OpenCloudOS-Kernel/drivers/media/dvb-frontends/stb6100.c

579 lines
15 KiB
C
Raw Normal View History

/*
STB6100 Silicon Tuner
Copyright (C) Manu Abraham (abraham.manu@gmail.com)
Copyright (C) ST Microelectronics
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/string.h>
#include "dvb_frontend.h"
#include "stb6100.h"
static unsigned int verbose;
module_param(verbose, int, 0644);
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 16:05:18 +08:00
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
#define FE_ERROR 0
#define FE_NOTICE 1
#define FE_INFO 2
#define FE_DEBUG 3
#define dprintk(x, y, z, format, arg...) do { \
if (z) { \
if ((x > FE_ERROR) && (x > y)) \
printk(KERN_ERR "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_NOTICE) && (x > y)) \
printk(KERN_NOTICE "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_INFO) && (x > y)) \
printk(KERN_INFO "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_DEBUG) && (x > y)) \
printk(KERN_DEBUG "%s: " format "\n", __func__ , ##arg); \
} else { \
if (x > y) \
printk(format, ##arg); \
} \
} while (0)
struct stb6100_lkup {
u32 val_low;
u32 val_high;
u8 reg;
};
static int stb6100_release(struct dvb_frontend *fe);
static const struct stb6100_lkup lkup[] = {
{ 0, 950000, 0x0a },
{ 950000, 1000000, 0x0a },
{ 1000000, 1075000, 0x0c },
{ 1075000, 1200000, 0x00 },
{ 1200000, 1300000, 0x01 },
{ 1300000, 1370000, 0x02 },
{ 1370000, 1470000, 0x04 },
{ 1470000, 1530000, 0x05 },
{ 1530000, 1650000, 0x06 },
{ 1650000, 1800000, 0x08 },
{ 1800000, 1950000, 0x0a },
{ 1950000, 2150000, 0x0c },
{ 2150000, 9999999, 0x0c },
{ 0, 0, 0x00 }
};
/* Register names for easy debugging. */
static const char *stb6100_regnames[] = {
[STB6100_LD] = "LD",
[STB6100_VCO] = "VCO",
[STB6100_NI] = "NI",
[STB6100_NF_LSB] = "NF",
[STB6100_K] = "K",
[STB6100_G] = "G",
[STB6100_F] = "F",
[STB6100_DLB] = "DLB",
[STB6100_TEST1] = "TEST1",
[STB6100_FCCK] = "FCCK",
[STB6100_LPEN] = "LPEN",
[STB6100_TEST3] = "TEST3",
};
/* Template for normalisation, i.e. setting unused or undocumented
* bits as required according to the documentation.
*/
struct stb6100_regmask {
u8 mask;
u8 set;
};
static const struct stb6100_regmask stb6100_template[] = {
[STB6100_LD] = { 0xff, 0x00 },
[STB6100_VCO] = { 0xff, 0x00 },
[STB6100_NI] = { 0xff, 0x00 },
[STB6100_NF_LSB] = { 0xff, 0x00 },
[STB6100_K] = { 0xc7, 0x38 },
[STB6100_G] = { 0xef, 0x10 },
[STB6100_F] = { 0x1f, 0xc0 },
[STB6100_DLB] = { 0x38, 0xc4 },
[STB6100_TEST1] = { 0x00, 0x8f },
[STB6100_FCCK] = { 0x40, 0x0d },
[STB6100_LPEN] = { 0xf0, 0x0b },
[STB6100_TEST3] = { 0x00, 0xde },
};
/*
* Currently unused. Some boards might need it in the future
*/
static inline void stb6100_normalise_regs(u8 regs[])
{
int i;
for (i = 0; i < STB6100_NUMREGS; i++)
regs[i] = (regs[i] & stb6100_template[i].mask) | stb6100_template[i].set;
}
static int stb6100_read_regs(struct stb6100_state *state, u8 regs[])
{
int rc;
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = regs,
.len = STB6100_NUMREGS
};
rc = i2c_transfer(state->i2c, &msg, 1);
if (unlikely(rc != 1)) {
dprintk(verbose, FE_ERROR, 1, "Read (0x%x) err, rc=[%d]",
state->config->tuner_address, rc);
return -EREMOTEIO;
}
if (unlikely(verbose > FE_DEBUG)) {
int i;
dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address);
for (i = 0; i < STB6100_NUMREGS; i++)
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[i], regs[i]);
}
return 0;
}
static int stb6100_read_reg(struct stb6100_state *state, u8 reg)
{
u8 regs[STB6100_NUMREGS];
struct i2c_msg msg = {
.addr = state->config->tuner_address + reg,
.flags = I2C_M_RD,
.buf = regs,
.len = 1
};
[media] v4l/dvb: fix compiler warnings media_build/v4l/stb6100.c: In function 'stb6100_read_reg': media_build/v4l/stb6100.c:161:6: warning: variable 'rc' set but not used [-Wunused-but-set-variable] media_build/v4l/cx24110.c: In function 'cx24110_read_ucblocks': media_build/v4l/cx24110.c:515:6: warning: variable 'lastbyer' set but not used [-Wunused-but-set-variable] media_build/v4l/dib9000.c: In function 'dib9000_mbx_process': media_build/v4l/dib9000.c:711:6: warning: variable 'tmp' set but not used [-Wunused-but-set-variable] media_build/v4l/zl10353.c: In function 'zl10353_init': media_build/v4l/zl10353.c:562:6: warning: variable 'rc' set but not used [-Wunused-but-set-variable] media_build/v4l/stv0297.c: In function 'stv0297_set_frontend': media_build/v4l/stv0297.c:417:16: warning: variable 'starttime' set but not used [-Wunused-but-set-variable] media_build/v4l/lgs8gxx.c: In function 'lgs8gxx_set_mode_manual': media_build/v4l/lgs8gxx.c:265:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable] media_build/v4l/af9013.c: In function 'af9013_statistics_work': media_build/v4l/af9013.c:517:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable] media_build/v4l/stv090x.c: In function 'stv090x_optimize_track': media_build/v4l/stv090x.c:2845:23: warning: variable 'rolloff' set but not used [-Wunused-but-set-variable] media_build/v4l/stv090x.c: In function 'stv090x_algo': media_build/v4l/stv090x.c:3177:28: warning: variable 'no_signal' set but not used [-Wunused-but-set-variable] media_build/v4l/it913x-fe.c: In function 'it913x_fe_read_ber': media_build/v4l/it913x-fe.c:636:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable] media_build/v4l/it913x-fe.c: In function 'it913x_fe_get_frontend': media_build/v4l/it913x-fe.c:661:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable] media_build/v4l/it913x-fe.c: In function 'it913x_fe_set_frontend': media_build/v4l/it913x-fe.c:694:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable] media_build/v4l/m88rs2000.c: In function 'm88rs2000_set_fec': media_build/v4l/m88rs2000.c:657:6: warning: variable 'ret' set but not used [-Wunused-but-set-variable] media_build/v4l/dst_ca.c: In function 'ca_send_message': media_build/v4l/dst_ca.c:480:15: warning: variable 'ca_message_header_len' set but not used [-Wunused-but-set-variable] media_build/v4l/smssdio.c: In function 'smssdio_interrupt': media_build/v4l/smssdio.c:117:11: warning: variable 'isr' set but not used [-Wunused-but-set-variable] Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2012-04-20 19:04:48 +08:00
i2c_transfer(state->i2c, &msg, 1);
if (unlikely(reg >= STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
return -EINVAL;
}
if (unlikely(verbose > FE_DEBUG)) {
dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address);
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[reg], regs[0]);
}
return (unsigned int)regs[0];
}
static int stb6100_write_reg_range(struct stb6100_state *state, u8 buf[], int start, int len)
{
int rc;
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 16:05:18 +08:00
u8 cmdbuf[MAX_XFER_SIZE];
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = 0,
.buf = cmdbuf,
.len = len + 1
};
if (1 + len > sizeof(cmdbuf)) {
[media] dvb-frontends: Don't use dynamic static allocation Dynamic static allocation is evil, as Kernel stack is too low, and compilation complains about it on some archs: drivers/media/dvb-frontends/bcm3510.c:230:1: warning: 'bcm3510_do_hab_cmd' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/itd1000.c:69:1: warning: 'itd1000_write_regs.constprop.0' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/mt312.c:126:1: warning: 'mt312_write' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/nxt200x.c:111:1: warning: 'nxt200x_writebytes' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stb6100.c:216:1: warning: 'stb6100_write_reg_range.constprop.3' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110.c:98:1: warning: 'stv6110_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/stv6110x.c:85:1: warning: 'stv6110x_write_regs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/tda18271c2dd.c:147:1: warning: 'WriteRegs' uses dynamic stack allocation [enabled by default] drivers/media/dvb-frontends/zl10039.c:119:1: warning: 'zl10039_write' uses dynamic stack allocation [enabled by default] Instead, let's enforce a limit for the buffer. Considering that I2C transfers are generally limited, and that devices used on USB has a max data length of 64 bytes for the control URBs. So, it seem safe to use 64 bytes as the hard limit for all those devices. On most cases, the limit is a way lower than that, but this limit is small enough to not affect the Kernel stack, and it is a no brain limit, as using smaller ones would require to either carefully each driver or to take a look on each datasheet. Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
2013-11-02 16:05:18 +08:00
printk(KERN_WARNING
"%s: i2c wr: len=%d is too big!\n",
KBUILD_MODNAME, len);
return -EINVAL;
}
if (unlikely(start < 1 || start + len > STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register range %d:%d",
start, len);
return -EINVAL;
}
memcpy(&cmdbuf[1], buf, len);
cmdbuf[0] = start;
if (unlikely(verbose > FE_DEBUG)) {
int i;
dprintk(verbose, FE_DEBUG, 1, " Write @ 0x%02x: [%d:%d]", state->config->tuner_address, start, len);
for (i = 0; i < len; i++)
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[start + i], buf[i]);
}
rc = i2c_transfer(state->i2c, &msg, 1);
if (unlikely(rc != 1)) {
dprintk(verbose, FE_ERROR, 1, "(0x%x) write err [%d:%d], rc=[%d]",
(unsigned int)state->config->tuner_address, start, len, rc);
return -EREMOTEIO;
}
return 0;
}
static int stb6100_write_reg(struct stb6100_state *state, u8 reg, u8 data)
{
if (unlikely(reg >= STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
return -EREMOTEIO;
}
data = (data & stb6100_template[reg].mask) | stb6100_template[reg].set;
return stb6100_write_reg_range(state, &data, reg, 1);
}
static int stb6100_get_status(struct dvb_frontend *fe, u32 *status)
{
int rc;
struct stb6100_state *state = fe->tuner_priv;
rc = stb6100_read_reg(state, STB6100_LD);
if (rc < 0) {
dprintk(verbose, FE_ERROR, 1, "%s failed", __func__);
return rc;
}
return (rc & STB6100_LD_LOCK) ? TUNER_STATUS_LOCKED : 0;
}
static int stb6100_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
int rc;
u8 f;
u32 bw;
struct stb6100_state *state = fe->tuner_priv;
rc = stb6100_read_reg(state, STB6100_F);
if (rc < 0)
return rc;
f = rc & STB6100_F_F;
bw = (f + 5) * 2000; /* x2 for ZIF */
*bandwidth = state->bandwidth = bw * 1000;
dprintk(verbose, FE_DEBUG, 1, "bandwidth = %u Hz", state->bandwidth);
return 0;
}
static int stb6100_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
{
u32 tmp;
int rc;
struct stb6100_state *state = fe->tuner_priv;
dprintk(verbose, FE_DEBUG, 1, "set bandwidth to %u Hz", bandwidth);
bandwidth /= 2; /* ZIF */
if (bandwidth >= 36000000) /* F[4:0] BW/2 max =31+5=36 mhz for F=31 */
tmp = 31;
else if (bandwidth <= 5000000) /* bw/2 min = 5Mhz for F=0 */
tmp = 0;
else /* if 5 < bw/2 < 36 */
tmp = (bandwidth + 500000) / 1000000 - 5;
/* Turn on LPF bandwidth setting clock control,
* set bandwidth, wait 10ms, turn off.
*/
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d | STB6100_FCCK_FCCK);
if (rc < 0)
return rc;
rc = stb6100_write_reg(state, STB6100_F, 0xc0 | tmp);
if (rc < 0)
return rc;
msleep(5); /* This is dangerous as another (related) thread may start */
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d);
if (rc < 0)
return rc;
msleep(10); /* This is dangerous as another (related) thread may start */
return 0;
}
static int stb6100_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
int rc;
u32 nint, nfrac, fvco;
int psd2, odiv;
struct stb6100_state *state = fe->tuner_priv;
u8 regs[STB6100_NUMREGS];
rc = stb6100_read_regs(state, regs);
if (rc < 0)
return rc;
odiv = (regs[STB6100_VCO] & STB6100_VCO_ODIV) >> STB6100_VCO_ODIV_SHIFT;
psd2 = (regs[STB6100_K] & STB6100_K_PSD2) >> STB6100_K_PSD2_SHIFT;
nint = regs[STB6100_NI];
nfrac = ((regs[STB6100_K] & STB6100_K_NF_MSB) << 8) | regs[STB6100_NF_LSB];
fvco = (nfrac * state->reference >> (9 - psd2)) + (nint * state->reference << psd2);
*frequency = state->frequency = fvco >> (odiv + 1);
dprintk(verbose, FE_DEBUG, 1,
"frequency = %u kHz, odiv = %u, psd2 = %u, fxtal = %u kHz, fvco = %u kHz, N(I) = %u, N(F) = %u",
state->frequency, odiv, psd2, state->reference, fvco, nint, nfrac);
return 0;
}
static int stb6100_set_frequency(struct dvb_frontend *fe, u32 frequency)
{
int rc;
const struct stb6100_lkup *ptr;
struct stb6100_state *state = fe->tuner_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 srate = 0, fvco, nint, nfrac;
u8 regs[STB6100_NUMREGS];
u8 g, psd2, odiv;
dprintk(verbose, FE_DEBUG, 1, "Version 2010-8-14 13:51");
if (fe->ops.get_frontend) {
dprintk(verbose, FE_DEBUG, 1, "Get frontend parameters");
fe->ops.get_frontend(fe, p);
}
srate = p->symbol_rate;
/* Set up tuner cleanly, LPF calibration on */
rc = stb6100_write_reg(state, STB6100_FCCK, 0x4d | STB6100_FCCK_FCCK);
if (rc < 0)
return rc; /* allow LPF calibration */
/* PLL Loop disabled, bias on, VCO on, synth on */
regs[STB6100_LPEN] = 0xeb;
rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN]);
if (rc < 0)
return rc;
/* Program the registers with their data values */
/* VCO divide ratio (LO divide ratio, VCO prescaler enable). */
if (frequency <= 1075000)
odiv = 1;
else
odiv = 0;
/* VCO enabled, search clock off as per LL3.7, 3.4.1 */
regs[STB6100_VCO] = 0xe0 | (odiv << STB6100_VCO_ODIV_SHIFT);
/* OSM */
for (ptr = lkup;
(ptr->val_high != 0) && !CHKRANGE(frequency, ptr->val_low, ptr->val_high);
ptr++);
if (ptr->val_high == 0) {
printk(KERN_ERR "%s: frequency out of range: %u kHz\n", __func__, frequency);
return -EINVAL;
}
regs[STB6100_VCO] = (regs[STB6100_VCO] & ~STB6100_VCO_OSM) | ptr->reg;
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
if ((frequency > 1075000) && (frequency <= 1325000))
psd2 = 0;
else
psd2 = 1;
/* F(VCO) = F(LO) * (ODIV == 0 ? 2 : 4) */
fvco = frequency << (1 + odiv);
/* N(I) = floor(f(VCO) / (f(XTAL) * (PSD2 ? 2 : 1))) */
nint = fvco / (state->reference << psd2);
/* N(F) = round(f(VCO) / f(XTAL) * (PSD2 ? 2 : 1) - N(I)) * 2 ^ 9 */
nfrac = DIV_ROUND_CLOSEST((fvco - (nint * state->reference << psd2))
<< (9 - psd2), state->reference);
/* NI */
regs[STB6100_NI] = nint;
rc = stb6100_write_reg(state, STB6100_NI, regs[STB6100_NI]);
if (rc < 0)
return rc;
/* NF */
regs[STB6100_NF_LSB] = nfrac;
rc = stb6100_write_reg(state, STB6100_NF_LSB, regs[STB6100_NF_LSB]);
if (rc < 0)
return rc;
/* K */
regs[STB6100_K] = (0x38 & ~STB6100_K_PSD2) | (psd2 << STB6100_K_PSD2_SHIFT);
regs[STB6100_K] = (regs[STB6100_K] & ~STB6100_K_NF_MSB) | ((nfrac >> 8) & STB6100_K_NF_MSB);
rc = stb6100_write_reg(state, STB6100_K, regs[STB6100_K]);
if (rc < 0)
return rc;
/* G Baseband gain. */
if (srate >= 15000000)
g = 9; /* +4 dB */
else if (srate >= 5000000)
g = 11; /* +8 dB */
else
g = 14; /* +14 dB */
regs[STB6100_G] = (0x10 & ~STB6100_G_G) | g;
regs[STB6100_G] &= ~STB6100_G_GCT; /* mask GCT */
regs[STB6100_G] |= (1 << 5); /* 2Vp-p Mode */
rc = stb6100_write_reg(state, STB6100_G, regs[STB6100_G]);
if (rc < 0)
return rc;
/* F we don't write as it is set up in BW set */
/* DLB set DC servo loop BW to 160Hz (LLA 3.8 / 2.1) */
regs[STB6100_DLB] = 0xcc;
rc = stb6100_write_reg(state, STB6100_DLB, regs[STB6100_DLB]);
if (rc < 0)
return rc;
dprintk(verbose, FE_DEBUG, 1,
"frequency = %u, srate = %u, g = %u, odiv = %u, psd2 = %u, fxtal = %u, osm = %u, fvco = %u, N(I) = %u, N(F) = %u",
frequency, srate, (unsigned int)g, (unsigned int)odiv,
(unsigned int)psd2, state->reference,
ptr->reg, fvco, nint, nfrac);
/* Set up the test registers */
regs[STB6100_TEST1] = 0x8f;
rc = stb6100_write_reg(state, STB6100_TEST1, regs[STB6100_TEST1]);
if (rc < 0)
return rc;
regs[STB6100_TEST3] = 0xde;
rc = stb6100_write_reg(state, STB6100_TEST3, regs[STB6100_TEST3]);
if (rc < 0)
return rc;
/* Bring up tuner according to LLA 3.7 3.4.1, step 2 */
regs[STB6100_LPEN] = 0xfb; /* PLL Loop enabled, bias on, VCO on, synth on */
rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN]);
if (rc < 0)
return rc;
msleep(2);
/* Bring up tuner according to LLA 3.7 3.4.1, step 3 */
regs[STB6100_VCO] &= ~STB6100_VCO_OCK; /* VCO fast search */
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
msleep(10); /* This is dangerous as another (related) thread may start */ /* wait for LO to lock */
regs[STB6100_VCO] &= ~STB6100_VCO_OSCH; /* vco search disabled */
regs[STB6100_VCO] |= STB6100_VCO_OCK; /* search clock off */
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d);
if (rc < 0)
return rc; /* Stop LPF calibration */
msleep(10); /* This is dangerous as another (related) thread may start */
/* wait for stabilisation, (should not be necessary) */
return 0;
}
static int stb6100_sleep(struct dvb_frontend *fe)
{
/* TODO: power down */
return 0;
}
static int stb6100_init(struct dvb_frontend *fe)
{
struct stb6100_state *state = fe->tuner_priv;
int refclk = 27000000; /* Hz */
/*
* iqsense = 1
* tunerstep = 125000
*/
state->bandwidth = 36000000; /* Hz */
state->reference = refclk / 1000; /* kHz */
/* Set default bandwidth. Modified, PN 13-May-10 */
return 0;
}
static int stb6100_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
if (c->frequency > 0)
stb6100_set_frequency(fe, c->frequency);
if (c->bandwidth_hz > 0)
stb6100_set_bandwidth(fe, c->bandwidth_hz);
return 0;
}
static struct dvb_tuner_ops stb6100_ops = {
.info = {
.name = "STB6100 Silicon Tuner",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 0,
},
.init = stb6100_init,
.sleep = stb6100_sleep,
.get_status = stb6100_get_status,
.set_params = stb6100_set_params,
.get_frequency = stb6100_get_frequency,
.get_bandwidth = stb6100_get_bandwidth,
.release = stb6100_release
};
struct dvb_frontend *stb6100_attach(struct dvb_frontend *fe,
const struct stb6100_config *config,
struct i2c_adapter *i2c)
{
struct stb6100_state *state = NULL;
state = kzalloc(sizeof (struct stb6100_state), GFP_KERNEL);
if (!state)
return NULL;
state->config = config;
state->i2c = i2c;
state->frontend = fe;
state->reference = config->refclock / 1000; /* kHz */
fe->tuner_priv = state;
fe->ops.tuner_ops = stb6100_ops;
printk("%s: Attaching STB6100 \n", __func__);
return fe;
}
static int stb6100_release(struct dvb_frontend *fe)
{
struct stb6100_state *state = fe->tuner_priv;
fe->tuner_priv = NULL;
kfree(state);
return 0;
}
EXPORT_SYMBOL(stb6100_attach);
MODULE_PARM_DESC(verbose, "Set Verbosity level");
MODULE_AUTHOR("Manu Abraham");
MODULE_DESCRIPTION("STB6100 Silicon tuner");
MODULE_LICENSE("GPL");