OpenCloudOS-Kernel/drivers/net/ethernet/sfc/net_driver.h

1788 lines
65 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2013 Solarflare Communications Inc.
*/
/* Common definitions for all Efx net driver code */
#ifndef EFX_NET_DRIVER_H
#define EFX_NET_DRIVER_H
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mdio.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/mtd/mtd.h>
#include <net/busy_poll.h>
#include <net/xdp.h>
#include "enum.h"
#include "bitfield.h"
#include "filter.h"
/**************************************************************************
*
* Build definitions
*
**************************************************************************/
#ifdef DEBUG
#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
#else
#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
#define EFX_WARN_ON_PARANOID(x) do {} while (0)
#endif
/**************************************************************************
*
* Efx data structures
*
**************************************************************************/
#define EFX_MAX_CHANNELS 32U
#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
#define EFX_EXTRA_CHANNEL_IOV 0
#define EFX_EXTRA_CHANNEL_PTP 1
#define EFX_MAX_EXTRA_CHANNELS 2U
/* Checksum generation is a per-queue option in hardware, so each
* queue visible to the networking core is backed by two hardware TX
* queues. */
#define EFX_MAX_TX_TC 2
#define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
#define EFX_TXQ_TYPE_OUTER_CSUM 1 /* Outer checksum offload */
#define EFX_TXQ_TYPE_INNER_CSUM 2 /* Inner checksum offload */
#define EFX_TXQ_TYPE_HIGHPRI 4 /* High-priority (for TC) */
#define EFX_TXQ_TYPES 8
/* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
#define EFX_MAX_TXQ_PER_CHANNEL 4
#define EFX_MAX_TX_QUEUES (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
/* Maximum possible MTU the driver supports */
#define EFX_MAX_MTU (9 * 1024)
/* Minimum MTU, from RFC791 (IP) */
#define EFX_MIN_MTU 68
/* Maximum total header length for TSOv2 */
#define EFX_TSO2_MAX_HDRLEN 208
sfc: Reduce RX scatter buffer size, and reduce alignment if appropriate efx_start_datapath() asserts that we can fit 2 RX scatter buffers plus a software structure, each appropriately aligned, into a single page. Where L1_CACHE_BYTES == 256 and PAGE_SIZE == 4096, which is the case on s390, this assertion fails. The current scatter buffer size is also not a multiple of 64 or 128, which are more common cache line sizes. If we can make both the start and end of a scatter buffer cache-aligned, this will reduce the need for read-modify-write operations on inter- processor links. Fix the alignment by reducing EFX_RX_USR_BUF_SIZE to 2048 - 256 == 1792. (We could use 2048 - L1_CACHE_BYTES, but EFX_RX_USR_BUF_SIZE also affects user-level networking where a larger amount of housekeeping data may be needed. Although this version of the driver does not support user-level networking, I prefer to keep scattering behaviour consistent with the out-of-tree version.) This still doesn't fix the s390 build because like most architectures it has NET_IP_ALIGN == 2. When NET_IP_ALIGN != 0 we cannot achieve cache line alignment at either the start or end of a scatter buffer, so there is actually no point in padding the buffers to a multiple of the cache line size. All we need is 4-byte alignment of the network header, so do that. Adjust the assertions accordingly. Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-13 20:01:22 +08:00
/* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
* and should be a multiple of the cache line size.
*/
#define EFX_RX_USR_BUF_SIZE (2048 - 256)
/* If possible, we should ensure cache line alignment at start and end
* of every buffer. Otherwise, we just need to ensure 4-byte
* alignment of the network header.
*/
#if NET_IP_ALIGN == 0
#define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
#else
#define EFX_RX_BUF_ALIGNMENT 4
#endif
/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
* still fit two standard MTU size packets into a single 4K page.
*/
#define EFX_XDP_HEADROOM 128
#define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
/* Forward declare Precision Time Protocol (PTP) support structure. */
struct efx_ptp_data;
struct hwtstamp_config;
struct efx_self_tests;
/**
* struct efx_buffer - A general-purpose DMA buffer
* @addr: host base address of the buffer
* @dma_addr: DMA base address of the buffer
* @len: Buffer length, in bytes
*
* The NIC uses these buffers for its interrupt status registers and
* MAC stats dumps.
*/
struct efx_buffer {
void *addr;
dma_addr_t dma_addr;
unsigned int len;
};
/**
* struct efx_special_buffer - DMA buffer entered into buffer table
* @buf: Standard &struct efx_buffer
* @index: Buffer index within controller;s buffer table
* @entries: Number of buffer table entries
*
* The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
* Event and descriptor rings are addressed via one or more buffer
* table entries (and so can be physically non-contiguous, although we
* currently do not take advantage of that). On Falcon and Siena we
* have to take care of allocating and initialising the entries
* ourselves. On later hardware this is managed by the firmware and
* @index and @entries are left as 0.
*/
struct efx_special_buffer {
struct efx_buffer buf;
unsigned int index;
unsigned int entries;
};
/**
* struct efx_tx_buffer - buffer state for a TX descriptor
* @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
* freed when descriptor completes
* @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
* member is the associated buffer to drop a page reference on.
* @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
* descriptor.
* @dma_addr: DMA address of the fragment.
* @flags: Flags for allocation and DMA mapping type
* @len: Length of this fragment.
* This field is zero when the queue slot is empty.
* @unmap_len: Length of this fragment to unmap
* @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
* Only valid if @unmap_len != 0.
*/
struct efx_tx_buffer {
union {
const struct sk_buff *skb;
struct xdp_frame *xdpf;
};
union {
efx_qword_t option; /* EF10 */
dma_addr_t dma_addr;
};
unsigned short flags;
unsigned short len;
unsigned short unmap_len;
unsigned short dma_offset;
};
#define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
#define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
#define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
#define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
#define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */
#define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */
#define EFX_TX_BUF_EFV 0x100 /* buffer was sent from representor */
/**
* struct efx_tx_queue - An Efx TX queue
*
* This is a ring buffer of TX fragments.
* Since the TX completion path always executes on the same
* CPU and the xmit path can operate on different CPUs,
* performance is increased by ensuring that the completion
* path and the xmit path operate on different cache lines.
* This is particularly important if the xmit path is always
* executing on one CPU which is different from the completion
* path. There is also a cache line for members which are
* read but not written on the fast path.
*
* @efx: The associated Efx NIC
* @queue: DMA queue number
* @label: Label for TX completion events.
* Is our index within @channel->tx_queue array.
* @type: configuration type of this TX queue. A bitmask of %EFX_TXQ_TYPE_* flags.
* @tso_version: Version of TSO in use for this queue.
* @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
* @channel: The associated channel
* @core_txq: The networking core TX queue structure
* @buffer: The software buffer ring
* @cb_page: Array of pages of copy buffers. Carved up according to
* %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
* @txd: The hardware descriptor ring
* @ptr_mask: The size of the ring minus 1.
* @piobuf: PIO buffer region for this TX queue (shared with its partner).
* Size of the region is efx_piobuf_size.
* @piobuf_offset: Buffer offset to be specified in PIO descriptors
* @initialised: Has hardware queue been initialised?
* @timestamping: Is timestamping enabled for this channel?
* @xdp_tx: Is this an XDP tx queue?
* @read_count: Current read pointer.
* This is the number of buffers that have been removed from both rings.
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
* @old_write_count: The value of @write_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of @write_count if this
* variable indicates that the queue is empty. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @merge_events: Number of TX merged completion events
* @completed_timestamp_major: Top part of the most recent tx timestamp.
* @completed_timestamp_minor: Low part of the most recent tx timestamp.
* @insert_count: Current insert pointer
* This is the number of buffers that have been added to the
* software ring.
* @write_count: Current write pointer
* This is the number of buffers that have been added to the
* hardware ring.
* @packet_write_count: Completable write pointer
* This is the write pointer of the last packet written.
* Normally this will equal @write_count, but as option descriptors
* don't produce completion events, they won't update this.
* Filled in iff @efx->type->option_descriptors; only used for PIO.
* Thus, this is written and used on EF10, and neither on farch.
* @old_read_count: The value of read_count when last checked.
* This is here for performance reasons. The xmit path will
* only get the up-to-date value of read_count if this
* variable indicates that the queue is full. This is to
* avoid cache-line ping-pong between the xmit path and the
* completion path.
* @tso_bursts: Number of times TSO xmit invoked by kernel
* @tso_long_headers: Number of packets with headers too long for standard
* blocks
* @tso_packets: Number of packets via the TSO xmit path
* @tso_fallbacks: Number of times TSO fallback used
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
* @pushes: Number of times the TX push feature has been used
* @pio_packets: Number of times the TX PIO feature has been used
* @xmit_pending: Are any packets waiting to be pushed to the NIC
* @cb_packets: Number of times the TX copybreak feature has been used
* @notify_count: Count of notified descriptors to the NIC
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
* @empty_read_count: If the completion path has seen the queue as empty
* and the transmission path has not yet checked this, the value of
* @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
*/
struct efx_tx_queue {
/* Members which don't change on the fast path */
struct efx_nic *efx ____cacheline_aligned_in_smp;
unsigned int queue;
unsigned int label;
unsigned int type;
unsigned int tso_version;
bool tso_encap;
struct efx_channel *channel;
struct netdev_queue *core_txq;
struct efx_tx_buffer *buffer;
struct efx_buffer *cb_page;
struct efx_special_buffer txd;
unsigned int ptr_mask;
void __iomem *piobuf;
unsigned int piobuf_offset;
bool initialised;
bool timestamping;
bool xdp_tx;
/* Members used mainly on the completion path */
unsigned int read_count ____cacheline_aligned_in_smp;
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
unsigned int old_write_count;
unsigned int merge_events;
unsigned int bytes_compl;
unsigned int pkts_compl;
u32 completed_timestamp_major;
u32 completed_timestamp_minor;
/* Members used only on the xmit path */
unsigned int insert_count ____cacheline_aligned_in_smp;
unsigned int write_count;
unsigned int packet_write_count;
unsigned int old_read_count;
unsigned int tso_bursts;
unsigned int tso_long_headers;
unsigned int tso_packets;
unsigned int tso_fallbacks;
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
unsigned int pushes;
unsigned int pio_packets;
bool xmit_pending;
unsigned int cb_packets;
unsigned int notify_count;
/* Statistics to supplement MAC stats */
unsigned long tx_packets;
sfc: Use TX push whenever adding descriptors to an empty queue Whenever we add DMA descriptors to a TX ring and update the ring pointer, the TX DMA engine must first read the new DMA descriptors and then start reading packet data. However, all released Solarflare 10G controllers have a 'TX push' feature that allows us to reduce latency by writing the first new DMA descriptor along with the pointer update. This is only useful when the queue is empty. The hardware should ignore the pushed descriptor if the queue is not empty, but this check is buggy, so we must do it in software. In order to tell whether a TX queue is empty, we need to compare the previous transmission count (write_count) and completion count (read_count). However, if we do that every time we update the ring pointer then read_count may ping-pong between the caches of two CPUs running the transmission and completion paths for the queue. Therefore, we split the check for an empty queue between the completion path and the transmission path: - Add an empty_read_count field representing a point at which the completion path saw the TX queue as empty. - Add an old_write_count field for use on the completion path. - On the completion path, whenever read_count reaches or passes old_write_count the TX queue may be empty. We then read write_count, set empty_read_count if read_count == write_count, and update old_write_count. - On the transmission path, we read empty_read_count. If it's set, we compare it with the value of write_count before the current set of descriptors was added. If they match, the queue really is empty and we can use TX push. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2010-11-16 07:53:11 +08:00
/* Members shared between paths and sometimes updated */
unsigned int empty_read_count ____cacheline_aligned_in_smp;
#define EFX_EMPTY_COUNT_VALID 0x80000000
atomic_t flush_outstanding;
};
#define EFX_TX_CB_ORDER 7
#define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
/**
* struct efx_rx_buffer - An Efx RX data buffer
* @dma_addr: DMA base address of the buffer
* @page: The associated page buffer.
* Will be %NULL if the buffer slot is currently free.
* @page_offset: If pending: offset in @page of DMA base address.
* If completed: offset in @page of Ethernet header.
* @len: If pending: length for DMA descriptor.
* If completed: received length, excluding hash prefix.
* @flags: Flags for buffer and packet state. These are only set on the
* first buffer of a scattered packet.
*/
struct efx_rx_buffer {
dma_addr_t dma_addr;
struct page *page;
u16 page_offset;
u16 len;
u16 flags;
};
#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
#define EFX_RX_PKT_CSUMMED 0x0002
#define EFX_RX_PKT_DISCARD 0x0004
#define EFX_RX_PKT_TCP 0x0040
#define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
#define EFX_RX_PKT_CSUM_LEVEL 0x0200
/**
* struct efx_rx_page_state - Page-based rx buffer state
*
* Inserted at the start of every page allocated for receive buffers.
* Used to facilitate sharing dma mappings between recycled rx buffers
* and those passed up to the kernel.
*
* @dma_addr: The dma address of this page.
*/
struct efx_rx_page_state {
dma_addr_t dma_addr;
unsigned int __pad[] ____cacheline_aligned;
};
/**
* struct efx_rx_queue - An Efx RX queue
* @efx: The associated Efx NIC
* @core_index: Index of network core RX queue. Will be >= 0 iff this
* is associated with a real RX queue.
* @buffer: The software buffer ring
* @rxd: The hardware descriptor ring
* @ptr_mask: The size of the ring minus 1.
* @refill_enabled: Enable refill whenever fill level is low
* @flush_pending: Set when a RX flush is pending. Has the same lifetime as
* @rxq_flush_pending.
* @added_count: Number of buffers added to the receive queue.
* @notified_count: Number of buffers given to NIC (<= @added_count).
* @removed_count: Number of buffers removed from the receive queue.
* @scatter_n: Used by NIC specific receive code.
* @scatter_len: Used by NIC specific receive code.
sfc: reuse pages to avoid DMA mapping/unmapping costs On POWER systems, DMA mapping/unmapping operations are very expensive. These changes reduce these costs by trying to reuse DMA mapped pages. After all the buffers associated with a page have been processed and passed up, the page is placed into a ring (if there is room). For each page that is required for a refill operation, a page in the ring is examined to determine if its page count has fallen to 1, ie. the kernel has released its reference to these packets. If this is the case, the page can be immediately added back into the RX descriptor ring, without having to re-map it for DMA. If the kernel is still holding a reference to this page, it is removed from the ring and unmapped for DMA. Then a new page, which can immediately be used by RX buffers in the descriptor ring, is allocated and DMA mapped. The time a page needs to spend in the recycle ring before the kernel has released its page references is based on the number of buffers that use this page. As large pages can hold more RX buffers, the RX recycle ring can be shorter. This reduces memory usage on POWER systems, while maintaining the performance gain achieved by recycling pages, following the driver change to pack more than two RX buffers into large pages. When an IOMMU is not present, the recycle ring can be small to reduce memory usage, since DMA mapping operations are inexpensive. With a small recycle ring, attempting to refill the descriptor queue with more buffers than the equivalent size of the recycle ring could ultimately lead to memory leaks if page entries in the recycle ring were overwritten. To prevent this, the check to see if the recycle ring is full is changed to check if the next entry to be written is NULL. [bwh: Combine and rebase several commits so this is complete before the following buffer-packing changes. Remove module parameter.] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-02-13 18:54:41 +08:00
* @page_ring: The ring to store DMA mapped pages for reuse.
* @page_add: Counter to calculate the write pointer for the recycle ring.
* @page_remove: Counter to calculate the read pointer for the recycle ring.
* @page_recycle_count: The number of pages that have been recycled.
* @page_recycle_failed: The number of pages that couldn't be recycled because
* the kernel still held a reference to them.
* @page_recycle_full: The number of pages that were released because the
* recycle ring was full.
* @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
* @max_fill: RX descriptor maximum fill level (<= ring size)
* @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
* (<= @max_fill)
* @min_fill: RX descriptor minimum non-zero fill level.
* This records the minimum fill level observed when a ring
* refill was triggered.
sfc: reuse pages to avoid DMA mapping/unmapping costs On POWER systems, DMA mapping/unmapping operations are very expensive. These changes reduce these costs by trying to reuse DMA mapped pages. After all the buffers associated with a page have been processed and passed up, the page is placed into a ring (if there is room). For each page that is required for a refill operation, a page in the ring is examined to determine if its page count has fallen to 1, ie. the kernel has released its reference to these packets. If this is the case, the page can be immediately added back into the RX descriptor ring, without having to re-map it for DMA. If the kernel is still holding a reference to this page, it is removed from the ring and unmapped for DMA. Then a new page, which can immediately be used by RX buffers in the descriptor ring, is allocated and DMA mapped. The time a page needs to spend in the recycle ring before the kernel has released its page references is based on the number of buffers that use this page. As large pages can hold more RX buffers, the RX recycle ring can be shorter. This reduces memory usage on POWER systems, while maintaining the performance gain achieved by recycling pages, following the driver change to pack more than two RX buffers into large pages. When an IOMMU is not present, the recycle ring can be small to reduce memory usage, since DMA mapping operations are inexpensive. With a small recycle ring, attempting to refill the descriptor queue with more buffers than the equivalent size of the recycle ring could ultimately lead to memory leaks if page entries in the recycle ring were overwritten. To prevent this, the check to see if the recycle ring is full is changed to check if the next entry to be written is NULL. [bwh: Combine and rebase several commits so this is complete before the following buffer-packing changes. Remove module parameter.] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-02-13 18:54:41 +08:00
* @recycle_count: RX buffer recycle counter.
* @slow_fill: Timer used to defer efx_nic_generate_fill_event().
* @xdp_rxq_info: XDP specific RX queue information.
* @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
*/
struct efx_rx_queue {
struct efx_nic *efx;
int core_index;
struct efx_rx_buffer *buffer;
struct efx_special_buffer rxd;
unsigned int ptr_mask;
bool refill_enabled;
bool flush_pending;
unsigned int added_count;
unsigned int notified_count;
unsigned int removed_count;
unsigned int scatter_n;
unsigned int scatter_len;
sfc: reuse pages to avoid DMA mapping/unmapping costs On POWER systems, DMA mapping/unmapping operations are very expensive. These changes reduce these costs by trying to reuse DMA mapped pages. After all the buffers associated with a page have been processed and passed up, the page is placed into a ring (if there is room). For each page that is required for a refill operation, a page in the ring is examined to determine if its page count has fallen to 1, ie. the kernel has released its reference to these packets. If this is the case, the page can be immediately added back into the RX descriptor ring, without having to re-map it for DMA. If the kernel is still holding a reference to this page, it is removed from the ring and unmapped for DMA. Then a new page, which can immediately be used by RX buffers in the descriptor ring, is allocated and DMA mapped. The time a page needs to spend in the recycle ring before the kernel has released its page references is based on the number of buffers that use this page. As large pages can hold more RX buffers, the RX recycle ring can be shorter. This reduces memory usage on POWER systems, while maintaining the performance gain achieved by recycling pages, following the driver change to pack more than two RX buffers into large pages. When an IOMMU is not present, the recycle ring can be small to reduce memory usage, since DMA mapping operations are inexpensive. With a small recycle ring, attempting to refill the descriptor queue with more buffers than the equivalent size of the recycle ring could ultimately lead to memory leaks if page entries in the recycle ring were overwritten. To prevent this, the check to see if the recycle ring is full is changed to check if the next entry to be written is NULL. [bwh: Combine and rebase several commits so this is complete before the following buffer-packing changes. Remove module parameter.] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-02-13 18:54:41 +08:00
struct page **page_ring;
unsigned int page_add;
unsigned int page_remove;
unsigned int page_recycle_count;
unsigned int page_recycle_failed;
unsigned int page_recycle_full;
unsigned int page_ptr_mask;
unsigned int max_fill;
unsigned int fast_fill_trigger;
unsigned int min_fill;
unsigned int min_overfill;
sfc: reuse pages to avoid DMA mapping/unmapping costs On POWER systems, DMA mapping/unmapping operations are very expensive. These changes reduce these costs by trying to reuse DMA mapped pages. After all the buffers associated with a page have been processed and passed up, the page is placed into a ring (if there is room). For each page that is required for a refill operation, a page in the ring is examined to determine if its page count has fallen to 1, ie. the kernel has released its reference to these packets. If this is the case, the page can be immediately added back into the RX descriptor ring, without having to re-map it for DMA. If the kernel is still holding a reference to this page, it is removed from the ring and unmapped for DMA. Then a new page, which can immediately be used by RX buffers in the descriptor ring, is allocated and DMA mapped. The time a page needs to spend in the recycle ring before the kernel has released its page references is based on the number of buffers that use this page. As large pages can hold more RX buffers, the RX recycle ring can be shorter. This reduces memory usage on POWER systems, while maintaining the performance gain achieved by recycling pages, following the driver change to pack more than two RX buffers into large pages. When an IOMMU is not present, the recycle ring can be small to reduce memory usage, since DMA mapping operations are inexpensive. With a small recycle ring, attempting to refill the descriptor queue with more buffers than the equivalent size of the recycle ring could ultimately lead to memory leaks if page entries in the recycle ring were overwritten. To prevent this, the check to see if the recycle ring is full is changed to check if the next entry to be written is NULL. [bwh: Combine and rebase several commits so this is complete before the following buffer-packing changes. Remove module parameter.] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-02-13 18:54:41 +08:00
unsigned int recycle_count;
struct timer_list slow_fill;
unsigned int slow_fill_count;
/* Statistics to supplement MAC stats */
unsigned long rx_packets;
struct xdp_rxq_info xdp_rxq_info;
bool xdp_rxq_info_valid;
};
enum efx_sync_events_state {
SYNC_EVENTS_DISABLED = 0,
SYNC_EVENTS_QUIESCENT,
SYNC_EVENTS_REQUESTED,
SYNC_EVENTS_VALID,
};
/**
* struct efx_channel - An Efx channel
*
* A channel comprises an event queue, at least one TX queue, at least
* one RX queue, and an associated tasklet for processing the event
* queue.
*
* @efx: Associated Efx NIC
* @channel: Channel instance number
* @type: Channel type definition
* @eventq_init: Event queue initialised flag
* @enabled: Channel enabled indicator
* @irq: IRQ number (MSI and MSI-X only)
* @irq_moderation_us: IRQ moderation value (in microseconds)
* @napi_dev: Net device used with NAPI
* @napi_str: NAPI control structure
* @state: state for NAPI vs busy polling
* @state_lock: lock protecting @state
* @eventq: Event queue buffer
* @eventq_mask: Event queue pointer mask
* @eventq_read_ptr: Event queue read pointer
* @event_test_cpu: Last CPU to handle interrupt or test event for this channel
* @irq_count: Number of IRQs since last adaptive moderation decision
* @irq_mod_score: IRQ moderation score
* @rfs_filter_count: number of accelerated RFS filters currently in place;
* equals the count of @rps_flow_id slots filled
* @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
* were checked for expiry
* @rfs_expire_index: next accelerated RFS filter ID to check for expiry
* @n_rfs_succeeded: number of successful accelerated RFS filter insertions
drivers/net/ethernet: clean up mis-targeted comments As part of the W=1 cleanups for ethernet, a million [*] driver comments had to be cleaned up to get the W=1 compilation to succeed. This change finally makes the drivers/net/ethernet tree compile with W=1 set on the command line. NOTE: The kernel uses kdoc style (see Documentation/process/kernel-doc.rst) when documenting code, not doxygen or other styles. After this patch the x86_64 build has no warnings from W=1, however scripts/kernel-doc says there are 1545 more warnings in source files, that I need to develop a script to fix in a followup patch. The errors fixed here are all kdoc of a few classes, with a few outliers: In file included from drivers/net/ethernet/qlogic/netxen/netxen_nic_hw.c:10: drivers/net/ethernet/qlogic/netxen/netxen_nic.h:1193:18: warning: ‘FW_DUMP_LEVELS’ defined but not used [-Wunused-const-variable=] 1193 | static const u32 FW_DUMP_LEVELS[] = { 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff }; | ^~~~~~~~~~~~~~ ... repeats 4 times... drivers/net/ethernet/sun/cassini.c:2084:24: warning: suggest braces around empty body in an ‘else’ statement [-Wempty-body] 2084 | RX_USED_ADD(page, i); drivers/net/ethernet/natsemi/ns83820.c: In function ‘phy_intr’: drivers/net/ethernet/natsemi/ns83820.c:603:6: warning: variable ‘tbisr’ set but not used [-Wunused-but-set-variable] 603 | u32 tbisr, tanar, tanlpar; | ^~~~~ drivers/net/ethernet/natsemi/ns83820.c: In function ‘ns83820_get_link_ksettings’: drivers/net/ethernet/natsemi/ns83820.c:1207:11: warning: variable ‘tanar’ set but not used [-Wunused-but-set-variable] 1207 | u32 cfg, tanar, tbicr; | ^~~~~ drivers/net/ethernet/packetengines/yellowfin.c:1063:18: warning: variable ‘yf_size’ set but not used [-Wunused-but-set-variable] 1063 | int data_size, yf_size; | ^~~~~~~ Normal kdoc fixes: warning: Function parameter or member 'x' not described in 'y' warning: Excess function parameter 'x' description in 'y' warning: Cannot understand <string> on line <NNN> - I thought it was a doc line [*] - ok it wasn't quite a million, but it felt like it. Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-26 06:24:45 +08:00
* @n_rfs_failed: number of failed accelerated RFS filter insertions
* @filter_work: Work item for efx_filter_rfs_expire()
* @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
* indexed by filter ID
* @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
* @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
* @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
* @n_rx_mcast_mismatch: Count of unmatched multicast frames
* @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
* @n_rx_overlength: Count of RX_OVERLENGTH errors
* @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
* @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
* lack of descriptors
* @n_rx_merge_events: Number of RX merged completion events
* @n_rx_merge_packets: Number of RX packets completed by merged events
* @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
* @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
* @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
* @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
* @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
* not recognised
* @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
* __efx_rx_packet(), or zero if there is none
* @rx_pkt_index: Ring index of first buffer for next packet to be delivered
* by __efx_rx_packet(), if @rx_pkt_n_frags != 0
* @rx_list: list of SKBs from current RX, awaiting processing
* @rx_queue: RX queue for this channel
* @tx_queue: TX queues for this channel
* @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
* @sync_events_state: Current state of sync events on this channel
* @sync_timestamp_major: Major part of the last ptp sync event
* @sync_timestamp_minor: Minor part of the last ptp sync event
*/
struct efx_channel {
struct efx_nic *efx;
int channel;
const struct efx_channel_type *type;
bool eventq_init;
bool enabled;
int irq;
unsigned int irq_moderation_us;
struct net_device *napi_dev;
struct napi_struct napi_str;
#ifdef CONFIG_NET_RX_BUSY_POLL
unsigned long busy_poll_state;
#endif
struct efx_special_buffer eventq;
unsigned int eventq_mask;
unsigned int eventq_read_ptr;
int event_test_cpu;
unsigned int irq_count;
unsigned int irq_mod_score;
#ifdef CONFIG_RFS_ACCEL
unsigned int rfs_filter_count;
unsigned int rfs_last_expiry;
unsigned int rfs_expire_index;
unsigned int n_rfs_succeeded;
unsigned int n_rfs_failed;
struct delayed_work filter_work;
#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
u32 *rps_flow_id;
#endif
unsigned int n_rx_tobe_disc;
unsigned int n_rx_ip_hdr_chksum_err;
unsigned int n_rx_tcp_udp_chksum_err;
unsigned int n_rx_outer_ip_hdr_chksum_err;
unsigned int n_rx_outer_tcp_udp_chksum_err;
unsigned int n_rx_inner_ip_hdr_chksum_err;
unsigned int n_rx_inner_tcp_udp_chksum_err;
unsigned int n_rx_eth_crc_err;
unsigned int n_rx_mcast_mismatch;
unsigned int n_rx_frm_trunc;
unsigned int n_rx_overlength;
unsigned int n_skbuff_leaks;
unsigned int n_rx_nodesc_trunc;
unsigned int n_rx_merge_events;
unsigned int n_rx_merge_packets;
unsigned int n_rx_xdp_drops;
unsigned int n_rx_xdp_bad_drops;
unsigned int n_rx_xdp_tx;
unsigned int n_rx_xdp_redirect;
unsigned int n_rx_mport_bad;
unsigned int rx_pkt_n_frags;
unsigned int rx_pkt_index;
struct list_head *rx_list;
struct efx_rx_queue rx_queue;
struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
enum efx_sync_events_state sync_events_state;
u32 sync_timestamp_major;
u32 sync_timestamp_minor;
};
/**
* struct efx_msi_context - Context for each MSI
* @efx: The associated NIC
* @index: Index of the channel/IRQ
* @name: Name of the channel/IRQ
*
* Unlike &struct efx_channel, this is never reallocated and is always
* safe for the IRQ handler to access.
*/
struct efx_msi_context {
struct efx_nic *efx;
unsigned int index;
char name[IFNAMSIZ + 6];
};
/**
* struct efx_channel_type - distinguishes traffic and extra channels
* @handle_no_channel: Handle failure to allocate an extra channel
* @pre_probe: Set up extra state prior to initialisation
* @post_remove: Tear down extra state after finalisation, if allocated.
* May be called on channels that have not been probed.
* @get_name: Generate the channel's name (used for its IRQ handler)
* @copy: Copy the channel state prior to reallocation. May be %NULL if
* reallocation is not supported.
* @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
* @want_txqs: Determine whether this channel should have TX queues
* created. If %NULL, TX queues are not created.
* @keep_eventq: Flag for whether event queue should be kept initialised
* while the device is stopped
* @want_pio: Flag for whether PIO buffers should be linked to this
* channel's TX queues.
*/
struct efx_channel_type {
void (*handle_no_channel)(struct efx_nic *);
int (*pre_probe)(struct efx_channel *);
void (*post_remove)(struct efx_channel *);
void (*get_name)(struct efx_channel *, char *buf, size_t len);
struct efx_channel *(*copy)(const struct efx_channel *);
bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
bool (*want_txqs)(struct efx_channel *);
bool keep_eventq;
bool want_pio;
};
enum efx_led_mode {
EFX_LED_OFF = 0,
EFX_LED_ON = 1,
EFX_LED_DEFAULT = 2
};
#define STRING_TABLE_LOOKUP(val, member) \
((val) < member ## _max) ? member ## _names[val] : "(invalid)"
extern const char *const efx_loopback_mode_names[];
extern const unsigned int efx_loopback_mode_max;
#define LOOPBACK_MODE(efx) \
STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
enum efx_int_mode {
/* Be careful if altering to correct macro below */
EFX_INT_MODE_MSIX = 0,
EFX_INT_MODE_MSI = 1,
EFX_INT_MODE_LEGACY = 2,
EFX_INT_MODE_MAX /* Insert any new items before this */
};
#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
enum nic_state {
STATE_UNINIT = 0, /* device being probed/removed */
STATE_PROBED, /* hardware probed */
STATE_NET_DOWN, /* netdev registered */
STATE_NET_UP, /* ready for traffic */
STATE_DISABLED, /* device disabled due to hardware errors */
STATE_RECOVERY = 0x100,/* recovering from PCI error */
STATE_FROZEN = 0x200, /* frozen by power management */
};
static inline bool efx_net_active(enum nic_state state)
{
return state == STATE_NET_DOWN || state == STATE_NET_UP;
}
static inline bool efx_frozen(enum nic_state state)
{
return state & STATE_FROZEN;
}
static inline bool efx_recovering(enum nic_state state)
{
return state & STATE_RECOVERY;
}
static inline enum nic_state efx_freeze(enum nic_state state)
{
WARN_ON(!efx_net_active(state));
return state | STATE_FROZEN;
}
static inline enum nic_state efx_thaw(enum nic_state state)
{
WARN_ON(!efx_frozen(state));
return state & ~STATE_FROZEN;
}
static inline enum nic_state efx_recover(enum nic_state state)
{
WARN_ON(!efx_net_active(state));
return state | STATE_RECOVERY;
}
static inline enum nic_state efx_recovered(enum nic_state state)
{
WARN_ON(!efx_recovering(state));
return state & ~STATE_RECOVERY;
}
/* Forward declaration */
struct efx_nic;
/* Pseudo bit-mask flow control field */
#define EFX_FC_RX FLOW_CTRL_RX
#define EFX_FC_TX FLOW_CTRL_TX
#define EFX_FC_AUTO 4
/**
* struct efx_link_state - Current state of the link
* @up: Link is up
* @fd: Link is full-duplex
* @fc: Actual flow control flags
* @speed: Link speed (Mbps)
*/
struct efx_link_state {
bool up;
bool fd;
u8 fc;
unsigned int speed;
};
static inline bool efx_link_state_equal(const struct efx_link_state *left,
const struct efx_link_state *right)
{
return left->up == right->up && left->fd == right->fd &&
left->fc == right->fc && left->speed == right->speed;
}
/**
* enum efx_phy_mode - PHY operating mode flags
* @PHY_MODE_NORMAL: on and should pass traffic
* @PHY_MODE_TX_DISABLED: on with TX disabled
* @PHY_MODE_LOW_POWER: set to low power through MDIO
* @PHY_MODE_OFF: switched off through external control
* @PHY_MODE_SPECIAL: on but will not pass traffic
*/
enum efx_phy_mode {
PHY_MODE_NORMAL = 0,
PHY_MODE_TX_DISABLED = 1,
PHY_MODE_LOW_POWER = 2,
PHY_MODE_OFF = 4,
PHY_MODE_SPECIAL = 8,
};
static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
{
return !!(mode & ~PHY_MODE_TX_DISABLED);
}
/**
* struct efx_hw_stat_desc - Description of a hardware statistic
* @name: Name of the statistic as visible through ethtool, or %NULL if
* it should not be exposed
* @dma_width: Width in bits (0 for non-DMA statistics)
* @offset: Offset within stats (ignored for non-DMA statistics)
*/
struct efx_hw_stat_desc {
const char *name;
u16 dma_width;
u16 offset;
};
/* Number of bits used in a multicast filter hash address */
#define EFX_MCAST_HASH_BITS 8
/* Number of (single-bit) entries in a multicast filter hash */
#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
/* An Efx multicast filter hash */
union efx_multicast_hash {
u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
};
struct vfdi_status;
/* The reserved RSS context value */
#define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff
/**
* struct efx_rss_context - A user-defined RSS context for filtering
* @list: node of linked list on which this struct is stored
* @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
* %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
* For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
* @user_id: the rss_context ID exposed to userspace over ethtool.
* @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
* @rx_hash_key: Toeplitz hash key for this RSS context
* @indir_table: Indirection table for this RSS context
*/
struct efx_rss_context {
struct list_head list;
u32 context_id;
u32 user_id;
bool rx_hash_udp_4tuple;
u8 rx_hash_key[40];
u32 rx_indir_table[128];
};
#ifdef CONFIG_RFS_ACCEL
/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
* is used to test if filter does or will exist.
*/
#define EFX_ARFS_FILTER_ID_PENDING -1
#define EFX_ARFS_FILTER_ID_ERROR -2
#define EFX_ARFS_FILTER_ID_REMOVING -3
/**
* struct efx_arfs_rule - record of an ARFS filter and its IDs
* @node: linkage into hash table
* @spec: details of the filter (used as key for hash table). Use efx->type to
* determine which member to use.
* @rxq_index: channel to which the filter will steer traffic.
* @arfs_id: filter ID which was returned to ARFS
* @filter_id: index in software filter table. May be
* %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
* %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
* %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
*/
struct efx_arfs_rule {
struct hlist_node node;
struct efx_filter_spec spec;
u16 rxq_index;
u16 arfs_id;
s32 filter_id;
};
/* Size chosen so that the table is one page (4kB) */
#define EFX_ARFS_HASH_TABLE_SIZE 512
/**
* struct efx_async_filter_insertion - Request to asynchronously insert a filter
* @net_dev: Reference to the netdevice
* @spec: The filter to insert
* @work: Workitem for this request
* @rxq_index: Identifies the channel for which this request was made
* @flow_id: Identifies the kernel-side flow for which this request was made
*/
struct efx_async_filter_insertion {
struct net_device *net_dev;
struct efx_filter_spec spec;
struct work_struct work;
u16 rxq_index;
u32 flow_id;
};
/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
#define EFX_RPS_MAX_IN_FLIGHT 8
#endif /* CONFIG_RFS_ACCEL */
enum efx_xdp_tx_queues_mode {
EFX_XDP_TX_QUEUES_DEDICATED, /* one queue per core, locking not needed */
EFX_XDP_TX_QUEUES_SHARED, /* each queue used by more than 1 core */
EFX_XDP_TX_QUEUES_BORROWED /* queues borrowed from net stack */
};
/**
* struct efx_nic - an Efx NIC
* @name: Device name (net device name or bus id before net device registered)
* @pci_dev: The PCI device
* @node: List node for maintaning primary/secondary function lists
* @primary: &struct efx_nic instance for the primary function of this
* controller. May be the same structure, and may be %NULL if no
* primary function is bound. Serialised by rtnl_lock.
* @secondary_list: List of &struct efx_nic instances for the secondary PCI
* functions of the controller, if this is for the primary function.
* Serialised by rtnl_lock.
* @type: Controller type attributes
* @legacy_irq: IRQ number
* @workqueue: Workqueue for port reconfigures and the HW monitor.
* Work items do not hold and must not acquire RTNL.
* @workqueue_name: Name of workqueue
* @reset_work: Scheduled reset workitem
* @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value
* @vi_stride: step between per-VI registers / memory regions
* @interrupt_mode: Interrupt mode
* @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
* @timer_max_ns: Interrupt timer maximum value, in nanoseconds
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
* @irqs_hooked: Channel interrupts are hooked
* @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
* @irq_rx_moderation_us: IRQ moderation time for RX event queues
* @msg_enable: Log message enable flags
* @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
* @reset_pending: Bitmask for pending resets
* @tx_queue: TX DMA queues
* @rx_queue: RX DMA queues
* @channel: Channels
* @msi_context: Context for each MSI
* @extra_channel_types: Types of extra (non-traffic) channels that
* should be allocated for this NIC
* @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
* @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
* @xdp_txq_queues_mode: XDP TX queues sharing strategy.
* @rxq_entries: Size of receive queues requested by user.
* @txq_entries: Size of transmit queues requested by user.
* @txq_stop_thresh: TX queue fill level at or above which we stop it.
* @txq_wake_thresh: TX queue fill level at or below which we wake it.
* @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
* @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
* @sram_lim_qw: Qword address limit of SRAM
* @next_buffer_table: First available buffer table id
* @n_channels: Number of channels in use
* @n_rx_channels: Number of channels used for RX (= number of RX queues)
* @n_tx_channels: Number of channels used for TX
* @n_extra_tx_channels: Number of extra channels with TX queues
* @tx_queues_per_channel: number of TX queues probed on each channel
* @n_xdp_channels: Number of channels used for XDP TX
* @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
* @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
* @rx_ip_align: RX DMA address offset to have IP header aligned in
* in accordance with NET_IP_ALIGN
* @rx_dma_len: Current maximum RX DMA length
* @rx_buffer_order: Order (log2) of number of pages for each RX buffer
* @rx_buffer_truesize: Amortised allocation size of an RX buffer,
* for use in sk_buff::truesize
* @rx_prefix_size: Size of RX prefix before packet data
* @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
* (valid only if @rx_prefix_size != 0; always negative)
* @rx_packet_len_offset: Offset of RX packet length from start of packet data
* (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
* @rx_packet_ts_offset: Offset of timestamp from start of packet data
* (valid only if channel->sync_timestamps_enabled; always negative)
* @rx_scatter: Scatter mode enabled for receives
* @rss_context: Main RSS context. Its @list member is the head of the list of
* RSS contexts created by user requests
* @rss_lock: Protects custom RSS context software state in @rss_context.list
* @vport_id: The function's vport ID, only relevant for PFs
* @int_error_count: Number of internal errors seen recently
* @int_error_expire: Time at which error count will be expired
* @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
* @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
* acknowledge but do nothing else.
* @irq_status: Interrupt status buffer
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @irq_level: IRQ level/index for IRQs not triggered by an event queue
* @selftest_work: Work item for asynchronous self-test
* @mtd_list: List of MTDs attached to the NIC
* @nic_data: Hardware dependent state
* @mcdi: Management-Controller-to-Driver Interface state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
* efx_monitor() and efx_reconfigure_port()
* @port_enabled: Port enabled indicator.
* Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
* efx_mac_work() with kernel interfaces. Safe to read under any
* one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
* be held to modify it.
* @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock
* @fixed_features: Features which cannot be turned off
* @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
* field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
* @stats_buffer: DMA buffer for statistics
* @phy_type: PHY type
* @phy_data: PHY private data (including PHY-specific stats)
* @mdio: PHY MDIO interface
* @mdio_bus: PHY MDIO bus ID (only used by Siena)
* @phy_mode: PHY operating mode. Serialised by @mac_lock.
* @link_advertising: Autonegotiation advertising flags
* @fec_config: Forward Error Correction configuration flags. For bit positions
* see &enum ethtool_fec_config_bits.
* @link_state: Current state of the link
* @n_link_state_changes: Number of times the link has changed state
* @unicast_filter: Flag for Falcon-arch simple unicast filter.
* Protected by @mac_lock.
* @multicast_hash: Multicast hash table for Falcon-arch.
* Protected by @mac_lock.
* @wanted_fc: Wanted flow control flags
* @fc_disable: When non-zero flow control is disabled. Typically used to
* ensure that network back pressure doesn't delay dma queue flushes.
* Serialised by the rtnl lock.
* @mac_work: Work item for changing MAC promiscuity and multicast hash
* @loopback_mode: Loopback status
* @loopback_modes: Supported loopback mode bitmask
* @loopback_selftest: Offline self-test private state
* @xdp_prog: Current XDP programme for this interface
* @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
* @filter_state: Architecture-dependent filter table state
* @rps_mutex: Protects RPS state of all channels
* @rps_slot_map: bitmap of in-flight entries in @rps_slot
* @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
* @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
* @rps_next_id).
* @rps_hash_table: Mapping between ARFS filters and their various IDs
* @rps_next_id: next arfs_id for an ARFS filter
* @active_queues: Count of RX and TX queues that haven't been flushed and drained.
* @rxq_flush_pending: Count of number of receive queues that need to be flushed.
* Decremented when the efx_flush_rx_queue() is called.
* @rxq_flush_outstanding: Count of number of RX flushes started but not yet
* completed (either success or failure). Not used when MCDI is used to
* flush receive queues.
* @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
* @vf_count: Number of VFs intended to be enabled.
* @vf_init_count: Number of VFs that have been fully initialised.
* @vi_scale: log2 number of vnics per VF.
* @vf_reps_lock: Protects vf_reps list
* @vf_reps: local VF reps
* @ptp_data: PTP state data
* @ptp_warned: has this NIC seen and warned about unexpected PTP events?
* @vpd_sn: Serial number read from VPD
* @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
* xdp_rxq_info structures?
* @netdev_notifier: Netdevice notifier.
* @tc: state for TC offload (EF100).
* @mem_bar: The BAR that is mapped into membase.
* @reg_base: Offset from the start of the bar to the function control window.
* @monitor_work: Hardware monitor workitem
* @biu_lock: BIU (bus interface unit) lock
* @last_irq_cpu: Last CPU to handle a possible test interrupt. This
* field is used by efx_test_interrupts() to verify that an
* interrupt has occurred.
* @stats_lock: Statistics update lock. Must be held when calling
* efx_nic_type::{update,start,stop}_stats.
* @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
*
* This is stored in the private area of the &struct net_device.
*/
struct efx_nic {
/* The following fields should be written very rarely */
char name[IFNAMSIZ];
struct list_head node;
struct efx_nic *primary;
struct list_head secondary_list;
struct pci_dev *pci_dev;
unsigned int port_num;
const struct efx_nic_type *type;
int legacy_irq;
bool eeh_disabled_legacy_irq;
struct workqueue_struct *workqueue;
char workqueue_name[16];
struct work_struct reset_work;
resource_size_t membase_phys;
void __iomem *membase;
unsigned int vi_stride;
enum efx_int_mode interrupt_mode;
unsigned int timer_quantum_ns;
unsigned int timer_max_ns;
bool irq_rx_adaptive;
bool irqs_hooked;
unsigned int irq_mod_step_us;
unsigned int irq_rx_moderation_us;
u32 msg_enable;
enum nic_state state;
unsigned long reset_pending;
struct efx_channel *channel[EFX_MAX_CHANNELS];
struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
const struct efx_channel_type *
extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
unsigned int xdp_tx_queue_count;
struct efx_tx_queue **xdp_tx_queues;
enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
unsigned rxq_entries;
unsigned txq_entries;
unsigned int txq_stop_thresh;
unsigned int txq_wake_thresh;
unsigned tx_dc_base;
unsigned rx_dc_base;
unsigned sram_lim_qw;
unsigned next_buffer_table;
unsigned int max_channels;
unsigned int max_vis;
unsigned int max_tx_channels;
unsigned n_channels;
unsigned n_rx_channels;
unsigned rss_spread;
unsigned tx_channel_offset;
unsigned n_tx_channels;
unsigned n_extra_tx_channels;
unsigned int tx_queues_per_channel;
unsigned int n_xdp_channels;
unsigned int xdp_channel_offset;
unsigned int xdp_tx_per_channel;
unsigned int rx_ip_align;
unsigned int rx_dma_len;
unsigned int rx_buffer_order;
unsigned int rx_buffer_truesize;
unsigned int rx_page_buf_step;
sfc: reuse pages to avoid DMA mapping/unmapping costs On POWER systems, DMA mapping/unmapping operations are very expensive. These changes reduce these costs by trying to reuse DMA mapped pages. After all the buffers associated with a page have been processed and passed up, the page is placed into a ring (if there is room). For each page that is required for a refill operation, a page in the ring is examined to determine if its page count has fallen to 1, ie. the kernel has released its reference to these packets. If this is the case, the page can be immediately added back into the RX descriptor ring, without having to re-map it for DMA. If the kernel is still holding a reference to this page, it is removed from the ring and unmapped for DMA. Then a new page, which can immediately be used by RX buffers in the descriptor ring, is allocated and DMA mapped. The time a page needs to spend in the recycle ring before the kernel has released its page references is based on the number of buffers that use this page. As large pages can hold more RX buffers, the RX recycle ring can be shorter. This reduces memory usage on POWER systems, while maintaining the performance gain achieved by recycling pages, following the driver change to pack more than two RX buffers into large pages. When an IOMMU is not present, the recycle ring can be small to reduce memory usage, since DMA mapping operations are inexpensive. With a small recycle ring, attempting to refill the descriptor queue with more buffers than the equivalent size of the recycle ring could ultimately lead to memory leaks if page entries in the recycle ring were overwritten. To prevent this, the check to see if the recycle ring is full is changed to check if the next entry to be written is NULL. [bwh: Combine and rebase several commits so this is complete before the following buffer-packing changes. Remove module parameter.] Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
2013-02-13 18:54:41 +08:00
unsigned int rx_bufs_per_page;
unsigned int rx_pages_per_batch;
unsigned int rx_prefix_size;
int rx_packet_hash_offset;
int rx_packet_len_offset;
int rx_packet_ts_offset;
bool rx_scatter;
struct efx_rss_context rss_context;
struct mutex rss_lock;
u32 vport_id;
unsigned int_error_count;
unsigned long int_error_expire;
bool must_realloc_vis;
bool irq_soft_enabled;
struct efx_buffer irq_status;
unsigned irq_zero_count;
unsigned irq_level;
struct delayed_work selftest_work;
#ifdef CONFIG_SFC_MTD
struct list_head mtd_list;
#endif
void *nic_data;
struct efx_mcdi_data *mcdi;
struct mutex mac_lock;
struct work_struct mac_work;
bool port_enabled;
bool mc_bist_for_other_fn;
bool port_initialized;
struct net_device *net_dev;
netdev_features_t fixed_features;
u16 num_mac_stats;
struct efx_buffer stats_buffer;
u64 rx_nodesc_drops_total;
u64 rx_nodesc_drops_while_down;
bool rx_nodesc_drops_prev_state;
unsigned int phy_type;
void *phy_data;
struct mdio_if_info mdio;
unsigned int mdio_bus;
enum efx_phy_mode phy_mode;
__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
u32 fec_config;
struct efx_link_state link_state;
unsigned int n_link_state_changes;
bool unicast_filter;
union efx_multicast_hash multicast_hash;
u8 wanted_fc;
unsigned fc_disable;
atomic_t rx_reset;
enum efx_loopback_mode loopback_mode;
u64 loopback_modes;
void *loopback_selftest;
/* We access loopback_selftest immediately before running XDP,
* so we want them next to each other.
*/
struct bpf_prog __rcu *xdp_prog;
struct rw_semaphore filter_sem;
void *filter_state;
#ifdef CONFIG_RFS_ACCEL
struct mutex rps_mutex;
unsigned long rps_slot_map;
struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
spinlock_t rps_hash_lock;
struct hlist_head *rps_hash_table;
u32 rps_next_id;
#endif
atomic_t active_queues;
atomic_t rxq_flush_pending;
atomic_t rxq_flush_outstanding;
wait_queue_head_t flush_wq;
#ifdef CONFIG_SFC_SRIOV
unsigned vf_count;
unsigned vf_init_count;
unsigned vi_scale;
#endif
spinlock_t vf_reps_lock;
struct list_head vf_reps;
struct efx_ptp_data *ptp_data;
bool ptp_warned;
char *vpd_sn;
bool xdp_rxq_info_failed;
struct notifier_block netdev_notifier;
struct efx_tc_state *tc;
unsigned int mem_bar;
u32 reg_base;
/* The following fields may be written more often */
struct delayed_work monitor_work ____cacheline_aligned_in_smp;
spinlock_t biu_lock;
int last_irq_cpu;
spinlock_t stats_lock;
atomic_t n_rx_noskb_drops;
};
/**
* struct efx_probe_data - State after hardware probe
* @pci_dev: The PCI device
* @efx: Efx NIC details
*/
struct efx_probe_data {
struct pci_dev *pci_dev;
struct efx_nic efx;
};
static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
{
struct efx_probe_data **probe_ptr = netdev_priv(dev);
struct efx_probe_data *probe_data = *probe_ptr;
return &probe_data->efx;
}
static inline int efx_dev_registered(struct efx_nic *efx)
{
return efx->net_dev->reg_state == NETREG_REGISTERED;
}
static inline unsigned int efx_port_num(struct efx_nic *efx)
{
return efx->port_num;
}
struct efx_mtd_partition {
struct list_head node;
struct mtd_info mtd;
const char *dev_type_name;
const char *type_name;
char name[IFNAMSIZ + 20];
};
struct efx_udp_tunnel {
#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff
u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
__be16 port;
};
/**
* struct efx_nic_type - Efx device type definition
* @mem_bar: Get the memory BAR
* @mem_map_size: Get memory BAR mapped size
* @probe: Probe the controller
* @remove: Free resources allocated by probe()
* @init: Initialise the controller
* @dimension_resources: Dimension controller resources (buffer table,
* and VIs once the available interrupt resources are clear)
* @fini: Shut down the controller
* @monitor: Periodic function for polling link state and hardware monitor
* @map_reset_reason: Map ethtool reset reason to a reset method
* @map_reset_flags: Map ethtool reset flags to a reset method, if possible
* @reset: Reset the controller hardware and possibly the PHY. This will
* be called while the controller is uninitialised.
* @probe_port: Probe the MAC and PHY
* @remove_port: Free resources allocated by probe_port()
* @handle_global_event: Handle a "global" event (may be %NULL)
* @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
* @prepare_flush: Prepare the hardware for flushing the DMA queues
* (for Falcon architecture)
* @finish_flush: Clean up after flushing the DMA queues (for Falcon
* architecture)
* @prepare_flr: Prepare for an FLR
* @finish_flr: Clean up after an FLR
* @describe_stats: Describe statistics for ethtool
* @update_stats: Update statistics not provided by event handling.
* Either argument may be %NULL.
* @update_stats_atomic: Update statistics while in atomic context, if that
* is more limiting than @update_stats. Otherwise, leave %NULL and
* driver core will call @update_stats.
* @start_stats: Start the regular fetching of statistics
* @pull_stats: Pull stats from the NIC and wait until they arrive.
* @stop_stats: Stop the regular fetching of statistics
* @push_irq_moderation: Apply interrupt moderation value
* @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
* @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
* @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
* to the hardware. Serialised by the mac_lock.
* @check_mac_fault: Check MAC fault state. True if fault present.
* @get_wol: Get WoL configuration from driver state
* @set_wol: Push WoL configuration to the NIC
* @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
* @get_fec_stats: Get standard FEC statistics.
* @test_chip: Test registers. May use efx_farch_test_registers(), and is
* expected to reset the NIC.
* @test_nvram: Test validity of NVRAM contents
* @mcdi_request: Send an MCDI request with the given header and SDU.
* The SDU length may be any value from 0 up to the protocol-
* defined maximum, but its buffer will be padded to a multiple
* of 4 bytes.
* @mcdi_poll_response: Test whether an MCDI response is available.
* @mcdi_read_response: Read the MCDI response PDU. The offset will
* be a multiple of 4. The length may not be, but the buffer
* will be padded so it is safe to round up.
* @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
* return an appropriate error code for aborting any current
* request; otherwise return 0.
* @irq_enable_master: Enable IRQs on the NIC. Each event queue must
* be separately enabled after this.
* @irq_test_generate: Generate a test IRQ
* @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
* queue must be separately disabled before this.
* @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
* a pointer to the &struct efx_msi_context for the channel.
* @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
* is a pointer to the &struct efx_nic.
* @tx_probe: Allocate resources for TX queue (and select TXQ type)
* @tx_init: Initialise TX queue on the NIC
* @tx_remove: Free resources for TX queue
* @tx_write: Write TX descriptors and doorbell
* @tx_enqueue: Add an SKB to TX queue
* @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
* @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
* @rx_push_rss_context_config: Write RSS hash key and indirection table for
* user RSS context to the NIC
* @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
* RSS context back from the NIC
* @rx_probe: Allocate resources for RX queue
* @rx_init: Initialise RX queue on the NIC
* @rx_remove: Free resources for RX queue
* @rx_write: Write RX descriptors and doorbell
* @rx_defer_refill: Generate a refill reminder event
* @rx_packet: Receive the queued RX buffer on a channel
* @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
* @ev_probe: Allocate resources for event queue
* @ev_init: Initialise event queue on the NIC
* @ev_fini: Deinitialise event queue on the NIC
* @ev_remove: Free resources for event queue
* @ev_process: Process events for a queue, up to the given NAPI quota
* @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
* @ev_test_generate: Generate a test event
* @filter_table_probe: Probe filter capabilities and set up filter software state
* @filter_table_restore: Restore filters removed from hardware
* @filter_table_remove: Remove filters from hardware and tear down software state
* @filter_update_rx_scatter: Update filters after change to rx scatter setting
* @filter_insert: add or replace a filter
* @filter_remove_safe: remove a filter by ID, carefully
* @filter_get_safe: retrieve a filter by ID, carefully
* @filter_clear_rx: Remove all RX filters whose priority is less than or
* equal to the given priority and is not %EFX_FILTER_PRI_AUTO
* @filter_count_rx_used: Get the number of filters in use at a given priority
* @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
* @filter_get_rx_ids: Get list of RX filters at a given priority
* @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
* This must check whether the specified table entry is used by RFS
* and that rps_may_expire_flow() returns true for it.
* @mtd_probe: Probe and add MTD partitions associated with this net device,
* using efx_mtd_add()
* @mtd_rename: Set an MTD partition name using the net device name
* @mtd_read: Read from an MTD partition
* @mtd_erase: Erase part of an MTD partition
* @mtd_write: Write to an MTD partition
* @mtd_sync: Wait for write-back to complete on MTD partition. This
* also notifies the driver that a writer has finished using this
* partition.
* @ptp_write_host_time: Send host time to MC as part of sync protocol
* @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
* timestamping, possibly only temporarily for the purposes of a reset.
* @ptp_set_ts_config: Set hardware timestamp configuration. The flags
* and tx_type will already have been validated but this operation
* must validate and update rx_filter.
* @get_phys_port_id: Get the underlying physical port id.
* @set_mac_address: Set the MAC address of the device
* @tso_versions: Returns mask of firmware-assisted TSO versions supported.
* If %NULL, then device does not support any TSO version.
* @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
* @udp_tnl_has_port: Check if a port has been added as UDP tunnel
* @print_additional_fwver: Dump NIC-specific additional FW version info
* @sensor_event: Handle a sensor event from MCDI
* @rx_recycle_ring_size: Size of the RX recycle ring
* @revision: Hardware architecture revision
* @txd_ptr_tbl_base: TX descriptor ring base address
* @rxd_ptr_tbl_base: RX descriptor ring base address
* @buf_tbl_base: Buffer table base address
* @evq_ptr_tbl_base: Event queue pointer table base address
* @evq_rptr_tbl_base: Event queue read-pointer table base address
* @max_dma_mask: Maximum possible DMA mask
* @rx_prefix_size: Size of RX prefix before packet data
* @rx_hash_offset: Offset of RX flow hash within prefix
* @rx_ts_offset: Offset of timestamp within prefix
* @rx_buffer_padding: Size of padding at end of RX packet
* @can_rx_scatter: NIC is able to scatter packets to multiple buffers
* @always_rx_scatter: NIC will always scatter packets to multiple buffers
* @option_descriptors: NIC supports TX option descriptors
* @min_interrupt_mode: Lowest capability interrupt mode supported
* from &enum efx_int_mode.
* @timer_period_max: Maximum period of interrupt timer (in ticks)
* @offload_features: net_device feature flags for protocol offload
* features implemented in hardware
* @mcdi_max_ver: Maximum MCDI version supported
* @hwtstamp_filters: Mask of hardware timestamp filter types supported
*/
struct efx_nic_type {
bool is_vf;
unsigned int (*mem_bar)(struct efx_nic *efx);
unsigned int (*mem_map_size)(struct efx_nic *efx);
int (*probe)(struct efx_nic *efx);
void (*remove)(struct efx_nic *efx);
int (*init)(struct efx_nic *efx);
int (*dimension_resources)(struct efx_nic *efx);
void (*fini)(struct efx_nic *efx);
void (*monitor)(struct efx_nic *efx);
enum reset_type (*map_reset_reason)(enum reset_type reason);
int (*map_reset_flags)(u32 *flags);
int (*reset)(struct efx_nic *efx, enum reset_type method);
int (*probe_port)(struct efx_nic *efx);
void (*remove_port)(struct efx_nic *efx);
bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
int (*fini_dmaq)(struct efx_nic *efx);
void (*prepare_flush)(struct efx_nic *efx);
void (*finish_flush)(struct efx_nic *efx);
void (*prepare_flr)(struct efx_nic *efx);
void (*finish_flr)(struct efx_nic *efx);
size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats);
size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats);
void (*start_stats)(struct efx_nic *efx);
void (*pull_stats)(struct efx_nic *efx);
void (*stop_stats)(struct efx_nic *efx);
void (*push_irq_moderation)(struct efx_channel *channel);
int (*reconfigure_port)(struct efx_nic *efx);
void (*prepare_enable_fc_tx)(struct efx_nic *efx);
int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
bool (*check_mac_fault)(struct efx_nic *efx);
void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
int (*set_wol)(struct efx_nic *efx, u32 type);
void (*resume_wol)(struct efx_nic *efx);
void (*get_fec_stats)(struct efx_nic *efx,
struct ethtool_fec_stats *fec_stats);
unsigned int (*check_caps)(const struct efx_nic *efx,
u8 flag,
u32 offset);
int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
int (*test_nvram)(struct efx_nic *efx);
void (*mcdi_request)(struct efx_nic *efx,
const efx_dword_t *hdr, size_t hdr_len,
const efx_dword_t *sdu, size_t sdu_len);
bool (*mcdi_poll_response)(struct efx_nic *efx);
void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
size_t pdu_offset, size_t pdu_len);
int (*mcdi_poll_reboot)(struct efx_nic *efx);
void (*mcdi_reboot_detected)(struct efx_nic *efx);
void (*irq_enable_master)(struct efx_nic *efx);
int (*irq_test_generate)(struct efx_nic *efx);
void (*irq_disable_non_ev)(struct efx_nic *efx);
irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
int (*tx_probe)(struct efx_tx_queue *tx_queue);
void (*tx_init)(struct efx_tx_queue *tx_queue);
void (*tx_remove)(struct efx_tx_queue *tx_queue);
void (*tx_write)(struct efx_tx_queue *tx_queue);
netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, unsigned int len);
int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
const u32 *rx_indir_table, const u8 *key);
int (*rx_pull_rss_config)(struct efx_nic *efx);
int (*rx_push_rss_context_config)(struct efx_nic *efx,
struct efx_rss_context *ctx,
const u32 *rx_indir_table,
const u8 *key);
int (*rx_pull_rss_context_config)(struct efx_nic *efx,
struct efx_rss_context *ctx);
void (*rx_restore_rss_contexts)(struct efx_nic *efx);
int (*rx_probe)(struct efx_rx_queue *rx_queue);
void (*rx_init)(struct efx_rx_queue *rx_queue);
void (*rx_remove)(struct efx_rx_queue *rx_queue);
void (*rx_write)(struct efx_rx_queue *rx_queue);
void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
void (*rx_packet)(struct efx_channel *channel);
bool (*rx_buf_hash_valid)(const u8 *prefix);
int (*ev_probe)(struct efx_channel *channel);
int (*ev_init)(struct efx_channel *channel);
void (*ev_fini)(struct efx_channel *channel);
void (*ev_remove)(struct efx_channel *channel);
int (*ev_process)(struct efx_channel *channel, int quota);
void (*ev_read_ack)(struct efx_channel *channel);
void (*ev_test_generate)(struct efx_channel *channel);
int (*filter_table_probe)(struct efx_nic *efx);
void (*filter_table_restore)(struct efx_nic *efx);
void (*filter_table_remove)(struct efx_nic *efx);
void (*filter_update_rx_scatter)(struct efx_nic *efx);
s32 (*filter_insert)(struct efx_nic *efx,
struct efx_filter_spec *spec, bool replace);
int (*filter_remove_safe)(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id);
int (*filter_get_safe)(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id, struct efx_filter_spec *);
int (*filter_clear_rx)(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 (*filter_count_rx_used)(struct efx_nic *efx,
enum efx_filter_priority priority);
u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
s32 (*filter_get_rx_ids)(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 *buf, u32 size);
#ifdef CONFIG_RFS_ACCEL
bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
unsigned int index);
#endif
#ifdef CONFIG_SFC_MTD
int (*mtd_probe)(struct efx_nic *efx);
void (*mtd_rename)(struct efx_mtd_partition *part);
int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, u8 *buffer);
int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
size_t *retlen, const u8 *buffer);
int (*mtd_sync)(struct mtd_info *mtd);
#endif
void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
int (*ptp_set_ts_config)(struct efx_nic *efx,
struct hwtstamp_config *init);
int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
int (*get_phys_port_id)(struct efx_nic *efx,
struct netdev_phys_item_id *ppid);
int (*sriov_init)(struct efx_nic *efx);
void (*sriov_fini)(struct efx_nic *efx);
bool (*sriov_wanted)(struct efx_nic *efx);
void (*sriov_reset)(struct efx_nic *efx);
void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
u8 qos);
int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
bool spoofchk);
int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
struct ifla_vf_info *ivi);
int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
int link_state);
int (*vswitching_probe)(struct efx_nic *efx);
int (*vswitching_restore)(struct efx_nic *efx);
void (*vswitching_remove)(struct efx_nic *efx);
int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
int (*set_mac_address)(struct efx_nic *efx);
u32 (*tso_versions)(struct efx_nic *efx);
int (*udp_tnl_push_ports)(struct efx_nic *efx);
bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
size_t len);
void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
int revision;
unsigned int txd_ptr_tbl_base;
unsigned int rxd_ptr_tbl_base;
unsigned int buf_tbl_base;
unsigned int evq_ptr_tbl_base;
unsigned int evq_rptr_tbl_base;
u64 max_dma_mask;
unsigned int rx_prefix_size;
unsigned int rx_hash_offset;
unsigned int rx_ts_offset;
unsigned int rx_buffer_padding;
bool can_rx_scatter;
bool always_rx_scatter;
bool option_descriptors;
unsigned int min_interrupt_mode;
unsigned int timer_period_max;
netdev_features_t offload_features;
int mcdi_max_ver;
unsigned int max_rx_ip_filters;
u32 hwtstamp_filters;
unsigned int rx_hash_key_size;
};
/**************************************************************************
*
* Prototypes and inline functions
*
*************************************************************************/
static inline struct efx_channel *
efx_get_channel(struct efx_nic *efx, unsigned index)
{
EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
return efx->channel[index];
}
/* Iterate over all used channels */
#define efx_for_each_channel(_channel, _efx) \
for (_channel = (_efx)->channel[0]; \
_channel; \
_channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
(_efx)->channel[_channel->channel + 1] : NULL)
/* Iterate over all used channels in reverse */
#define efx_for_each_channel_rev(_channel, _efx) \
for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
_channel; \
_channel = _channel->channel ? \
(_efx)->channel[_channel->channel - 1] : NULL)
static inline struct efx_channel *
efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
{
EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
return efx->channel[efx->tx_channel_offset + index];
}
static inline struct efx_channel *
efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
{
EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
return efx->channel[efx->xdp_channel_offset + index];
}
static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
{
return channel->channel - channel->efx->xdp_channel_offset <
channel->efx->n_xdp_channels;
}
static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
{
return channel && channel->channel >= channel->efx->tx_channel_offset;
}
static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
{
if (efx_channel_is_xdp_tx(channel))
return channel->efx->xdp_tx_per_channel;
return channel->efx->tx_queues_per_channel;
}
static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
{
EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
return channel->tx_queue_by_type[type];
}
static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
{
struct efx_channel *channel = efx_get_tx_channel(efx, index);
return efx_channel_get_tx_queue(channel, type);
}
/* Iterate over all TX queues belonging to a channel */
#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
if (!efx_channel_has_tx_queues(_channel)) \
; \
else \
for (_tx_queue = (_channel)->tx_queue; \
_tx_queue < (_channel)->tx_queue + \
efx_channel_num_tx_queues(_channel); \
_tx_queue++)
static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
{
return channel->rx_queue.core_index >= 0;
}
static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel *channel)
{
EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
return &channel->rx_queue;
}
/* Iterate over all RX queues belonging to a channel */
#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
if (!efx_channel_has_rx_queue(_channel)) \
; \
else \
for (_rx_queue = &(_channel)->rx_queue; \
_rx_queue; \
_rx_queue = NULL)
static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
{
return container_of(rx_queue, struct efx_channel, rx_queue);
}
static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
{
return efx_rx_queue_channel(rx_queue)->channel;
}
/* Returns a pointer to the specified receive buffer in the RX
* descriptor queue.
*/
static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
unsigned int index)
{
return &rx_queue->buffer[index];
}
static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
{
if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
return efx_rx_buffer(rx_queue, 0);
else
return rx_buf + 1;
}
/**
* EFX_MAX_FRAME_LEN - calculate maximum frame length
*
* This calculates the maximum frame length that will be used for a
* given MTU. The frame length will be equal to the MTU plus a
* constant amount of header space and padding. This is the quantity
* that the net driver will program into the MAC as the maximum frame
* length.
*
* The 10G MAC requires 8-byte alignment on the frame
* length, so we round up to the nearest 8.
*
* Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
* XGMII cycle). If the frame length reaches the maximum value in the
* same cycle, the XMAC can miss the IPG altogether. We work around
* this by adding a further 16 bytes.
*/
#define EFX_FRAME_PAD 16
#define EFX_MAX_FRAME_LEN(mtu) \
(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
{
return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
}
static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
{
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
}
/* Get the max fill level of the TX queues on this channel */
static inline unsigned int
efx_channel_tx_fill_level(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
unsigned int fill_level = 0;
efx_for_each_channel_tx_queue(tx_queue, channel)
fill_level = max(fill_level,
tx_queue->insert_count - tx_queue->read_count);
return fill_level;
}
/* Conservative approximation of efx_channel_tx_fill_level using cached value */
static inline unsigned int
efx_channel_tx_old_fill_level(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
unsigned int fill_level = 0;
efx_for_each_channel_tx_queue(tx_queue, channel)
fill_level = max(fill_level,
tx_queue->insert_count - tx_queue->old_read_count);
return fill_level;
}
/* Get all supported features.
* If a feature is not fixed, it is present in hw_features.
* If a feature is fixed, it does not present in hw_features, but
* always in features.
*/
static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
{
const struct net_device *net_dev = efx->net_dev;
return net_dev->features | net_dev->hw_features;
}
/* Get the current TX queue insert index. */
static inline unsigned int
efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
{
return tx_queue->insert_count & tx_queue->ptr_mask;
}
/* Get a TX buffer. */
static inline struct efx_tx_buffer *
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
{
return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
}
/* Get a TX buffer, checking it's not currently in use. */
static inline struct efx_tx_buffer *
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer =
__efx_tx_queue_get_insert_buffer(tx_queue);
EFX_WARN_ON_ONCE_PARANOID(buffer->len);
EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
return buffer;
}
#endif /* EFX_NET_DRIVER_H */