OpenCloudOS-Kernel/drivers/net/ethernet/microchip/sparx5/sparx5_packet.c

353 lines
9.1 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/* Microchip Sparx5 Switch driver
*
* Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
*/
#include "sparx5_main_regs.h"
#include "sparx5_main.h"
#define XTR_EOF_0 ntohl((__force __be32)0x80000000u)
#define XTR_EOF_1 ntohl((__force __be32)0x80000001u)
#define XTR_EOF_2 ntohl((__force __be32)0x80000002u)
#define XTR_EOF_3 ntohl((__force __be32)0x80000003u)
#define XTR_PRUNED ntohl((__force __be32)0x80000004u)
#define XTR_ABORT ntohl((__force __be32)0x80000005u)
#define XTR_ESCAPE ntohl((__force __be32)0x80000006u)
#define XTR_NOT_READY ntohl((__force __be32)0x80000007u)
#define XTR_VALID_BYTES(x) (4 - ((x) & 3))
#define INJ_TIMEOUT_NS 50000
net: sparx5: switchdev: adding frame DMA functionality This add frame DMA functionality to the Sparx5 platform. Ethernet frames can be extracted or injected autonomously to or from the device’s DDR3/DDR3L memory and/or PCIe memory space. Linked list data structures in memory are used for injecting or extracting Ethernet frames. The FDMA generates interrupts when frame extraction or injection is done and when the linked lists need updating. The FDMA implements two extraction channels, one per switch core port towards the VCore CPU system and a total of six injection channels. Extraction channels are mapped one-to-one to the CPU ports, while injection channels can be individually assigned to any CPU port. - FDMA channel 0 through 5 corresponds to CPU port 0 injection direction FDMA_CH_CFG[channel].CH_INJ_PORT is set to 0. - FDMA channel 0 through 5 corresponds to CPU port 1 injection direction when FDMA_CH_CFG[channel].CH_INJ_PORT is set to 1. - FDMA channel 6 corresponds to CPU port 0 extraction direction. - FDMA channel 7 corresponds to CPU port 1 extraction direction. The FDMA implements a strict priority scheme among channels. Extraction channels are prioritized over injection channels and secondarily channels with higher channel number are prioritized over channels with lower number. On the other hand, ports are being served on an equal-bandwidth principle both on injection and extraction directions. The equal-bandwidth principle will not force an equal bandwidth. Instead, it ensures that the ports perform at their best considering the operating conditions. When more than one injection channel is enabled for injection on the same CPU port, priority determines which channel can inject data. Ownership is re-arbitrated on frame boundaries. The FDMA processes linked lists of DMA Control Block Structures (DCBs). The DCBs have the same basic structure for both injection and extraction. A DCB must be placed on a 64-bit word-aligned address in memory. Each DCB has a per-channel configurable amount of associated data blocks in memory, where the frame data is stored. The data blocks that are used by extraction channels must be placed on 64-bit word aligned addresses in memory, and their length must be a multiple of 128 bytes. A DCB carries the pointer to the next DCB of the linked list, the INFO word which holds information for the DCB, and a pair of status word and memory pointer for every data block that it is associated with. Signed-off-by: Steen Hegelund <steen.hegelund@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-19 15:39:39 +08:00
void sparx5_xtr_flush(struct sparx5 *sparx5, u8 grp)
{
/* Start flush */
spx5_wr(QS_XTR_FLUSH_FLUSH_SET(BIT(grp)), sparx5, QS_XTR_FLUSH);
/* Allow to drain */
mdelay(1);
/* All Queues normal */
spx5_wr(0, sparx5, QS_XTR_FLUSH);
}
net: sparx5: switchdev: adding frame DMA functionality This add frame DMA functionality to the Sparx5 platform. Ethernet frames can be extracted or injected autonomously to or from the device’s DDR3/DDR3L memory and/or PCIe memory space. Linked list data structures in memory are used for injecting or extracting Ethernet frames. The FDMA generates interrupts when frame extraction or injection is done and when the linked lists need updating. The FDMA implements two extraction channels, one per switch core port towards the VCore CPU system and a total of six injection channels. Extraction channels are mapped one-to-one to the CPU ports, while injection channels can be individually assigned to any CPU port. - FDMA channel 0 through 5 corresponds to CPU port 0 injection direction FDMA_CH_CFG[channel].CH_INJ_PORT is set to 0. - FDMA channel 0 through 5 corresponds to CPU port 1 injection direction when FDMA_CH_CFG[channel].CH_INJ_PORT is set to 1. - FDMA channel 6 corresponds to CPU port 0 extraction direction. - FDMA channel 7 corresponds to CPU port 1 extraction direction. The FDMA implements a strict priority scheme among channels. Extraction channels are prioritized over injection channels and secondarily channels with higher channel number are prioritized over channels with lower number. On the other hand, ports are being served on an equal-bandwidth principle both on injection and extraction directions. The equal-bandwidth principle will not force an equal bandwidth. Instead, it ensures that the ports perform at their best considering the operating conditions. When more than one injection channel is enabled for injection on the same CPU port, priority determines which channel can inject data. Ownership is re-arbitrated on frame boundaries. The FDMA processes linked lists of DMA Control Block Structures (DCBs). The DCBs have the same basic structure for both injection and extraction. A DCB must be placed on a 64-bit word-aligned address in memory. Each DCB has a per-channel configurable amount of associated data blocks in memory, where the frame data is stored. The data blocks that are used by extraction channels must be placed on 64-bit word aligned addresses in memory, and their length must be a multiple of 128 bytes. A DCB carries the pointer to the next DCB of the linked list, the INFO word which holds information for the DCB, and a pair of status word and memory pointer for every data block that it is associated with. Signed-off-by: Steen Hegelund <steen.hegelund@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-19 15:39:39 +08:00
void sparx5_ifh_parse(u32 *ifh, struct frame_info *info)
{
u8 *xtr_hdr = (u8 *)ifh;
/* FWD is bit 45-72 (28 bits), but we only read the 27 LSB for now */
u32 fwd =
((u32)xtr_hdr[27] << 24) |
((u32)xtr_hdr[28] << 16) |
((u32)xtr_hdr[29] << 8) |
((u32)xtr_hdr[30] << 0);
fwd = (fwd >> 5);
info->src_port = FIELD_GET(GENMASK(7, 1), fwd);
info->timestamp =
((u64)xtr_hdr[2] << 24) |
((u64)xtr_hdr[3] << 16) |
((u64)xtr_hdr[4] << 8) |
((u64)xtr_hdr[5] << 0);
}
static void sparx5_xtr_grp(struct sparx5 *sparx5, u8 grp, bool byte_swap)
{
bool eof_flag = false, pruned_flag = false, abort_flag = false;
struct net_device *netdev;
struct sparx5_port *port;
struct frame_info fi;
int i, byte_cnt = 0;
struct sk_buff *skb;
u32 ifh[IFH_LEN];
u32 *rxbuf;
/* Get IFH */
for (i = 0; i < IFH_LEN; i++)
ifh[i] = spx5_rd(sparx5, QS_XTR_RD(grp));
/* Decode IFH (whats needed) */
sparx5_ifh_parse(ifh, &fi);
/* Map to port netdev */
port = fi.src_port < SPX5_PORTS ?
sparx5->ports[fi.src_port] : NULL;
if (!port || !port->ndev) {
dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
sparx5_xtr_flush(sparx5, grp);
return;
}
/* Have netdev, get skb */
netdev = port->ndev;
skb = netdev_alloc_skb(netdev, netdev->mtu + ETH_HLEN);
if (!skb) {
sparx5_xtr_flush(sparx5, grp);
dev_err(sparx5->dev, "No skb allocated\n");
netdev->stats.rx_dropped++;
return;
}
rxbuf = (u32 *)skb->data;
/* Now, pull frame data */
while (!eof_flag) {
u32 val = spx5_rd(sparx5, QS_XTR_RD(grp));
u32 cmp = val;
if (byte_swap)
cmp = ntohl((__force __be32)val);
switch (cmp) {
case XTR_NOT_READY:
break;
case XTR_ABORT:
/* No accompanying data */
abort_flag = true;
eof_flag = true;
break;
case XTR_EOF_0:
case XTR_EOF_1:
case XTR_EOF_2:
case XTR_EOF_3:
/* This assumes STATUS_WORD_POS == 1, Status
* just after last data
*/
if (!byte_swap)
val = ntohl((__force __be32)val);
byte_cnt -= (4 - XTR_VALID_BYTES(val));
eof_flag = true;
break;
case XTR_PRUNED:
/* But get the last 4 bytes as well */
eof_flag = true;
pruned_flag = true;
fallthrough;
case XTR_ESCAPE:
*rxbuf = spx5_rd(sparx5, QS_XTR_RD(grp));
byte_cnt += 4;
rxbuf++;
break;
default:
*rxbuf = val;
byte_cnt += 4;
rxbuf++;
}
}
if (abort_flag || pruned_flag || !eof_flag) {
netdev_err(netdev, "Discarded frame: abort:%d pruned:%d eof:%d\n",
abort_flag, pruned_flag, eof_flag);
kfree_skb(skb);
netdev->stats.rx_dropped++;
return;
}
/* Everything we see on an interface that is in the HW bridge
* has already been forwarded
*/
if (test_bit(port->portno, sparx5->bridge_mask))
skb->offload_fwd_mark = 1;
/* Finish up skb */
skb_put(skb, byte_cnt - ETH_FCS_LEN);
eth_skb_pad(skb);
sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
skb->protocol = eth_type_trans(skb, netdev);
netdev->stats.rx_bytes += skb->len;
netdev->stats.rx_packets++;
netif_rx(skb);
}
static int sparx5_inject(struct sparx5 *sparx5,
u32 *ifh,
struct sk_buff *skb,
struct net_device *ndev)
{
int grp = INJ_QUEUE;
u32 val, w, count;
u8 *buf;
val = spx5_rd(sparx5, QS_INJ_STATUS);
if (!(QS_INJ_STATUS_FIFO_RDY_GET(val) & BIT(grp))) {
pr_err_ratelimited("Injection: Queue not ready: 0x%lx\n",
QS_INJ_STATUS_FIFO_RDY_GET(val));
return -EBUSY;
}
/* Indicate SOF */
spx5_wr(QS_INJ_CTRL_SOF_SET(1) |
QS_INJ_CTRL_GAP_SIZE_SET(1),
sparx5, QS_INJ_CTRL(grp));
/* Write the IFH to the chip. */
for (w = 0; w < IFH_LEN; w++)
spx5_wr(ifh[w], sparx5, QS_INJ_WR(grp));
/* Write words, round up */
count = DIV_ROUND_UP(skb->len, 4);
buf = skb->data;
for (w = 0; w < count; w++, buf += 4) {
val = get_unaligned((const u32 *)buf);
spx5_wr(val, sparx5, QS_INJ_WR(grp));
}
/* Add padding */
while (w < (60 / 4)) {
spx5_wr(0, sparx5, QS_INJ_WR(grp));
w++;
}
/* Indicate EOF and valid bytes in last word */
spx5_wr(QS_INJ_CTRL_GAP_SIZE_SET(1) |
QS_INJ_CTRL_VLD_BYTES_SET(skb->len < 60 ? 0 : skb->len % 4) |
QS_INJ_CTRL_EOF_SET(1),
sparx5, QS_INJ_CTRL(grp));
/* Add dummy CRC */
spx5_wr(0, sparx5, QS_INJ_WR(grp));
w++;
val = spx5_rd(sparx5, QS_INJ_STATUS);
if (QS_INJ_STATUS_WMARK_REACHED_GET(val) & BIT(grp)) {
struct sparx5_port *port = netdev_priv(ndev);
pr_err_ratelimited("Injection: Watermark reached: 0x%lx\n",
QS_INJ_STATUS_WMARK_REACHED_GET(val));
netif_stop_queue(ndev);
hrtimer_start(&port->inj_timer, INJ_TIMEOUT_NS,
HRTIMER_MODE_REL);
}
return NETDEV_TX_OK;
}
int sparx5_port_xmit_impl(struct sk_buff *skb, struct net_device *dev)
{
struct net_device_stats *stats = &dev->stats;
struct sparx5_port *port = netdev_priv(dev);
struct sparx5 *sparx5 = port->sparx5;
u32 ifh[IFH_LEN];
int ret;
memset(ifh, 0, IFH_LEN * 4);
sparx5_set_port_ifh(ifh, port->portno);
if (sparx5->ptp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
ret = sparx5_ptp_txtstamp_request(port, skb);
if (ret)
return ret;
sparx5_set_port_ifh_rew_op(ifh, SPARX5_SKB_CB(skb)->rew_op);
sparx5_set_port_ifh_pdu_type(ifh, SPARX5_SKB_CB(skb)->pdu_type);
sparx5_set_port_ifh_pdu_w16_offset(ifh, SPARX5_SKB_CB(skb)->pdu_w16_offset);
sparx5_set_port_ifh_timestamp(ifh, SPARX5_SKB_CB(skb)->ts_id);
}
skb_tx_timestamp(skb);
net: sparx5: switchdev: adding frame DMA functionality This add frame DMA functionality to the Sparx5 platform. Ethernet frames can be extracted or injected autonomously to or from the device’s DDR3/DDR3L memory and/or PCIe memory space. Linked list data structures in memory are used for injecting or extracting Ethernet frames. The FDMA generates interrupts when frame extraction or injection is done and when the linked lists need updating. The FDMA implements two extraction channels, one per switch core port towards the VCore CPU system and a total of six injection channels. Extraction channels are mapped one-to-one to the CPU ports, while injection channels can be individually assigned to any CPU port. - FDMA channel 0 through 5 corresponds to CPU port 0 injection direction FDMA_CH_CFG[channel].CH_INJ_PORT is set to 0. - FDMA channel 0 through 5 corresponds to CPU port 1 injection direction when FDMA_CH_CFG[channel].CH_INJ_PORT is set to 1. - FDMA channel 6 corresponds to CPU port 0 extraction direction. - FDMA channel 7 corresponds to CPU port 1 extraction direction. The FDMA implements a strict priority scheme among channels. Extraction channels are prioritized over injection channels and secondarily channels with higher channel number are prioritized over channels with lower number. On the other hand, ports are being served on an equal-bandwidth principle both on injection and extraction directions. The equal-bandwidth principle will not force an equal bandwidth. Instead, it ensures that the ports perform at their best considering the operating conditions. When more than one injection channel is enabled for injection on the same CPU port, priority determines which channel can inject data. Ownership is re-arbitrated on frame boundaries. The FDMA processes linked lists of DMA Control Block Structures (DCBs). The DCBs have the same basic structure for both injection and extraction. A DCB must be placed on a 64-bit word-aligned address in memory. Each DCB has a per-channel configurable amount of associated data blocks in memory, where the frame data is stored. The data blocks that are used by extraction channels must be placed on 64-bit word aligned addresses in memory, and their length must be a multiple of 128 bytes. A DCB carries the pointer to the next DCB of the linked list, the INFO word which holds information for the DCB, and a pair of status word and memory pointer for every data block that it is associated with. Signed-off-by: Steen Hegelund <steen.hegelund@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-19 15:39:39 +08:00
if (sparx5->fdma_irq > 0)
ret = sparx5_fdma_xmit(sparx5, ifh, skb);
net: sparx5: switchdev: adding frame DMA functionality This add frame DMA functionality to the Sparx5 platform. Ethernet frames can be extracted or injected autonomously to or from the device’s DDR3/DDR3L memory and/or PCIe memory space. Linked list data structures in memory are used for injecting or extracting Ethernet frames. The FDMA generates interrupts when frame extraction or injection is done and when the linked lists need updating. The FDMA implements two extraction channels, one per switch core port towards the VCore CPU system and a total of six injection channels. Extraction channels are mapped one-to-one to the CPU ports, while injection channels can be individually assigned to any CPU port. - FDMA channel 0 through 5 corresponds to CPU port 0 injection direction FDMA_CH_CFG[channel].CH_INJ_PORT is set to 0. - FDMA channel 0 through 5 corresponds to CPU port 1 injection direction when FDMA_CH_CFG[channel].CH_INJ_PORT is set to 1. - FDMA channel 6 corresponds to CPU port 0 extraction direction. - FDMA channel 7 corresponds to CPU port 1 extraction direction. The FDMA implements a strict priority scheme among channels. Extraction channels are prioritized over injection channels and secondarily channels with higher channel number are prioritized over channels with lower number. On the other hand, ports are being served on an equal-bandwidth principle both on injection and extraction directions. The equal-bandwidth principle will not force an equal bandwidth. Instead, it ensures that the ports perform at their best considering the operating conditions. When more than one injection channel is enabled for injection on the same CPU port, priority determines which channel can inject data. Ownership is re-arbitrated on frame boundaries. The FDMA processes linked lists of DMA Control Block Structures (DCBs). The DCBs have the same basic structure for both injection and extraction. A DCB must be placed on a 64-bit word-aligned address in memory. Each DCB has a per-channel configurable amount of associated data blocks in memory, where the frame data is stored. The data blocks that are used by extraction channels must be placed on 64-bit word aligned addresses in memory, and their length must be a multiple of 128 bytes. A DCB carries the pointer to the next DCB of the linked list, the INFO word which holds information for the DCB, and a pair of status word and memory pointer for every data block that it is associated with. Signed-off-by: Steen Hegelund <steen.hegelund@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-19 15:39:39 +08:00
else
ret = sparx5_inject(sparx5, ifh, skb, dev);
if (ret == NETDEV_TX_OK) {
stats->tx_bytes += skb->len;
stats->tx_packets++;
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
SPARX5_SKB_CB(skb)->rew_op == IFH_REW_OP_TWO_STEP_PTP)
return ret;
dev_kfree_skb_any(skb);
} else {
stats->tx_dropped++;
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
SPARX5_SKB_CB(skb)->rew_op == IFH_REW_OP_TWO_STEP_PTP)
sparx5_ptp_txtstamp_release(port, skb);
}
return ret;
}
static enum hrtimer_restart sparx5_injection_timeout(struct hrtimer *tmr)
{
struct sparx5_port *port = container_of(tmr, struct sparx5_port,
inj_timer);
int grp = INJ_QUEUE;
u32 val;
val = spx5_rd(port->sparx5, QS_INJ_STATUS);
if (QS_INJ_STATUS_WMARK_REACHED_GET(val) & BIT(grp)) {
pr_err_ratelimited("Injection: Reset watermark count\n");
/* Reset Watermark count to restart */
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
port->sparx5,
DSM_DEV_TX_STOP_WM_CFG(port->portno));
}
netif_wake_queue(port->ndev);
return HRTIMER_NORESTART;
}
int sparx5_manual_injection_mode(struct sparx5 *sparx5)
{
const int byte_swap = 1;
int portno;
/* Change mode to manual extraction and injection */
spx5_wr(QS_XTR_GRP_CFG_MODE_SET(1) |
QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
spx5_wr(QS_INJ_GRP_CFG_MODE_SET(1) |
QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));
/* CPU ports capture setup */
for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) {
/* ASM CPU port: No preamble, IFH, enable padding */
spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */
sparx5, ASM_PORT_CFG(portno));
/* Reset WM cnt to unclog queued frames */
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
sparx5,
DSM_DEV_TX_STOP_WM_CFG(portno));
/* Set Disassembler Stop Watermark level */
spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(0),
DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
sparx5,
DSM_DEV_TX_STOP_WM_CFG(portno));
/* Enable Disassembler buffer underrun watchdog
*/
spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(0),
DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
sparx5,
DSM_BUF_CFG(portno));
}
return 0;
}
irqreturn_t sparx5_xtr_handler(int irq, void *_sparx5)
{
struct sparx5 *s5 = _sparx5;
int poll = 64;
/* Check data in queue */
while (spx5_rd(s5, QS_XTR_DATA_PRESENT) & BIT(XTR_QUEUE) && poll-- > 0)
sparx5_xtr_grp(s5, XTR_QUEUE, false);
return IRQ_HANDLED;
}
void sparx5_port_inj_timer_setup(struct sparx5_port *port)
{
hrtimer_init(&port->inj_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
port->inj_timer.function = sparx5_injection_timeout;
}