTALL_PATH)'
endef