OpenCloudOS-Kernel/drivers/tty/n_gsm.c

3262 lines
78 KiB
C
Raw Normal View History

tty: add SPDX identifiers to all remaining files in drivers/tty/ It's good to have SPDX identifiers in all files to make it easier to audit the kernel tree for correct licenses. Update the drivers/tty files files with the correct SPDX license identifier based on the license text in the file itself. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This work is based on a script and data from Thomas Gleixner, Philippe Ombredanne, and Kate Stewart. Cc: Jiri Slaby <jslaby@suse.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: David Sterba <dsterba@suse.com> Cc: James Hogan <jhogan@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Eric Anholt <eric@anholt.net> Cc: Stefan Wahren <stefan.wahren@i2se.com> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Ray Jui <rjui@broadcom.com> Cc: Scott Branden <sbranden@broadcom.com> Cc: bcm-kernel-feedback-list@broadcom.com Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Joachim Eastwood <manabian@gmail.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Russell King <linux@armlinux.org.uk> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Richard Genoud <richard.genoud@gmail.com> Cc: Alexander Shiyan <shc_work@mail.ru> Cc: Baruch Siach <baruch@tkos.co.il> Cc: "Maciej W. Rozycki" <macro@linux-mips.org> Cc: "Uwe Kleine-König" <kernel@pengutronix.de> Cc: Pat Gefre <pfg@sgi.com> Cc: "Guilherme G. Piccoli" <gpiccoli@linux.vnet.ibm.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Vladimir Zapolskiy <vz@mleia.com> Cc: Sylvain Lemieux <slemieux.tyco@gmail.com> Cc: Carlo Caione <carlo@caione.org> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Liviu Dudau <liviu.dudau@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Andy Gross <andy.gross@linaro.org> Cc: David Brown <david.brown@linaro.org> Cc: "Andreas Färber" <afaerber@suse.de> Cc: Kevin Cernekee <cernekee@gmail.com> Cc: Laxman Dewangan <ldewangan@nvidia.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Jonathan Hunter <jonathanh@nvidia.com> Cc: Barry Song <baohua@kernel.org> Cc: Patrice Chotard <patrice.chotard@st.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Peter Korsgaard <jacmet@sunsite.dk> Cc: Timur Tabi <timur@tabi.org> Cc: Tony Prisk <linux@prisktech.co.nz> Cc: Michal Simek <michal.simek@xilinx.com> Cc: "Sören Brinkmann" <soren.brinkmann@xilinx.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Jiri Slaby <jslaby@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-07 01:11:51 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* n_gsm.c GSM 0710 tty multiplexor
* Copyright (c) 2009/10 Intel Corporation
*
* * THIS IS A DEVELOPMENT SNAPSHOT IT IS NOT A FINAL RELEASE *
*
* TO DO:
* Mostly done: ioctls for setting modes/timing
* Partly done: hooks so you can pull off frames to non tty devs
* Restart DLCI 0 when it closes ?
* Improve the tx engine
* Resolve tx side locking by adding a queue_head and routing
* all control traffic via it
* General tidy/document
* Review the locking/move to refcounts more (mux now moved to an
* alloc/free model ready)
* Use newest tty open/close port helpers and install hooks
* What to do about power functions ?
* Termios setting and negotiation
* Do we need a 'which mux are you' ioctl to correlate mux and tty sets
*
*/
#include <linux/types.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/fcntl.h>
#include <linux/sched/signal.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/ctype.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/bitops.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/timer.h>
#include <linux/tty_flip.h>
#include <linux/tty_driver.h>
#include <linux/serial.h>
#include <linux/kfifo.h>
#include <linux/skbuff.h>
#include <net/arp.h>
#include <linux/ip.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/gsmmux.h>
static int debug;
module_param(debug, int, 0600);
/* Defaults: these are from the specification */
#define T1 10 /* 100mS */
#define T2 34 /* 333mS */
#define N2 3 /* Retry 3 times */
/* Use long timers for testing at low speed with debug on */
#ifdef DEBUG_TIMING
#define T1 100
#define T2 200
#endif
/*
* Semi-arbitrary buffer size limits. 0710 is normally run with 32-64 byte
* limits so this is plenty
*/
#define MAX_MRU 1500
#define MAX_MTU 1500
#define GSM_NET_TX_TIMEOUT (HZ*10)
/**
* struct gsm_mux_net - network interface
* @struct gsm_dlci* dlci
*
* Created when net interface is initialized.
**/
struct gsm_mux_net {
struct kref ref;
struct gsm_dlci *dlci;
};
/*
* Each block of data we have queued to go out is in the form of
* a gsm_msg which holds everything we need in a link layer independent
* format
*/
struct gsm_msg {
struct list_head list;
u8 addr; /* DLCI address + flags */
u8 ctrl; /* Control byte + flags */
unsigned int len; /* Length of data block (can be zero) */
unsigned char *data; /* Points into buffer but not at the start */
unsigned char buffer[0];
};
/*
* Each active data link has a gsm_dlci structure associated which ties
* the link layer to an optional tty (if the tty side is open). To avoid
* complexity right now these are only ever freed up when the mux is
* shut down.
*
* At the moment we don't free DLCI objects until the mux is torn down
* this avoid object life time issues but might be worth review later.
*/
struct gsm_dlci {
struct gsm_mux *gsm;
int addr;
int state;
#define DLCI_CLOSED 0
#define DLCI_OPENING 1 /* Sending SABM not seen UA */
#define DLCI_OPEN 2 /* SABM/UA complete */
#define DLCI_CLOSING 3 /* Sending DISC not seen UA/DM */
struct mutex mutex;
/* Link layer */
tty: n_gsm: Fix long delays with control frame timeouts in ADM mode Commit ea3d8465ab9b ("tty: n_gsm: Allow ADM response in addition to UA for control dlci") added support for DLCI to stay in Asynchronous Disconnected Mode (ADM). But we still get long delays waiting for commands to other DLCI to complete: --> 5) C: SABM(P) Q> 0) C: UIH(F) Q> 0) C: UIH(F) Q> 0) C: UIH(F) ... This happens because gsm_control_send() sets cretries timer to T2 that is by default set to 34. This will cause resend for T2 times for the control frame. In ADM mode, we will never get a response so the control frame, so retries are just delaying all the commands. Let's fix the issue by setting DLCI_MODE_ADM flag after detecting the ADM mode for the control DLCI. Then we can use that in gsm_control_send() to set retries to 1. This means the control frame will be sent once allowing the other end at an opportunity to switch from ADM to ABM mode. Note that retries will be decremented in gsm_control_retransmit() so we don't want to set it to 0 here. Fixes: ea3d8465ab9b ("tty: n_gsm: Allow ADM response in addition to UA for control dlci") Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Dan Williams <dcbw@redhat.com> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Merlijn Wajer <merlijn@wizzup.org> Cc: Michael Nazzareno Trimarchi <michael@amarulasolutions.com> Cc: Michael Scott <michael.scott@linaro.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-08 01:19:50 +08:00
int mode;
#define DLCI_MODE_ABM 0 /* Normal Asynchronous Balanced Mode */
#define DLCI_MODE_ADM 1 /* Asynchronous Disconnected Mode */
spinlock_t lock; /* Protects the internal state */
struct timer_list t1; /* Retransmit timer for SABM and UA */
int retries;
/* Uplink tty if active */
struct tty_port port; /* The tty bound to this DLCI if there is one */
struct kfifo *fifo; /* Queue fifo for the DLCI */
struct kfifo _fifo; /* For new fifo API porting only */
int adaption; /* Adaption layer in use */
int prev_adaption;
u32 modem_rx; /* Our incoming virtual modem lines */
u32 modem_tx; /* Our outgoing modem lines */
int dead; /* Refuse re-open */
/* Flow control */
int throttled; /* Private copy of throttle state */
int constipated; /* Throttle status for outgoing */
/* Packetised I/O */
struct sk_buff *skb; /* Frame being sent */
struct sk_buff_head skb_list; /* Queued frames */
/* Data handling callback */
void (*data)(struct gsm_dlci *dlci, u8 *data, int len);
void (*prev_data)(struct gsm_dlci *dlci, u8 *data, int len);
struct net_device *net; /* network interface, if created */
};
/* DLCI 0, 62/63 are special or reserved see gsmtty_open */
#define NUM_DLCI 64
/*
* DLCI 0 is used to pass control blocks out of band of the data
* flow (and with a higher link priority). One command can be outstanding
* at a time and we use this structure to manage them. They are created
* and destroyed by the user context, and updated by the receive paths
* and timers
*/
struct gsm_control {
u8 cmd; /* Command we are issuing */
u8 *data; /* Data for the command in case we retransmit */
int len; /* Length of block for retransmission */
int done; /* Done flag */
int error; /* Error if any */
};
/*
* Each GSM mux we have is represented by this structure. If we are
* operating as an ldisc then we use this structure as our ldisc
* state. We need to sort out lifetimes and locking with respect
* to the gsm mux array. For now we don't free DLCI objects that
* have been instantiated until the mux itself is terminated.
*
* To consider further: tty open versus mux shutdown.
*/
struct gsm_mux {
struct tty_struct *tty; /* The tty our ldisc is bound to */
spinlock_t lock;
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
struct mutex mutex;
unsigned int num;
struct kref ref;
/* Events on the GSM channel */
wait_queue_head_t event;
/* Bits for GSM mode decoding */
/* Framing Layer */
unsigned char *buf;
int state;
#define GSM_SEARCH 0
#define GSM_START 1
#define GSM_ADDRESS 2
#define GSM_CONTROL 3
#define GSM_LEN 4
#define GSM_DATA 5
#define GSM_FCS 6
#define GSM_OVERRUN 7
#define GSM_LEN0 8
#define GSM_LEN1 9
#define GSM_SSOF 10
unsigned int len;
unsigned int address;
unsigned int count;
int escape;
int encoding;
u8 control;
u8 fcs;
u8 received_fcs;
u8 *txframe; /* TX framing buffer */
/* Methods for the receiver side */
void (*receive)(struct gsm_mux *gsm, u8 ch);
void (*error)(struct gsm_mux *gsm, u8 ch, u8 flag);
/* And transmit side */
int (*output)(struct gsm_mux *mux, u8 *data, int len);
/* Link Layer */
unsigned int mru;
unsigned int mtu;
int initiator; /* Did we initiate connection */
int dead; /* Has the mux been shut down */
struct gsm_dlci *dlci[NUM_DLCI];
int constipated; /* Asked by remote to shut up */
spinlock_t tx_lock;
unsigned int tx_bytes; /* TX data outstanding */
#define TX_THRESH_HI 8192
#define TX_THRESH_LO 2048
struct list_head tx_list; /* Pending data packets */
/* Control messages */
struct timer_list t2_timer; /* Retransmit timer for commands */
int cretries; /* Command retry counter */
struct gsm_control *pending_cmd;/* Our current pending command */
spinlock_t control_lock; /* Protects the pending command */
/* Configuration */
int adaption; /* 1 or 2 supported */
u8 ftype; /* UI or UIH */
int t1, t2; /* Timers in 1/100th of a sec */
int n2; /* Retry count */
/* Statistics (not currently exposed) */
unsigned long bad_fcs;
unsigned long malformed;
unsigned long io_error;
unsigned long bad_size;
unsigned long unsupported;
};
/*
* Mux objects - needed so that we can translate a tty index into the
* relevant mux and DLCI.
*/
#define MAX_MUX 4 /* 256 minors */
static struct gsm_mux *gsm_mux[MAX_MUX]; /* GSM muxes */
static spinlock_t gsm_mux_lock;
static struct tty_driver *gsm_tty_driver;
/*
* This section of the driver logic implements the GSM encodings
* both the basic and the 'advanced'. Reliable transport is not
* supported.
*/
#define CR 0x02
#define EA 0x01
#define PF 0x10
/* I is special: the rest are ..*/
#define RR 0x01
#define UI 0x03
#define RNR 0x05
#define REJ 0x09
#define DM 0x0F
#define SABM 0x2F
#define DISC 0x43
#define UA 0x63
#define UIH 0xEF
/* Channel commands */
#define CMD_NSC 0x09
#define CMD_TEST 0x11
#define CMD_PSC 0x21
#define CMD_RLS 0x29
#define CMD_FCOFF 0x31
#define CMD_PN 0x41
#define CMD_RPN 0x49
#define CMD_FCON 0x51
#define CMD_CLD 0x61
#define CMD_SNC 0x69
#define CMD_MSC 0x71
/* Virtual modem bits */
#define MDM_FC 0x01
#define MDM_RTC 0x02
#define MDM_RTR 0x04
#define MDM_IC 0x20
#define MDM_DV 0x40
#define GSM0_SOF 0xF9
#define GSM1_SOF 0x7E
#define GSM1_ESCAPE 0x7D
#define GSM1_ESCAPE_BITS 0x20
#define XON 0x11
#define XOFF 0x13
static const struct tty_port_operations gsm_port_ops;
/*
* CRC table for GSM 0710
*/
static const u8 gsm_fcs8[256] = {
0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75,
0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69,
0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D,
0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51,
0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05,
0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19,
0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D,
0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21,
0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95,
0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89,
0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD,
0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1,
0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5,
0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9,
0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD,
0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1,
0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};
#define INIT_FCS 0xFF
#define GOOD_FCS 0xCF
/**
* gsm_fcs_add - update FCS
* @fcs: Current FCS
* @c: Next data
*
* Update the FCS to include c. Uses the algorithm in the specification
* notes.
*/
static inline u8 gsm_fcs_add(u8 fcs, u8 c)
{
return gsm_fcs8[fcs ^ c];
}
/**
* gsm_fcs_add_block - update FCS for a block
* @fcs: Current FCS
* @c: buffer of data
* @len: length of buffer
*
* Update the FCS to include c. Uses the algorithm in the specification
* notes.
*/
static inline u8 gsm_fcs_add_block(u8 fcs, u8 *c, int len)
{
while (len--)
fcs = gsm_fcs8[fcs ^ *c++];
return fcs;
}
/**
* gsm_read_ea - read a byte into an EA
* @val: variable holding value
* c: byte going into the EA
*
* Processes one byte of an EA. Updates the passed variable
* and returns 1 if the EA is now completely read
*/
static int gsm_read_ea(unsigned int *val, u8 c)
{
/* Add the next 7 bits into the value */
*val <<= 7;
*val |= c >> 1;
/* Was this the last byte of the EA 1 = yes*/
return c & EA;
}
/**
* gsm_encode_modem - encode modem data bits
* @dlci: DLCI to encode from
*
* Returns the correct GSM encoded modem status bits (6 bit field) for
* the current status of the DLCI and attached tty object
*/
static u8 gsm_encode_modem(const struct gsm_dlci *dlci)
{
u8 modembits = 0;
/* FC is true flow control not modem bits */
if (dlci->throttled)
modembits |= MDM_FC;
if (dlci->modem_tx & TIOCM_DTR)
modembits |= MDM_RTC;
if (dlci->modem_tx & TIOCM_RTS)
modembits |= MDM_RTR;
if (dlci->modem_tx & TIOCM_RI)
modembits |= MDM_IC;
if (dlci->modem_tx & TIOCM_CD)
modembits |= MDM_DV;
return modembits;
}
/**
* gsm_print_packet - display a frame for debug
* @hdr: header to print before decode
* @addr: address EA from the frame
* @cr: C/R bit from the frame
* @control: control including PF bit
* @data: following data bytes
* @dlen: length of data
*
* Displays a packet in human readable format for debugging purposes. The
* style is based on amateur radio LAP-B dump display.
*/
static void gsm_print_packet(const char *hdr, int addr, int cr,
u8 control, const u8 *data, int dlen)
{
if (!(debug & 1))
return;
pr_info("%s %d) %c: ", hdr, addr, "RC"[cr]);
switch (control & ~PF) {
case SABM:
pr_cont("SABM");
break;
case UA:
pr_cont("UA");
break;
case DISC:
pr_cont("DISC");
break;
case DM:
pr_cont("DM");
break;
case UI:
pr_cont("UI");
break;
case UIH:
pr_cont("UIH");
break;
default:
if (!(control & 0x01)) {
pr_cont("I N(S)%d N(R)%d",
(control & 0x0E) >> 1, (control & 0xE0) >> 5);
} else switch (control & 0x0F) {
case RR:
pr_cont("RR(%d)", (control & 0xE0) >> 5);
break;
case RNR:
pr_cont("RNR(%d)", (control & 0xE0) >> 5);
break;
case REJ:
pr_cont("REJ(%d)", (control & 0xE0) >> 5);
break;
default:
pr_cont("[%02X]", control);
}
}
if (control & PF)
pr_cont("(P)");
else
pr_cont("(F)");
if (dlen) {
int ct = 0;
while (dlen--) {
if (ct % 8 == 0) {
pr_cont("\n");
pr_debug(" ");
}
pr_cont("%02X ", *data++);
ct++;
}
}
pr_cont("\n");
}
/*
* Link level transmission side
*/
/**
* gsm_stuff_packet - bytestuff a packet
* @ibuf: input
* @obuf: output
* @len: length of input
*
* Expand a buffer by bytestuffing it. The worst case size change
* is doubling and the caller is responsible for handing out
* suitable sized buffers.
*/
static int gsm_stuff_frame(const u8 *input, u8 *output, int len)
{
int olen = 0;
while (len--) {
if (*input == GSM1_SOF || *input == GSM1_ESCAPE
|| *input == XON || *input == XOFF) {
*output++ = GSM1_ESCAPE;
*output++ = *input++ ^ GSM1_ESCAPE_BITS;
olen++;
} else
*output++ = *input++;
olen++;
}
return olen;
}
/**
* gsm_send - send a control frame
* @gsm: our GSM mux
* @addr: address for control frame
* @cr: command/response bit
* @control: control byte including PF bit
*
* Format up and transmit a control frame. These do not go via the
* queueing logic as they should be transmitted ahead of data when
* they are needed.
*
* FIXME: Lock versus data TX path
*/
static void gsm_send(struct gsm_mux *gsm, int addr, int cr, int control)
{
int len;
u8 cbuf[10];
u8 ibuf[3];
switch (gsm->encoding) {
case 0:
cbuf[0] = GSM0_SOF;
cbuf[1] = (addr << 2) | (cr << 1) | EA;
cbuf[2] = control;
cbuf[3] = EA; /* Length of data = 0 */
cbuf[4] = 0xFF - gsm_fcs_add_block(INIT_FCS, cbuf + 1, 3);
cbuf[5] = GSM0_SOF;
len = 6;
break;
case 1:
case 2:
/* Control frame + packing (but not frame stuffing) in mode 1 */
ibuf[0] = (addr << 2) | (cr << 1) | EA;
ibuf[1] = control;
ibuf[2] = 0xFF - gsm_fcs_add_block(INIT_FCS, ibuf, 2);
/* Stuffing may double the size worst case */
len = gsm_stuff_frame(ibuf, cbuf + 1, 3);
/* Now add the SOF markers */
cbuf[0] = GSM1_SOF;
cbuf[len + 1] = GSM1_SOF;
/* FIXME: we can omit the lead one in many cases */
len += 2;
break;
default:
WARN_ON(1);
return;
}
gsm->output(gsm, cbuf, len);
gsm_print_packet("-->", addr, cr, control, NULL, 0);
}
/**
* gsm_response - send a control response
* @gsm: our GSM mux
* @addr: address for control frame
* @control: control byte including PF bit
*
* Format up and transmit a link level response frame.
*/
static inline void gsm_response(struct gsm_mux *gsm, int addr, int control)
{
gsm_send(gsm, addr, 0, control);
}
/**
* gsm_command - send a control command
* @gsm: our GSM mux
* @addr: address for control frame
* @control: control byte including PF bit
*
* Format up and transmit a link level command frame.
*/
static inline void gsm_command(struct gsm_mux *gsm, int addr, int control)
{
gsm_send(gsm, addr, 1, control);
}
/* Data transmission */
#define HDR_LEN 6 /* ADDR CTRL [LEN.2] DATA FCS */
/**
* gsm_data_alloc - allocate data frame
* @gsm: GSM mux
* @addr: DLCI address
* @len: length excluding header and FCS
* @ctrl: control byte
*
* Allocate a new data buffer for sending frames with data. Space is left
* at the front for header bytes but that is treated as an implementation
* detail and not for the high level code to use
*/
static struct gsm_msg *gsm_data_alloc(struct gsm_mux *gsm, u8 addr, int len,
u8 ctrl)
{
struct gsm_msg *m = kmalloc(sizeof(struct gsm_msg) + len + HDR_LEN,
GFP_ATOMIC);
if (m == NULL)
return NULL;
m->data = m->buffer + HDR_LEN - 1; /* Allow for FCS */
m->len = len;
m->addr = addr;
m->ctrl = ctrl;
INIT_LIST_HEAD(&m->list);
return m;
}
/**
* gsm_data_kick - poke the queue
* @gsm: GSM Mux
*
* The tty device has called us to indicate that room has appeared in
* the transmit queue. Ram more data into the pipe if we have any
* If we have been flow-stopped by a CMD_FCOFF, then we can only
* send messages on DLCI0 until CMD_FCON
*
* FIXME: lock against link layer control transmissions
*/
static void gsm_data_kick(struct gsm_mux *gsm)
{
struct gsm_msg *msg, *nmsg;
int len;
int skip_sof = 0;
list_for_each_entry_safe(msg, nmsg, &gsm->tx_list, list) {
if (gsm->constipated && msg->addr)
continue;
if (gsm->encoding != 0) {
gsm->txframe[0] = GSM1_SOF;
len = gsm_stuff_frame(msg->data,
gsm->txframe + 1, msg->len);
gsm->txframe[len + 1] = GSM1_SOF;
len += 2;
} else {
gsm->txframe[0] = GSM0_SOF;
memcpy(gsm->txframe + 1 , msg->data, msg->len);
gsm->txframe[msg->len + 1] = GSM0_SOF;
len = msg->len + 2;
}
if (debug & 4)
print_hex_dump_bytes("gsm_data_kick: ",
DUMP_PREFIX_OFFSET,
gsm->txframe, len);
if (gsm->output(gsm, gsm->txframe + skip_sof,
len - skip_sof) < 0)
break;
/* FIXME: Can eliminate one SOF in many more cases */
gsm->tx_bytes -= msg->len;
/* For a burst of frames skip the extra SOF within the
burst */
skip_sof = 1;
list_del(&msg->list);
kfree(msg);
}
}
/**
* __gsm_data_queue - queue a UI or UIH frame
* @dlci: DLCI sending the data
* @msg: message queued
*
* Add data to the transmit queue and try and get stuff moving
* out of the mux tty if not already doing so. The Caller must hold
* the gsm tx lock.
*/
static void __gsm_data_queue(struct gsm_dlci *dlci, struct gsm_msg *msg)
{
struct gsm_mux *gsm = dlci->gsm;
u8 *dp = msg->data;
u8 *fcs = dp + msg->len;
/* Fill in the header */
if (gsm->encoding == 0) {
if (msg->len < 128)
*--dp = (msg->len << 1) | EA;
else {
*--dp = (msg->len >> 7); /* bits 7 - 15 */
*--dp = (msg->len & 127) << 1; /* bits 0 - 6 */
}
}
*--dp = msg->ctrl;
if (gsm->initiator)
*--dp = (msg->addr << 2) | 2 | EA;
else
*--dp = (msg->addr << 2) | EA;
*fcs = gsm_fcs_add_block(INIT_FCS, dp , msg->data - dp);
/* Ugly protocol layering violation */
if (msg->ctrl == UI || msg->ctrl == (UI|PF))
*fcs = gsm_fcs_add_block(*fcs, msg->data, msg->len);
*fcs = 0xFF - *fcs;
gsm_print_packet("Q> ", msg->addr, gsm->initiator, msg->ctrl,
msg->data, msg->len);
/* Move the header back and adjust the length, also allow for the FCS
now tacked on the end */
msg->len += (msg->data - dp) + 1;
msg->data = dp;
/* Add to the actual output queue */
list_add_tail(&msg->list, &gsm->tx_list);
gsm->tx_bytes += msg->len;
gsm_data_kick(gsm);
}
/**
* gsm_data_queue - queue a UI or UIH frame
* @dlci: DLCI sending the data
* @msg: message queued
*
* Add data to the transmit queue and try and get stuff moving
* out of the mux tty if not already doing so. Take the
* the gsm tx lock and dlci lock.
*/
static void gsm_data_queue(struct gsm_dlci *dlci, struct gsm_msg *msg)
{
unsigned long flags;
spin_lock_irqsave(&dlci->gsm->tx_lock, flags);
__gsm_data_queue(dlci, msg);
spin_unlock_irqrestore(&dlci->gsm->tx_lock, flags);
}
/**
* gsm_dlci_data_output - try and push data out of a DLCI
* @gsm: mux
* @dlci: the DLCI to pull data from
*
* Pull data from a DLCI and send it into the transmit queue if there
* is data. Keep to the MRU of the mux. This path handles the usual tty
* interface which is a byte stream with optional modem data.
*
* Caller must hold the tx_lock of the mux.
*/
static int gsm_dlci_data_output(struct gsm_mux *gsm, struct gsm_dlci *dlci)
{
struct gsm_msg *msg;
u8 *dp;
int len, total_size, size;
int h = dlci->adaption - 1;
total_size = 0;
while (1) {
len = kfifo_len(dlci->fifo);
if (len == 0)
return total_size;
/* MTU/MRU count only the data bits */
if (len > gsm->mtu)
len = gsm->mtu;
size = len + h;
msg = gsm_data_alloc(gsm, dlci->addr, size, gsm->ftype);
/* FIXME: need a timer or something to kick this so it can't
get stuck with no work outstanding and no buffer free */
if (msg == NULL)
return -ENOMEM;
dp = msg->data;
switch (dlci->adaption) {
case 1: /* Unstructured */
break;
case 2: /* Unstructed with modem bits.
Always one byte as we never send inline break data */
*dp++ = gsm_encode_modem(dlci);
break;
}
WARN_ON(kfifo_out_locked(dlci->fifo, dp , len, &dlci->lock) != len);
__gsm_data_queue(dlci, msg);
total_size += size;
}
/* Bytes of data we used up */
return total_size;
}
/**
* gsm_dlci_data_output_framed - try and push data out of a DLCI
* @gsm: mux
* @dlci: the DLCI to pull data from
*
* Pull data from a DLCI and send it into the transmit queue if there
* is data. Keep to the MRU of the mux. This path handles framed data
* queued as skbuffs to the DLCI.
*
* Caller must hold the tx_lock of the mux.
*/
static int gsm_dlci_data_output_framed(struct gsm_mux *gsm,
struct gsm_dlci *dlci)
{
struct gsm_msg *msg;
u8 *dp;
int len, size;
int last = 0, first = 0;
int overhead = 0;
/* One byte per frame is used for B/F flags */
if (dlci->adaption == 4)
overhead = 1;
/* dlci->skb is locked by tx_lock */
if (dlci->skb == NULL) {
dlci->skb = skb_dequeue_tail(&dlci->skb_list);
if (dlci->skb == NULL)
return 0;
first = 1;
}
len = dlci->skb->len + overhead;
/* MTU/MRU count only the data bits */
if (len > gsm->mtu) {
if (dlci->adaption == 3) {
/* Over long frame, bin it */
dev_kfree_skb_any(dlci->skb);
dlci->skb = NULL;
return 0;
}
len = gsm->mtu;
} else
last = 1;
size = len + overhead;
msg = gsm_data_alloc(gsm, dlci->addr, size, gsm->ftype);
/* FIXME: need a timer or something to kick this so it can't
get stuck with no work outstanding and no buffer free */
if (msg == NULL) {
skb_queue_tail(&dlci->skb_list, dlci->skb);
dlci->skb = NULL;
return -ENOMEM;
}
dp = msg->data;
if (dlci->adaption == 4) { /* Interruptible framed (Packetised Data) */
/* Flag byte to carry the start/end info */
*dp++ = last << 7 | first << 6 | 1; /* EA */
len--;
}
memcpy(dp, dlci->skb->data, len);
skb_pull(dlci->skb, len);
__gsm_data_queue(dlci, msg);
if (last) {
dev_kfree_skb_any(dlci->skb);
dlci->skb = NULL;
}
return size;
}
/**
* gsm_dlci_data_sweep - look for data to send
* @gsm: the GSM mux
*
* Sweep the GSM mux channels in priority order looking for ones with
* data to send. We could do with optimising this scan a bit. We aim
* to fill the queue totally or up to TX_THRESH_HI bytes. Once we hit
* TX_THRESH_LO we get called again
*
* FIXME: We should round robin between groups and in theory you can
* renegotiate DLCI priorities with optional stuff. Needs optimising.
*/
static void gsm_dlci_data_sweep(struct gsm_mux *gsm)
{
int len;
/* Priority ordering: We should do priority with RR of the groups */
int i = 1;
while (i < NUM_DLCI) {
struct gsm_dlci *dlci;
if (gsm->tx_bytes > TX_THRESH_HI)
break;
dlci = gsm->dlci[i];
if (dlci == NULL || dlci->constipated) {
i++;
continue;
}
if (dlci->adaption < 3 && !dlci->net)
len = gsm_dlci_data_output(gsm, dlci);
else
len = gsm_dlci_data_output_framed(gsm, dlci);
if (len < 0)
break;
/* DLCI empty - try the next */
if (len == 0)
i++;
}
}
/**
* gsm_dlci_data_kick - transmit if possible
* @dlci: DLCI to kick
*
* Transmit data from this DLCI if the queue is empty. We can't rely on
* a tty wakeup except when we filled the pipe so we need to fire off
* new data ourselves in other cases.
*/
static void gsm_dlci_data_kick(struct gsm_dlci *dlci)
{
unsigned long flags;
int sweep;
if (dlci->constipated)
return;
spin_lock_irqsave(&dlci->gsm->tx_lock, flags);
/* If we have nothing running then we need to fire up */
sweep = (dlci->gsm->tx_bytes < TX_THRESH_LO);
if (dlci->gsm->tx_bytes == 0) {
if (dlci->net)
gsm_dlci_data_output_framed(dlci->gsm, dlci);
else
gsm_dlci_data_output(dlci->gsm, dlci);
}
if (sweep)
gsm_dlci_data_sweep(dlci->gsm);
spin_unlock_irqrestore(&dlci->gsm->tx_lock, flags);
}
/*
* Control message processing
*/
/**
* gsm_control_reply - send a response frame to a control
* @gsm: gsm channel
* @cmd: the command to use
* @data: data to follow encoded info
* @dlen: length of data
*
* Encode up and queue a UI/UIH frame containing our response.
*/
static void gsm_control_reply(struct gsm_mux *gsm, int cmd, u8 *data,
int dlen)
{
struct gsm_msg *msg;
msg = gsm_data_alloc(gsm, 0, dlen + 2, gsm->ftype);
if (msg == NULL)
return;
msg->data[0] = (cmd & 0xFE) << 1 | EA; /* Clear C/R */
msg->data[1] = (dlen << 1) | EA;
memcpy(msg->data + 2, data, dlen);
gsm_data_queue(gsm->dlci[0], msg);
}
/**
* gsm_process_modem - process received modem status
* @tty: virtual tty bound to the DLCI
* @dlci: DLCI to affect
* @modem: modem bits (full EA)
*
* Used when a modem control message or line state inline in adaption
* layer 2 is processed. Sort out the local modem state and throttles
*/
static void gsm_process_modem(struct tty_struct *tty, struct gsm_dlci *dlci,
u32 modem, int clen)
{
int mlines = 0;
u8 brk = 0;
int fc;
/* The modem status command can either contain one octet (v.24 signals)
or two octets (v.24 signals + break signals). The length field will
either be 2 or 3 respectively. This is specified in section
5.4.6.3.7 of the 27.010 mux spec. */
if (clen == 2)
modem = modem & 0x7f;
else {
brk = modem & 0x7f;
modem = (modem >> 7) & 0x7f;
}
/* Flow control/ready to communicate */
fc = (modem & MDM_FC) || !(modem & MDM_RTR);
if (fc && !dlci->constipated) {
/* Need to throttle our output on this device */
dlci->constipated = 1;
} else if (!fc && dlci->constipated) {
dlci->constipated = 0;
gsm_dlci_data_kick(dlci);
}
/* Map modem bits */
if (modem & MDM_RTC)
mlines |= TIOCM_DSR | TIOCM_DTR;
if (modem & MDM_RTR)
mlines |= TIOCM_RTS | TIOCM_CTS;
if (modem & MDM_IC)
mlines |= TIOCM_RI;
if (modem & MDM_DV)
mlines |= TIOCM_CD;
/* Carrier drop -> hangup */
if (tty) {
if ((mlines & TIOCM_CD) == 0 && (dlci->modem_rx & TIOCM_CD))
if (!C_CLOCAL(tty))
tty_hangup(tty);
}
if (brk & 0x01)
tty_insert_flip_char(&dlci->port, 0, TTY_BREAK);
dlci->modem_rx = mlines;
}
/**
* gsm_control_modem - modem status received
* @gsm: GSM channel
* @data: data following command
* @clen: command length
*
* We have received a modem status control message. This is used by
* the GSM mux protocol to pass virtual modem line status and optionally
* to indicate break signals. Unpack it, convert to Linux representation
* and if need be stuff a break message down the tty.
*/
static void gsm_control_modem(struct gsm_mux *gsm, u8 *data, int clen)
{
unsigned int addr = 0;
unsigned int modem = 0;
unsigned int brk = 0;
struct gsm_dlci *dlci;
int len = clen;
u8 *dp = data;
struct tty_struct *tty;
while (gsm_read_ea(&addr, *dp++) == 0) {
len--;
if (len == 0)
return;
}
/* Must be at least one byte following the EA */
len--;
if (len <= 0)
return;
addr >>= 1;
/* Closed port, or invalid ? */
if (addr == 0 || addr >= NUM_DLCI || gsm->dlci[addr] == NULL)
return;
dlci = gsm->dlci[addr];
while (gsm_read_ea(&modem, *dp++) == 0) {
len--;
if (len == 0)
return;
}
len--;
if (len > 0) {
while (gsm_read_ea(&brk, *dp++) == 0) {
len--;
if (len == 0)
return;
}
modem <<= 7;
modem |= (brk & 0x7f);
}
tty = tty_port_tty_get(&dlci->port);
gsm_process_modem(tty, dlci, modem, clen);
if (tty) {
tty_wakeup(tty);
tty_kref_put(tty);
}
gsm_control_reply(gsm, CMD_MSC, data, clen);
}
/**
* gsm_control_rls - remote line status
* @gsm: GSM channel
* @data: data bytes
* @clen: data length
*
* The modem sends us a two byte message on the control channel whenever
* it wishes to send us an error state from the virtual link. Stuff
* this into the uplink tty if present
*/
static void gsm_control_rls(struct gsm_mux *gsm, u8 *data, int clen)
{
struct tty_port *port;
unsigned int addr = 0;
u8 bits;
int len = clen;
u8 *dp = data;
while (gsm_read_ea(&addr, *dp++) == 0) {
len--;
if (len == 0)
return;
}
/* Must be at least one byte following ea */
len--;
if (len <= 0)
return;
addr >>= 1;
/* Closed port, or invalid ? */
if (addr == 0 || addr >= NUM_DLCI || gsm->dlci[addr] == NULL)
return;
/* No error ? */
bits = *dp;
if ((bits & 1) == 0)
return;
port = &gsm->dlci[addr]->port;
if (bits & 2)
tty_insert_flip_char(port, 0, TTY_OVERRUN);
if (bits & 4)
tty_insert_flip_char(port, 0, TTY_PARITY);
if (bits & 8)
tty_insert_flip_char(port, 0, TTY_FRAME);
tty_flip_buffer_push(port);
gsm_control_reply(gsm, CMD_RLS, data, clen);
}
static void gsm_dlci_begin_close(struct gsm_dlci *dlci);
/**
* gsm_control_message - DLCI 0 control processing
* @gsm: our GSM mux
* @command: the command EA
* @data: data beyond the command/length EAs
* @clen: length
*
* Input processor for control messages from the other end of the link.
* Processes the incoming request and queues a response frame or an
* NSC response if not supported
*/
static void gsm_control_message(struct gsm_mux *gsm, unsigned int command,
u8 *data, int clen)
{
u8 buf[1];
unsigned long flags;
switch (command) {
case CMD_CLD: {
struct gsm_dlci *dlci = gsm->dlci[0];
/* Modem wishes to close down */
if (dlci) {
dlci->dead = 1;
gsm->dead = 1;
gsm_dlci_begin_close(dlci);
}
}
break;
case CMD_TEST:
/* Modem wishes to test, reply with the data */
gsm_control_reply(gsm, CMD_TEST, data, clen);
break;
case CMD_FCON:
/* Modem can accept data again */
gsm->constipated = 0;
gsm_control_reply(gsm, CMD_FCON, NULL, 0);
/* Kick the link in case it is idling */
spin_lock_irqsave(&gsm->tx_lock, flags);
gsm_data_kick(gsm);
spin_unlock_irqrestore(&gsm->tx_lock, flags);
break;
case CMD_FCOFF:
/* Modem wants us to STFU */
gsm->constipated = 1;
gsm_control_reply(gsm, CMD_FCOFF, NULL, 0);
break;
case CMD_MSC:
/* Out of band modem line change indicator for a DLCI */
gsm_control_modem(gsm, data, clen);
break;
case CMD_RLS:
/* Out of band error reception for a DLCI */
gsm_control_rls(gsm, data, clen);
break;
case CMD_PSC:
/* Modem wishes to enter power saving state */
gsm_control_reply(gsm, CMD_PSC, NULL, 0);
break;
/* Optional unsupported commands */
case CMD_PN: /* Parameter negotiation */
case CMD_RPN: /* Remote port negotiation */
case CMD_SNC: /* Service negotiation command */
default:
/* Reply to bad commands with an NSC */
buf[0] = command;
gsm_control_reply(gsm, CMD_NSC, buf, 1);
break;
}
}
/**
* gsm_control_response - process a response to our control
* @gsm: our GSM mux
* @command: the command (response) EA
* @data: data beyond the command/length EA
* @clen: length
*
* Process a response to an outstanding command. We only allow a single
* control message in flight so this is fairly easy. All the clean up
* is done by the caller, we just update the fields, flag it as done
* and return
*/
static void gsm_control_response(struct gsm_mux *gsm, unsigned int command,
u8 *data, int clen)
{
struct gsm_control *ctrl;
unsigned long flags;
spin_lock_irqsave(&gsm->control_lock, flags);
ctrl = gsm->pending_cmd;
/* Does the reply match our command */
command |= 1;
if (ctrl != NULL && (command == ctrl->cmd || command == CMD_NSC)) {
/* Our command was replied to, kill the retry timer */
del_timer(&gsm->t2_timer);
gsm->pending_cmd = NULL;
/* Rejected by the other end */
if (command == CMD_NSC)
ctrl->error = -EOPNOTSUPP;
ctrl->done = 1;
wake_up(&gsm->event);
}
spin_unlock_irqrestore(&gsm->control_lock, flags);
}
/**
* gsm_control_transmit - send control packet
* @gsm: gsm mux
* @ctrl: frame to send
*
* Send out a pending control command (called under control lock)
*/
static void gsm_control_transmit(struct gsm_mux *gsm, struct gsm_control *ctrl)
{
struct gsm_msg *msg = gsm_data_alloc(gsm, 0, ctrl->len + 1, gsm->ftype);
if (msg == NULL)
return;
msg->data[0] = (ctrl->cmd << 1) | 2 | EA; /* command */
memcpy(msg->data + 1, ctrl->data, ctrl->len);
gsm_data_queue(gsm->dlci[0], msg);
}
/**
* gsm_control_retransmit - retransmit a control frame
* @data: pointer to our gsm object
*
* Called off the T2 timer expiry in order to retransmit control frames
* that have been lost in the system somewhere. The control_lock protects
* us from colliding with another sender or a receive completion event.
* In that situation the timer may still occur in a small window but
* gsm->pending_cmd will be NULL and we just let the timer expire.
*/
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
static void gsm_control_retransmit(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
struct gsm_mux *gsm = from_timer(gsm, t, t2_timer);
struct gsm_control *ctrl;
unsigned long flags;
spin_lock_irqsave(&gsm->control_lock, flags);
ctrl = gsm->pending_cmd;
if (ctrl) {
gsm->cretries--;
if (gsm->cretries == 0) {
gsm->pending_cmd = NULL;
ctrl->error = -ETIMEDOUT;
ctrl->done = 1;
spin_unlock_irqrestore(&gsm->control_lock, flags);
wake_up(&gsm->event);
return;
}
gsm_control_transmit(gsm, ctrl);
mod_timer(&gsm->t2_timer, jiffies + gsm->t2 * HZ / 100);
}
spin_unlock_irqrestore(&gsm->control_lock, flags);
}
/**
* gsm_control_send - send a control frame on DLCI 0
* @gsm: the GSM channel
* @command: command to send including CR bit
* @data: bytes of data (must be kmalloced)
* @len: length of the block to send
*
* Queue and dispatch a control command. Only one command can be
* active at a time. In theory more can be outstanding but the matching
* gets really complicated so for now stick to one outstanding.
*/
static struct gsm_control *gsm_control_send(struct gsm_mux *gsm,
unsigned int command, u8 *data, int clen)
{
struct gsm_control *ctrl = kzalloc(sizeof(struct gsm_control),
GFP_KERNEL);
unsigned long flags;
if (ctrl == NULL)
return NULL;
retry:
wait_event(gsm->event, gsm->pending_cmd == NULL);
spin_lock_irqsave(&gsm->control_lock, flags);
if (gsm->pending_cmd != NULL) {
spin_unlock_irqrestore(&gsm->control_lock, flags);
goto retry;
}
ctrl->cmd = command;
ctrl->data = data;
ctrl->len = clen;
gsm->pending_cmd = ctrl;
tty: n_gsm: Fix long delays with control frame timeouts in ADM mode Commit ea3d8465ab9b ("tty: n_gsm: Allow ADM response in addition to UA for control dlci") added support for DLCI to stay in Asynchronous Disconnected Mode (ADM). But we still get long delays waiting for commands to other DLCI to complete: --> 5) C: SABM(P) Q> 0) C: UIH(F) Q> 0) C: UIH(F) Q> 0) C: UIH(F) ... This happens because gsm_control_send() sets cretries timer to T2 that is by default set to 34. This will cause resend for T2 times for the control frame. In ADM mode, we will never get a response so the control frame, so retries are just delaying all the commands. Let's fix the issue by setting DLCI_MODE_ADM flag after detecting the ADM mode for the control DLCI. Then we can use that in gsm_control_send() to set retries to 1. This means the control frame will be sent once allowing the other end at an opportunity to switch from ADM to ABM mode. Note that retries will be decremented in gsm_control_retransmit() so we don't want to set it to 0 here. Fixes: ea3d8465ab9b ("tty: n_gsm: Allow ADM response in addition to UA for control dlci") Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Dan Williams <dcbw@redhat.com> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Merlijn Wajer <merlijn@wizzup.org> Cc: Michael Nazzareno Trimarchi <michael@amarulasolutions.com> Cc: Michael Scott <michael.scott@linaro.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-08 01:19:50 +08:00
/* If DLCI0 is in ADM mode skip retries, it won't respond */
if (gsm->dlci[0]->mode == DLCI_MODE_ADM)
gsm->cretries = 1;
else
gsm->cretries = gsm->n2;
mod_timer(&gsm->t2_timer, jiffies + gsm->t2 * HZ / 100);
gsm_control_transmit(gsm, ctrl);
spin_unlock_irqrestore(&gsm->control_lock, flags);
return ctrl;
}
/**
* gsm_control_wait - wait for a control to finish
* @gsm: GSM mux
* @control: control we are waiting on
*
* Waits for the control to complete or time out. Frees any used
* resources and returns 0 for success, or an error if the remote
* rejected or ignored the request.
*/
static int gsm_control_wait(struct gsm_mux *gsm, struct gsm_control *control)
{
int err;
wait_event(gsm->event, control->done == 1);
err = control->error;
kfree(control);
return err;
}
/*
* DLCI level handling: Needs krefs
*/
/*
* State transitions and timers
*/
/**
* gsm_dlci_close - a DLCI has closed
* @dlci: DLCI that closed
*
* Perform processing when moving a DLCI into closed state. If there
* is an attached tty this is hung up
*/
static void gsm_dlci_close(struct gsm_dlci *dlci)
{
del_timer(&dlci->t1);
if (debug & 8)
pr_debug("DLCI %d goes closed.\n", dlci->addr);
dlci->state = DLCI_CLOSED;
if (dlci->addr != 0) {
tty_port_tty_hangup(&dlci->port, false);
kfifo_reset(dlci->fifo);
} else
dlci->gsm->dead = 1;
wake_up(&dlci->gsm->event);
/* A DLCI 0 close is a MUX termination so we need to kick that
back to userspace somehow */
}
/**
* gsm_dlci_open - a DLCI has opened
* @dlci: DLCI that opened
*
* Perform processing when moving a DLCI into open state.
*/
static void gsm_dlci_open(struct gsm_dlci *dlci)
{
/* Note that SABM UA .. SABM UA first UA lost can mean that we go
open -> open */
del_timer(&dlci->t1);
/* This will let a tty open continue */
dlci->state = DLCI_OPEN;
if (debug & 8)
pr_debug("DLCI %d goes open.\n", dlci->addr);
wake_up(&dlci->gsm->event);
}
/**
* gsm_dlci_t1 - T1 timer expiry
* @dlci: DLCI that opened
*
* The T1 timer handles retransmits of control frames (essentially of
* SABM and DISC). We resend the command until the retry count runs out
* in which case an opening port goes back to closed and a closing port
* is simply put into closed state (any further frames from the other
* end will get a DM response)
tty: n_gsm: Allow ADM response in addition to UA for control dlci Some devices have the control dlci stay in ADM mode instead of the UA mode. This can seen at least on droid 4 when trying to open the ts 27.010 mux port. Enabling n_gsm debug mode shows the control dlci always respond with DM to SABM instead of UA: # modprobe n_gsm debug=0xff # ldattach -d GSM0710 /dev/ttyS0 & gsmld_output: 00000000: f9 03 3f 01 1c f9 --> 0) C: SABM(P) gsmld_receive: 00000000: f9 03 1f 01 36 f9 <-- 0) C: DM(P) ... $ minicom -D /dev/gsmtty1 minicom: cannot open /dev/gsmtty1: No error information $ strace minicom -D /dev/gsmtty1 ... open("/dev/gsmtty1", O_RDWR|O_NOCTTY|O_NONBLOCK|O_LARGEFILE) = -1 EL2HLT Note that this is different issue from other n_gsm -EL2HLT issues such as timeouts when the control dlci does not respond at all. The ADM mode seems to be a quite common according to "RF Wireless World" article "GSM Issue-UE sends SABM and gets a DM response instead of UA response": This issue is most commonly observed in GSM networks where in UE sends SABM and expects network to send UA response but it ends up receiving DM response from the network. SABM stands for Set asynchronous balanced mode, UA stands for Unnumbered Acknowledge and DA stands for Disconnected Mode. An RLP entity can be in one of two modes: - Asynchronous Balanced Mode (ABM) - Asynchronous Disconnected Mode (ADM) Currently Linux kernel closes the control dlci after several retries in gsm_dlci_t1() on DM. This causes n_gsm /dev/gsmtty ports to produce error code -EL2HLT when trying to open them as the closing of control dlci has already set gsm->dead. Let's fix the issue by allowing control dlci stay in ADM mode after the retries so the /dev/gsmtty ports can be opened and used. It seems that it might take several attempts to get any response from the control dlci, so it's best to allow ADM mode only after the SABM retries are done. Note that for droid 4 additional patches are needed to mux the ttyS0 pins and to toggle RTS gpio_149 to wake up the mdm6600 modem are also needed to use n_gsm. And the mdm6600 modem needs to be powered on. Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Michael Scott <michael.scott@linaro.org> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-04 02:18:03 +08:00
*
* Some control dlci can stay in ADM mode with other dlci working just
* fine. In that case we can just keep the control dlci open after the
* DLCI_OPENING retries time out.
*/
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
static void gsm_dlci_t1(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
struct gsm_dlci *dlci = from_timer(dlci, t, t1);
struct gsm_mux *gsm = dlci->gsm;
switch (dlci->state) {
case DLCI_OPENING:
dlci->retries--;
if (dlci->retries) {
gsm_command(dlci->gsm, dlci->addr, SABM|PF);
mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100);
tty: n_gsm: Allow ADM response in addition to UA for control dlci Some devices have the control dlci stay in ADM mode instead of the UA mode. This can seen at least on droid 4 when trying to open the ts 27.010 mux port. Enabling n_gsm debug mode shows the control dlci always respond with DM to SABM instead of UA: # modprobe n_gsm debug=0xff # ldattach -d GSM0710 /dev/ttyS0 & gsmld_output: 00000000: f9 03 3f 01 1c f9 --> 0) C: SABM(P) gsmld_receive: 00000000: f9 03 1f 01 36 f9 <-- 0) C: DM(P) ... $ minicom -D /dev/gsmtty1 minicom: cannot open /dev/gsmtty1: No error information $ strace minicom -D /dev/gsmtty1 ... open("/dev/gsmtty1", O_RDWR|O_NOCTTY|O_NONBLOCK|O_LARGEFILE) = -1 EL2HLT Note that this is different issue from other n_gsm -EL2HLT issues such as timeouts when the control dlci does not respond at all. The ADM mode seems to be a quite common according to "RF Wireless World" article "GSM Issue-UE sends SABM and gets a DM response instead of UA response": This issue is most commonly observed in GSM networks where in UE sends SABM and expects network to send UA response but it ends up receiving DM response from the network. SABM stands for Set asynchronous balanced mode, UA stands for Unnumbered Acknowledge and DA stands for Disconnected Mode. An RLP entity can be in one of two modes: - Asynchronous Balanced Mode (ABM) - Asynchronous Disconnected Mode (ADM) Currently Linux kernel closes the control dlci after several retries in gsm_dlci_t1() on DM. This causes n_gsm /dev/gsmtty ports to produce error code -EL2HLT when trying to open them as the closing of control dlci has already set gsm->dead. Let's fix the issue by allowing control dlci stay in ADM mode after the retries so the /dev/gsmtty ports can be opened and used. It seems that it might take several attempts to get any response from the control dlci, so it's best to allow ADM mode only after the SABM retries are done. Note that for droid 4 additional patches are needed to mux the ttyS0 pins and to toggle RTS gpio_149 to wake up the mdm6600 modem are also needed to use n_gsm. And the mdm6600 modem needs to be powered on. Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Michael Scott <michael.scott@linaro.org> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-04 02:18:03 +08:00
} else if (!dlci->addr && gsm->control == (DM | PF)) {
if (debug & 8)
pr_info("DLCI %d opening in ADM mode.\n",
dlci->addr);
tty: n_gsm: Fix long delays with control frame timeouts in ADM mode Commit ea3d8465ab9b ("tty: n_gsm: Allow ADM response in addition to UA for control dlci") added support for DLCI to stay in Asynchronous Disconnected Mode (ADM). But we still get long delays waiting for commands to other DLCI to complete: --> 5) C: SABM(P) Q> 0) C: UIH(F) Q> 0) C: UIH(F) Q> 0) C: UIH(F) ... This happens because gsm_control_send() sets cretries timer to T2 that is by default set to 34. This will cause resend for T2 times for the control frame. In ADM mode, we will never get a response so the control frame, so retries are just delaying all the commands. Let's fix the issue by setting DLCI_MODE_ADM flag after detecting the ADM mode for the control DLCI. Then we can use that in gsm_control_send() to set retries to 1. This means the control frame will be sent once allowing the other end at an opportunity to switch from ADM to ABM mode. Note that retries will be decremented in gsm_control_retransmit() so we don't want to set it to 0 here. Fixes: ea3d8465ab9b ("tty: n_gsm: Allow ADM response in addition to UA for control dlci") Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Dan Williams <dcbw@redhat.com> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Merlijn Wajer <merlijn@wizzup.org> Cc: Michael Nazzareno Trimarchi <michael@amarulasolutions.com> Cc: Michael Scott <michael.scott@linaro.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-08 01:19:50 +08:00
dlci->mode = DLCI_MODE_ADM;
tty: n_gsm: Allow ADM response in addition to UA for control dlci Some devices have the control dlci stay in ADM mode instead of the UA mode. This can seen at least on droid 4 when trying to open the ts 27.010 mux port. Enabling n_gsm debug mode shows the control dlci always respond with DM to SABM instead of UA: # modprobe n_gsm debug=0xff # ldattach -d GSM0710 /dev/ttyS0 & gsmld_output: 00000000: f9 03 3f 01 1c f9 --> 0) C: SABM(P) gsmld_receive: 00000000: f9 03 1f 01 36 f9 <-- 0) C: DM(P) ... $ minicom -D /dev/gsmtty1 minicom: cannot open /dev/gsmtty1: No error information $ strace minicom -D /dev/gsmtty1 ... open("/dev/gsmtty1", O_RDWR|O_NOCTTY|O_NONBLOCK|O_LARGEFILE) = -1 EL2HLT Note that this is different issue from other n_gsm -EL2HLT issues such as timeouts when the control dlci does not respond at all. The ADM mode seems to be a quite common according to "RF Wireless World" article "GSM Issue-UE sends SABM and gets a DM response instead of UA response": This issue is most commonly observed in GSM networks where in UE sends SABM and expects network to send UA response but it ends up receiving DM response from the network. SABM stands for Set asynchronous balanced mode, UA stands for Unnumbered Acknowledge and DA stands for Disconnected Mode. An RLP entity can be in one of two modes: - Asynchronous Balanced Mode (ABM) - Asynchronous Disconnected Mode (ADM) Currently Linux kernel closes the control dlci after several retries in gsm_dlci_t1() on DM. This causes n_gsm /dev/gsmtty ports to produce error code -EL2HLT when trying to open them as the closing of control dlci has already set gsm->dead. Let's fix the issue by allowing control dlci stay in ADM mode after the retries so the /dev/gsmtty ports can be opened and used. It seems that it might take several attempts to get any response from the control dlci, so it's best to allow ADM mode only after the SABM retries are done. Note that for droid 4 additional patches are needed to mux the ttyS0 pins and to toggle RTS gpio_149 to wake up the mdm6600 modem are also needed to use n_gsm. And the mdm6600 modem needs to be powered on. Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Michael Scott <michael.scott@linaro.org> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-04 02:18:03 +08:00
gsm_dlci_open(dlci);
} else {
gsm_dlci_close(dlci);
tty: n_gsm: Allow ADM response in addition to UA for control dlci Some devices have the control dlci stay in ADM mode instead of the UA mode. This can seen at least on droid 4 when trying to open the ts 27.010 mux port. Enabling n_gsm debug mode shows the control dlci always respond with DM to SABM instead of UA: # modprobe n_gsm debug=0xff # ldattach -d GSM0710 /dev/ttyS0 & gsmld_output: 00000000: f9 03 3f 01 1c f9 --> 0) C: SABM(P) gsmld_receive: 00000000: f9 03 1f 01 36 f9 <-- 0) C: DM(P) ... $ minicom -D /dev/gsmtty1 minicom: cannot open /dev/gsmtty1: No error information $ strace minicom -D /dev/gsmtty1 ... open("/dev/gsmtty1", O_RDWR|O_NOCTTY|O_NONBLOCK|O_LARGEFILE) = -1 EL2HLT Note that this is different issue from other n_gsm -EL2HLT issues such as timeouts when the control dlci does not respond at all. The ADM mode seems to be a quite common according to "RF Wireless World" article "GSM Issue-UE sends SABM and gets a DM response instead of UA response": This issue is most commonly observed in GSM networks where in UE sends SABM and expects network to send UA response but it ends up receiving DM response from the network. SABM stands for Set asynchronous balanced mode, UA stands for Unnumbered Acknowledge and DA stands for Disconnected Mode. An RLP entity can be in one of two modes: - Asynchronous Balanced Mode (ABM) - Asynchronous Disconnected Mode (ADM) Currently Linux kernel closes the control dlci after several retries in gsm_dlci_t1() on DM. This causes n_gsm /dev/gsmtty ports to produce error code -EL2HLT when trying to open them as the closing of control dlci has already set gsm->dead. Let's fix the issue by allowing control dlci stay in ADM mode after the retries so the /dev/gsmtty ports can be opened and used. It seems that it might take several attempts to get any response from the control dlci, so it's best to allow ADM mode only after the SABM retries are done. Note that for droid 4 additional patches are needed to mux the ttyS0 pins and to toggle RTS gpio_149 to wake up the mdm6600 modem are also needed to use n_gsm. And the mdm6600 modem needs to be powered on. Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Michael Scott <michael.scott@linaro.org> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-04 02:18:03 +08:00
}
break;
case DLCI_CLOSING:
dlci->retries--;
if (dlci->retries) {
gsm_command(dlci->gsm, dlci->addr, DISC|PF);
mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100);
} else
gsm_dlci_close(dlci);
break;
}
}
/**
* gsm_dlci_begin_open - start channel open procedure
* @dlci: DLCI to open
*
* Commence opening a DLCI from the Linux side. We issue SABM messages
tty: n_gsm: Allow ADM response in addition to UA for control dlci Some devices have the control dlci stay in ADM mode instead of the UA mode. This can seen at least on droid 4 when trying to open the ts 27.010 mux port. Enabling n_gsm debug mode shows the control dlci always respond with DM to SABM instead of UA: # modprobe n_gsm debug=0xff # ldattach -d GSM0710 /dev/ttyS0 & gsmld_output: 00000000: f9 03 3f 01 1c f9 --> 0) C: SABM(P) gsmld_receive: 00000000: f9 03 1f 01 36 f9 <-- 0) C: DM(P) ... $ minicom -D /dev/gsmtty1 minicom: cannot open /dev/gsmtty1: No error information $ strace minicom -D /dev/gsmtty1 ... open("/dev/gsmtty1", O_RDWR|O_NOCTTY|O_NONBLOCK|O_LARGEFILE) = -1 EL2HLT Note that this is different issue from other n_gsm -EL2HLT issues such as timeouts when the control dlci does not respond at all. The ADM mode seems to be a quite common according to "RF Wireless World" article "GSM Issue-UE sends SABM and gets a DM response instead of UA response": This issue is most commonly observed in GSM networks where in UE sends SABM and expects network to send UA response but it ends up receiving DM response from the network. SABM stands for Set asynchronous balanced mode, UA stands for Unnumbered Acknowledge and DA stands for Disconnected Mode. An RLP entity can be in one of two modes: - Asynchronous Balanced Mode (ABM) - Asynchronous Disconnected Mode (ADM) Currently Linux kernel closes the control dlci after several retries in gsm_dlci_t1() on DM. This causes n_gsm /dev/gsmtty ports to produce error code -EL2HLT when trying to open them as the closing of control dlci has already set gsm->dead. Let's fix the issue by allowing control dlci stay in ADM mode after the retries so the /dev/gsmtty ports can be opened and used. It seems that it might take several attempts to get any response from the control dlci, so it's best to allow ADM mode only after the SABM retries are done. Note that for droid 4 additional patches are needed to mux the ttyS0 pins and to toggle RTS gpio_149 to wake up the mdm6600 modem are also needed to use n_gsm. And the mdm6600 modem needs to be powered on. Cc: linux-serial@vger.kernel.org Cc: Alan Cox <alan@llwyncelyn.cymru> Cc: Jiri Prchal <jiri.prchal@aksignal.cz> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Marcel Partap <mpartap@gmx.net> Cc: Michael Scott <michael.scott@linaro.org> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Russ Gorby <russ.gorby@intel.com> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Signed-off-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-01-04 02:18:03 +08:00
* to the modem which should then reply with a UA or ADM, at which point
* we will move into open state. Opening is done asynchronously with retry
* running off timers and the responses.
*/
static void gsm_dlci_begin_open(struct gsm_dlci *dlci)
{
struct gsm_mux *gsm = dlci->gsm;
if (dlci->state == DLCI_OPEN || dlci->state == DLCI_OPENING)
return;
dlci->retries = gsm->n2;
dlci->state = DLCI_OPENING;
gsm_command(dlci->gsm, dlci->addr, SABM|PF);
mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100);
}
/**
* gsm_dlci_begin_close - start channel open procedure
* @dlci: DLCI to open
*
* Commence closing a DLCI from the Linux side. We issue DISC messages
* to the modem which should then reply with a UA, at which point we
* will move into closed state. Closing is done asynchronously with retry
* off timers. We may also receive a DM reply from the other end which
* indicates the channel was already closed.
*/
static void gsm_dlci_begin_close(struct gsm_dlci *dlci)
{
struct gsm_mux *gsm = dlci->gsm;
if (dlci->state == DLCI_CLOSED || dlci->state == DLCI_CLOSING)
return;
dlci->retries = gsm->n2;
dlci->state = DLCI_CLOSING;
gsm_command(dlci->gsm, dlci->addr, DISC|PF);
mod_timer(&dlci->t1, jiffies + gsm->t1 * HZ / 100);
}
/**
* gsm_dlci_data - data arrived
* @dlci: channel
* @data: block of bytes received
* @len: length of received block
*
* A UI or UIH frame has arrived which contains data for a channel
* other than the control channel. If the relevant virtual tty is
* open we shovel the bits down it, if not we drop them.
*/
static void gsm_dlci_data(struct gsm_dlci *dlci, u8 *data, int clen)
{
/* krefs .. */
struct tty_port *port = &dlci->port;
struct tty_struct *tty;
unsigned int modem = 0;
int len = clen;
if (debug & 16)
pr_debug("%d bytes for tty\n", len);
switch (dlci->adaption) {
/* Unsupported types */
/* Packetised interruptible data */
case 4:
break;
/* Packetised uininterruptible voice/data */
case 3:
break;
/* Asynchronous serial with line state in each frame */
case 2:
while (gsm_read_ea(&modem, *data++) == 0) {
len--;
if (len == 0)
return;
}
tty = tty_port_tty_get(port);
if (tty) {
gsm_process_modem(tty, dlci, modem, clen);
tty_kref_put(tty);
}
/* Line state will go via DLCI 0 controls only */
case 1:
default:
tty_insert_flip_string(port, data, len);
tty_flip_buffer_push(port);
}
}
/**
* gsm_dlci_control - data arrived on control channel
* @dlci: channel
* @data: block of bytes received
* @len: length of received block
*
* A UI or UIH frame has arrived which contains data for DLCI 0 the
* control channel. This should contain a command EA followed by
* control data bytes. The command EA contains a command/response bit
* and we divide up the work accordingly.
*/
static void gsm_dlci_command(struct gsm_dlci *dlci, u8 *data, int len)
{
/* See what command is involved */
unsigned int command = 0;
while (len-- > 0) {
if (gsm_read_ea(&command, *data++) == 1) {
int clen = *data++;
len--;
/* FIXME: this is properly an EA */
clen >>= 1;
/* Malformed command ? */
if (clen > len)
return;
if (command & 1)
gsm_control_message(dlci->gsm, command,
data, clen);
else
gsm_control_response(dlci->gsm, command,
data, clen);
return;
}
}
}
/*
* Allocate/Free DLCI channels
*/
/**
* gsm_dlci_alloc - allocate a DLCI
* @gsm: GSM mux
* @addr: address of the DLCI
*
* Allocate and install a new DLCI object into the GSM mux.
*
* FIXME: review locking races
*/
static struct gsm_dlci *gsm_dlci_alloc(struct gsm_mux *gsm, int addr)
{
struct gsm_dlci *dlci = kzalloc(sizeof(struct gsm_dlci), GFP_ATOMIC);
if (dlci == NULL)
return NULL;
spin_lock_init(&dlci->lock);
mutex_init(&dlci->mutex);
dlci->fifo = &dlci->_fifo;
if (kfifo_alloc(&dlci->_fifo, 4096, GFP_KERNEL) < 0) {
kfree(dlci);
return NULL;
}
skb_queue_head_init(&dlci->skb_list);
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
timer_setup(&dlci->t1, gsm_dlci_t1, 0);
tty_port_init(&dlci->port);
dlci->port.ops = &gsm_port_ops;
dlci->gsm = gsm;
dlci->addr = addr;
dlci->adaption = gsm->adaption;
dlci->state = DLCI_CLOSED;
if (addr)
dlci->data = gsm_dlci_data;
else
dlci->data = gsm_dlci_command;
gsm->dlci[addr] = dlci;
return dlci;
}
/**
* gsm_dlci_free - free DLCI
* @dlci: DLCI to free
*
* Free up a DLCI.
*
* Can sleep.
*/
static void gsm_dlci_free(struct tty_port *port)
{
struct gsm_dlci *dlci = container_of(port, struct gsm_dlci, port);
del_timer_sync(&dlci->t1);
dlci->gsm->dlci[dlci->addr] = NULL;
kfifo_free(dlci->fifo);
while ((dlci->skb = skb_dequeue(&dlci->skb_list)))
dev_kfree_skb(dlci->skb);
kfree(dlci);
}
static inline void dlci_get(struct gsm_dlci *dlci)
{
tty_port_get(&dlci->port);
}
static inline void dlci_put(struct gsm_dlci *dlci)
{
tty_port_put(&dlci->port);
}
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
static void gsm_destroy_network(struct gsm_dlci *dlci);
/**
* gsm_dlci_release - release DLCI
* @dlci: DLCI to destroy
*
* Release a DLCI. Actual free is deferred until either
* mux is closed or tty is closed - whichever is last.
*
* Can sleep.
*/
static void gsm_dlci_release(struct gsm_dlci *dlci)
{
struct tty_struct *tty = tty_port_tty_get(&dlci->port);
if (tty) {
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
mutex_lock(&dlci->mutex);
gsm_destroy_network(dlci);
mutex_unlock(&dlci->mutex);
tty_vhangup(tty);
TTY/n_gsm: Removing the wrong tty_unlock/lock() in gsm_dlci_release() Commit 4d9b109060f690f5c835(tty: Prevent deadlock in n_gsm driver) tried to close all the virtual ports synchronously before closing the phycial ports, so the tty_vhangup() is used. But the tty_unlock/lock() is wrong: tty_release tty_ldisc_release tty_lock_pair(tty, o_tty) < == Here the tty is for physical port tty_ldisc_kill gsmld_close gsm_cleanup_mux gsm_dlci_release tty = tty_port_tty_get(&dlci->port) < == Here the tty(s) are for virtual port They are different ttys, so before tty_vhangup(virtual tty), do not need to call the tty_unlock(virtual tty) at all which causes unbalanced unlock warning. When enabling mutex debugging option, we will hit the below warning also: [ 99.276903] ===================================== [ 99.282172] [ BUG: bad unlock balance detected! ] [ 99.287442] 3.10.20-261976-gaec5ba0 #44 Tainted: G O [ 99.293972] ------------------------------------- [ 99.299240] mmgr/152 is trying to release lock (&tty->legacy_mutex) at: [ 99.306693] [<c1b2dcad>] mutex_unlock+0xd/0x10 [ 99.311669] but there are no more locks to release! [ 99.317131] [ 99.317131] other info that might help us debug this: [ 99.324440] 3 locks held by mmgr/152: [ 99.328542] #0: (&tty->legacy_mutex/1){......}, at: [<c1b30ab0>] tty_lock_nested+0x40/0x90 [ 99.338116] #1: (&tty->ldisc_mutex){......}, at: [<c15dbd02>] tty_ldisc_kill+0x22/0xd0 [ 99.347284] #2: (&gsm->mutex){......}, at: [<c15e3d83>] gsm_cleanup_mux+0x73/0x170 [ 99.356060] [ 99.356060] stack backtrace: [ 99.360932] CPU: 0 PID: 152 Comm: mmgr Tainted: G O 3.10.20-261976-gaec5ba0 #44 [ 99.370086] ef4a4de0 ef4a4de0 ef4c1d98 c1b27b91 ef4c1db8 c1292655 c1dd10f5 c1b2dcad [ 99.378921] c1b2dcad ef4a4de0 ef4a528c ffffffff ef4c1dfc c12930dd 00000246 00000000 [ 99.387754] 00000000 00000000 c15e1926 00000000 00000001 ddfa7530 00000003 c1b2dcad [ 99.396588] Call Trace: [ 99.399326] [<c1b27b91>] dump_stack+0x16/0x18 [ 99.404307] [<c1292655>] print_unlock_imbalance_bug+0xe5/0xf0 [ 99.410840] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.416110] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.421382] [<c12930dd>] lock_release_non_nested+0x1cd/0x210 [ 99.427818] [<c15e1926>] ? gsm_destroy_network+0x36/0x130 [ 99.433964] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.439235] [<c12931a2>] lock_release+0x82/0x1c0 [ 99.444505] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.449776] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.455047] [<c1b2dc2f>] __mutex_unlock_slowpath+0x5f/0xd0 [ 99.461288] [<c1b2dcad>] mutex_unlock+0xd/0x10 [ 99.466365] [<c1b30bb1>] tty_unlock+0x21/0x50 [ 99.471345] [<c15e3dd1>] gsm_cleanup_mux+0xc1/0x170 [ 99.476906] [<c15e44d2>] gsmld_close+0x52/0x90 [ 99.481983] [<c15db905>] tty_ldisc_close.isra.1+0x35/0x50 [ 99.488127] [<c15dbd0c>] tty_ldisc_kill+0x2c/0xd0 [ 99.493494] [<c15dc7af>] tty_ldisc_release+0x2f/0x50 [ 99.499152] [<c15d572c>] tty_release+0x37c/0x4b0 [ 99.504424] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.509695] [<c1b2dcad>] ? mutex_unlock+0xd/0x10 [ 99.514967] [<c1372f6e>] ? eventpoll_release_file+0x7e/0x90 [ 99.521307] [<c1335849>] __fput+0xd9/0x200 [ 99.525996] [<c133597d>] ____fput+0xd/0x10 [ 99.530685] [<c125c731>] task_work_run+0x81/0xb0 [ 99.535957] [<c12019e9>] do_notify_resume+0x49/0x70 [ 99.541520] [<c1b30dc4>] work_notifysig+0x29/0x31 [ 99.546897] ------------[ cut here ]------------ So here we can call tty_vhangup() directly which is for virtual port. Reviewed-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Liu, Chuansheng <chuansheng.liu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-18 13:30:11 +08:00
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
tty_port_tty_set(&dlci->port, NULL);
tty_kref_put(tty);
}
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
dlci->state = DLCI_CLOSED;
dlci_put(dlci);
}
/*
* LAPBish link layer logic
*/
/**
* gsm_queue - a GSM frame is ready to process
* @gsm: pointer to our gsm mux
*
* At this point in time a frame has arrived and been demangled from
* the line encoding. All the differences between the encodings have
* been handled below us and the frame is unpacked into the structures.
* The fcs holds the header FCS but any data FCS must be added here.
*/
static void gsm_queue(struct gsm_mux *gsm)
{
struct gsm_dlci *dlci;
u8 cr;
int address;
/* We have to sneak a look at the packet body to do the FCS.
A somewhat layering violation in the spec */
if ((gsm->control & ~PF) == UI)
gsm->fcs = gsm_fcs_add_block(gsm->fcs, gsm->buf, gsm->len);
if (gsm->encoding == 0) {
/* WARNING: gsm->received_fcs is used for
gsm->encoding = 0 only.
In this case it contain the last piece of data
required to generate final CRC */
gsm->fcs = gsm_fcs_add(gsm->fcs, gsm->received_fcs);
}
if (gsm->fcs != GOOD_FCS) {
gsm->bad_fcs++;
if (debug & 4)
pr_debug("BAD FCS %02x\n", gsm->fcs);
return;
}
address = gsm->address >> 1;
if (address >= NUM_DLCI)
goto invalid;
cr = gsm->address & 1; /* C/R bit */
gsm_print_packet("<--", address, cr, gsm->control, gsm->buf, gsm->len);
cr ^= 1 - gsm->initiator; /* Flip so 1 always means command */
dlci = gsm->dlci[address];
switch (gsm->control) {
case SABM|PF:
if (cr == 0)
goto invalid;
if (dlci == NULL)
dlci = gsm_dlci_alloc(gsm, address);
if (dlci == NULL)
return;
if (dlci->dead)
gsm_response(gsm, address, DM);
else {
gsm_response(gsm, address, UA);
gsm_dlci_open(dlci);
}
break;
case DISC|PF:
if (cr == 0)
goto invalid;
if (dlci == NULL || dlci->state == DLCI_CLOSED) {
gsm_response(gsm, address, DM);
return;
}
/* Real close complete */
gsm_response(gsm, address, UA);
gsm_dlci_close(dlci);
break;
case UA:
case UA|PF:
if (cr == 0 || dlci == NULL)
break;
switch (dlci->state) {
case DLCI_CLOSING:
gsm_dlci_close(dlci);
break;
case DLCI_OPENING:
gsm_dlci_open(dlci);
break;
}
break;
case DM: /* DM can be valid unsolicited */
case DM|PF:
if (cr)
goto invalid;
if (dlci == NULL)
return;
gsm_dlci_close(dlci);
break;
case UI:
case UI|PF:
case UIH:
case UIH|PF:
#if 0
if (cr)
goto invalid;
#endif
if (dlci == NULL || dlci->state != DLCI_OPEN) {
gsm_command(gsm, address, DM|PF);
return;
}
dlci->data(dlci, gsm->buf, gsm->len);
break;
default:
goto invalid;
}
return;
invalid:
gsm->malformed++;
return;
}
/**
* gsm0_receive - perform processing for non-transparency
* @gsm: gsm data for this ldisc instance
* @c: character
*
* Receive bytes in gsm mode 0
*/
static void gsm0_receive(struct gsm_mux *gsm, unsigned char c)
{
unsigned int len;
switch (gsm->state) {
case GSM_SEARCH: /* SOF marker */
if (c == GSM0_SOF) {
gsm->state = GSM_ADDRESS;
gsm->address = 0;
gsm->len = 0;
gsm->fcs = INIT_FCS;
}
break;
case GSM_ADDRESS: /* Address EA */
gsm->fcs = gsm_fcs_add(gsm->fcs, c);
if (gsm_read_ea(&gsm->address, c))
gsm->state = GSM_CONTROL;
break;
case GSM_CONTROL: /* Control Byte */
gsm->fcs = gsm_fcs_add(gsm->fcs, c);
gsm->control = c;
gsm->state = GSM_LEN0;
break;
case GSM_LEN0: /* Length EA */
gsm->fcs = gsm_fcs_add(gsm->fcs, c);
if (gsm_read_ea(&gsm->len, c)) {
if (gsm->len > gsm->mru) {
gsm->bad_size++;
gsm->state = GSM_SEARCH;
break;
}
gsm->count = 0;
if (!gsm->len)
gsm->state = GSM_FCS;
else
gsm->state = GSM_DATA;
break;
}
gsm->state = GSM_LEN1;
break;
case GSM_LEN1:
gsm->fcs = gsm_fcs_add(gsm->fcs, c);
len = c;
gsm->len |= len << 7;
if (gsm->len > gsm->mru) {
gsm->bad_size++;
gsm->state = GSM_SEARCH;
break;
}
gsm->count = 0;
if (!gsm->len)
gsm->state = GSM_FCS;
else
gsm->state = GSM_DATA;
break;
case GSM_DATA: /* Data */
gsm->buf[gsm->count++] = c;
if (gsm->count == gsm->len)
gsm->state = GSM_FCS;
break;
case GSM_FCS: /* FCS follows the packet */
gsm->received_fcs = c;
gsm_queue(gsm);
gsm->state = GSM_SSOF;
break;
case GSM_SSOF:
if (c == GSM0_SOF) {
gsm->state = GSM_SEARCH;
break;
}
break;
}
}
/**
* gsm1_receive - perform processing for non-transparency
* @gsm: gsm data for this ldisc instance
* @c: character
*
* Receive bytes in mode 1 (Advanced option)
*/
static void gsm1_receive(struct gsm_mux *gsm, unsigned char c)
{
if (c == GSM1_SOF) {
/* EOF is only valid in frame if we have got to the data state
and received at least one byte (the FCS) */
if (gsm->state == GSM_DATA && gsm->count) {
/* Extract the FCS */
gsm->count--;
gsm->fcs = gsm_fcs_add(gsm->fcs, gsm->buf[gsm->count]);
gsm->len = gsm->count;
gsm_queue(gsm);
gsm->state = GSM_START;
return;
}
/* Any partial frame was a runt so go back to start */
if (gsm->state != GSM_START) {
gsm->malformed++;
gsm->state = GSM_START;
}
/* A SOF in GSM_START means we are still reading idling or
framing bytes */
return;
}
if (c == GSM1_ESCAPE) {
gsm->escape = 1;
return;
}
/* Only an unescaped SOF gets us out of GSM search */
if (gsm->state == GSM_SEARCH)
return;
if (gsm->escape) {
c ^= GSM1_ESCAPE_BITS;
gsm->escape = 0;
}
switch (gsm->state) {
case GSM_START: /* First byte after SOF */
gsm->address = 0;
gsm->state = GSM_ADDRESS;
gsm->fcs = INIT_FCS;
/* Drop through */
case GSM_ADDRESS: /* Address continuation */
gsm->fcs = gsm_fcs_add(gsm->fcs, c);
if (gsm_read_ea(&gsm->address, c))
gsm->state = GSM_CONTROL;
break;
case GSM_CONTROL: /* Control Byte */
gsm->fcs = gsm_fcs_add(gsm->fcs, c);
gsm->control = c;
gsm->count = 0;
gsm->state = GSM_DATA;
break;
case GSM_DATA: /* Data */
if (gsm->count > gsm->mru) { /* Allow one for the FCS */
gsm->state = GSM_OVERRUN;
gsm->bad_size++;
} else
gsm->buf[gsm->count++] = c;
break;
case GSM_OVERRUN: /* Over-long - eg a dropped SOF */
break;
}
}
/**
* gsm_error - handle tty error
* @gsm: ldisc data
* @data: byte received (may be invalid)
* @flag: error received
*
* Handle an error in the receipt of data for a frame. Currently we just
* go back to hunting for a SOF.
*
* FIXME: better diagnostics ?
*/
static void gsm_error(struct gsm_mux *gsm,
unsigned char data, unsigned char flag)
{
gsm->state = GSM_SEARCH;
gsm->io_error++;
}
static int gsm_disconnect(struct gsm_mux *gsm)
{
struct gsm_dlci *dlci = gsm->dlci[0];
struct gsm_control *gc;
if (!dlci)
return 0;
/* In theory disconnecting DLCI 0 is sufficient but for some
modems this is apparently not the case. */
gc = gsm_control_send(gsm, CMD_CLD, NULL, 0);
if (gc)
gsm_control_wait(gsm, gc);
del_timer_sync(&gsm->t2_timer);
/* Now we are sure T2 has stopped */
gsm_dlci_begin_close(dlci);
wait_event_interruptible(gsm->event,
dlci->state == DLCI_CLOSED);
if (signal_pending(current))
return -EINTR;
return 0;
}
/**
* gsm_cleanup_mux - generic GSM protocol cleanup
* @gsm: our mux
*
* Clean up the bits of the mux which are the same for all framing
* protocols. Remove the mux from the mux table, stop all the timers
* and then shut down each device hanging up the channels as we go.
*/
static void gsm_cleanup_mux(struct gsm_mux *gsm)
{
int i;
struct gsm_dlci *dlci = gsm->dlci[0];
struct gsm_msg *txq, *ntxq;
gsm->dead = 1;
spin_lock(&gsm_mux_lock);
for (i = 0; i < MAX_MUX; i++) {
if (gsm_mux[i] == gsm) {
gsm_mux[i] = NULL;
break;
}
}
spin_unlock(&gsm_mux_lock);
/* open failed before registering => nothing to do */
if (i == MAX_MUX)
return;
del_timer_sync(&gsm->t2_timer);
/* Now we are sure T2 has stopped */
if (dlci)
dlci->dead = 1;
/* Free up any link layer users */
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
mutex_lock(&gsm->mutex);
for (i = 0; i < NUM_DLCI; i++)
if (gsm->dlci[i])
gsm_dlci_release(gsm->dlci[i]);
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
mutex_unlock(&gsm->mutex);
/* Now wipe the queues */
list_for_each_entry_safe(txq, ntxq, &gsm->tx_list, list)
kfree(txq);
INIT_LIST_HEAD(&gsm->tx_list);
}
/**
* gsm_activate_mux - generic GSM setup
* @gsm: our mux
*
* Set up the bits of the mux which are the same for all framing
* protocols. Add the mux to the mux table so it can be opened and
* finally kick off connecting to DLCI 0 on the modem.
*/
static int gsm_activate_mux(struct gsm_mux *gsm)
{
struct gsm_dlci *dlci;
int i = 0;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 05:43:17 +08:00
timer_setup(&gsm->t2_timer, gsm_control_retransmit, 0);
init_waitqueue_head(&gsm->event);
spin_lock_init(&gsm->control_lock);
spin_lock_init(&gsm->tx_lock);
if (gsm->encoding == 0)
gsm->receive = gsm0_receive;
else
gsm->receive = gsm1_receive;
gsm->error = gsm_error;
spin_lock(&gsm_mux_lock);
for (i = 0; i < MAX_MUX; i++) {
if (gsm_mux[i] == NULL) {
gsm->num = i;
gsm_mux[i] = gsm;
break;
}
}
spin_unlock(&gsm_mux_lock);
if (i == MAX_MUX)
return -EBUSY;
dlci = gsm_dlci_alloc(gsm, 0);
if (dlci == NULL)
return -ENOMEM;
gsm->dead = 0; /* Tty opens are now permissible */
return 0;
}
/**
* gsm_free_mux - free up a mux
* @mux: mux to free
*
* Dispose of allocated resources for a dead mux
*/
static void gsm_free_mux(struct gsm_mux *gsm)
{
kfree(gsm->txframe);
kfree(gsm->buf);
kfree(gsm);
}
/**
* gsm_free_muxr - free up a mux
* @mux: mux to free
*
* Dispose of allocated resources for a dead mux
*/
static void gsm_free_muxr(struct kref *ref)
{
struct gsm_mux *gsm = container_of(ref, struct gsm_mux, ref);
gsm_free_mux(gsm);
}
static inline void mux_get(struct gsm_mux *gsm)
{
kref_get(&gsm->ref);
}
static inline void mux_put(struct gsm_mux *gsm)
{
kref_put(&gsm->ref, gsm_free_muxr);
}
/**
* gsm_alloc_mux - allocate a mux
*
* Creates a new mux ready for activation.
*/
static struct gsm_mux *gsm_alloc_mux(void)
{
struct gsm_mux *gsm = kzalloc(sizeof(struct gsm_mux), GFP_KERNEL);
if (gsm == NULL)
return NULL;
gsm->buf = kmalloc(MAX_MRU + 1, GFP_KERNEL);
if (gsm->buf == NULL) {
kfree(gsm);
return NULL;
}
gsm->txframe = kmalloc(2 * MAX_MRU + 2, GFP_KERNEL);
if (gsm->txframe == NULL) {
kfree(gsm->buf);
kfree(gsm);
return NULL;
}
spin_lock_init(&gsm->lock);
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
mutex_init(&gsm->mutex);
kref_init(&gsm->ref);
INIT_LIST_HEAD(&gsm->tx_list);
gsm->t1 = T1;
gsm->t2 = T2;
gsm->n2 = N2;
gsm->ftype = UIH;
gsm->adaption = 1;
gsm->encoding = 1;
gsm->mru = 64; /* Default to encoding 1 so these should be 64 */
gsm->mtu = 64;
gsm->dead = 1; /* Avoid early tty opens */
return gsm;
}
/**
* gsmld_output - write to link
* @gsm: our mux
* @data: bytes to output
* @len: size
*
* Write a block of data from the GSM mux to the data channel. This
* will eventually be serialized from above but at the moment isn't.
*/
static int gsmld_output(struct gsm_mux *gsm, u8 *data, int len)
{
if (tty_write_room(gsm->tty) < len) {
set_bit(TTY_DO_WRITE_WAKEUP, &gsm->tty->flags);
return -ENOSPC;
}
if (debug & 4)
print_hex_dump_bytes("gsmld_output: ", DUMP_PREFIX_OFFSET,
data, len);
gsm->tty->ops->write(gsm->tty, data, len);
return len;
}
/**
* gsmld_attach_gsm - mode set up
* @tty: our tty structure
* @gsm: our mux
*
* Set up the MUX for basic mode and commence connecting to the
* modem. Currently called from the line discipline set up but
* will need moving to an ioctl path.
*/
static int gsmld_attach_gsm(struct tty_struct *tty, struct gsm_mux *gsm)
{
int ret, i, base;
gsm->tty = tty_kref_get(tty);
gsm->output = gsmld_output;
ret = gsm_activate_mux(gsm);
if (ret != 0)
tty_kref_put(gsm->tty);
else {
/* Don't register device 0 - this is the control channel and not
a usable tty interface */
base = gsm->num << 6; /* Base for this MUX */
for (i = 1; i < NUM_DLCI; i++)
tty_register_device(gsm_tty_driver, base + i, NULL);
}
return ret;
}
/**
* gsmld_detach_gsm - stop doing 0710 mux
* @tty: tty attached to the mux
* @gsm: mux
*
* Shutdown and then clean up the resources used by the line discipline
*/
static void gsmld_detach_gsm(struct tty_struct *tty, struct gsm_mux *gsm)
{
int i;
int base = gsm->num << 6; /* Base for this MUX */
WARN_ON(tty != gsm->tty);
for (i = 1; i < NUM_DLCI; i++)
tty_unregister_device(gsm_tty_driver, base + i);
gsm_cleanup_mux(gsm);
tty_kref_put(gsm->tty);
gsm->tty = NULL;
}
Revert "tty: make receive_buf() return the amout of bytes received" This reverts commit b1c43f82c5aa265442f82dba31ce985ebb7aa71c. It was broken in so many ways, and results in random odd pty issues. It re-introduced the buggy schedule_work() in flush_to_ldisc() that can cause endless work-loops (see commit a5660b41af6a: "tty: fix endless work loop when the buffer fills up"). It also used an "unsigned int" return value fo the ->receive_buf() function, but then made multiple functions return a negative error code, and didn't actually check for the error in the caller. And it didn't actually work at all. BenH bisected down odd tty behavior to it: "It looks like the patch is causing some major malfunctions of the X server for me, possibly related to PTYs. For example, cat'ing a large file in a gnome terminal hangs the kernel for -minutes- in a loop of what looks like flush_to_ldisc/workqueue code, (some ftrace data in the quoted bits further down). ... Some more data: It -looks- like what happens is that the flush_to_ldisc work queue entry constantly re-queues itself (because the PTY is full ?) and the workqueue thread will basically loop forver calling it without ever scheduling, thus starving the consumer process that could have emptied the PTY." which is pretty much exactly the problem we fixed in a5660b41af6a. Milton Miller pointed out the 'unsigned int' issue. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reported-by: Milton Miller <miltonm@bga.com> Cc: Stefan Bigler <stefan.bigler@keymile.com> Cc: Toby Gray <toby.gray@realvnc.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-04 05:33:24 +08:00
static void gsmld_receive_buf(struct tty_struct *tty, const unsigned char *cp,
char *fp, int count)
{
struct gsm_mux *gsm = tty->disc_data;
const unsigned char *dp;
char *f;
int i;
char flags = TTY_NORMAL;
if (debug & 4)
print_hex_dump_bytes("gsmld_receive: ", DUMP_PREFIX_OFFSET,
cp, count);
for (i = count, dp = cp, f = fp; i; i--, dp++) {
if (f)
flags = *f++;
switch (flags) {
case TTY_NORMAL:
gsm->receive(gsm, *dp);
break;
case TTY_OVERRUN:
case TTY_BREAK:
case TTY_PARITY:
case TTY_FRAME:
gsm->error(gsm, *dp, flags);
break;
default:
WARN_ONCE(1, "%s: unknown flag %d\n",
tty_name(tty), flags);
break;
}
}
/* FASYNC if needed ? */
/* If clogged call tty_throttle(tty); */
}
/**
* gsmld_flush_buffer - clean input queue
* @tty: terminal device
*
* Flush the input buffer. Called when the line discipline is
* being closed, when the tty layer wants the buffer flushed (eg
* at hangup).
*/
static void gsmld_flush_buffer(struct tty_struct *tty)
{
}
/**
* gsmld_close - close the ldisc for this tty
* @tty: device
*
* Called from the terminal layer when this line discipline is
* being shut down, either because of a close or becsuse of a
* discipline change. The function will not be called while other
* ldisc methods are in progress.
*/
static void gsmld_close(struct tty_struct *tty)
{
struct gsm_mux *gsm = tty->disc_data;
gsmld_detach_gsm(tty, gsm);
gsmld_flush_buffer(tty);
/* Do other clean up here */
mux_put(gsm);
}
/**
* gsmld_open - open an ldisc
* @tty: terminal to open
*
* Called when this line discipline is being attached to the
* terminal device. Can sleep. Called serialized so that no
* other events will occur in parallel. No further open will occur
* until a close.
*/
static int gsmld_open(struct tty_struct *tty)
{
struct gsm_mux *gsm;
int ret;
if (tty->ops->write == NULL)
return -EINVAL;
/* Attach our ldisc data */
gsm = gsm_alloc_mux();
if (gsm == NULL)
return -ENOMEM;
tty->disc_data = gsm;
tty->receive_room = 65536;
/* Attach the initial passive connection */
gsm->encoding = 1;
ret = gsmld_attach_gsm(tty, gsm);
if (ret != 0) {
gsm_cleanup_mux(gsm);
mux_put(gsm);
}
return ret;
}
/**
* gsmld_write_wakeup - asynchronous I/O notifier
* @tty: tty device
*
* Required for the ptys, serial driver etc. since processes
* that attach themselves to the master and rely on ASYNC
* IO must be woken up
*/
static void gsmld_write_wakeup(struct tty_struct *tty)
{
struct gsm_mux *gsm = tty->disc_data;
unsigned long flags;
/* Queue poll */
clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
spin_lock_irqsave(&gsm->tx_lock, flags);
gsm_data_kick(gsm);
if (gsm->tx_bytes < TX_THRESH_LO) {
gsm_dlci_data_sweep(gsm);
}
spin_unlock_irqrestore(&gsm->tx_lock, flags);
}
/**
* gsmld_read - read function for tty
* @tty: tty device
* @file: file object
* @buf: userspace buffer pointer
* @nr: size of I/O
*
* Perform reads for the line discipline. We are guaranteed that the
* line discipline will not be closed under us but we may get multiple
* parallel readers and must handle this ourselves. We may also get
* a hangup. Always called in user context, may sleep.
*
* This code must be sure never to sleep through a hangup.
*/
static ssize_t gsmld_read(struct tty_struct *tty, struct file *file,
unsigned char __user *buf, size_t nr)
{
return -EOPNOTSUPP;
}
/**
* gsmld_write - write function for tty
* @tty: tty device
* @file: file object
* @buf: userspace buffer pointer
* @nr: size of I/O
*
* Called when the owner of the device wants to send a frame
* itself (or some other control data). The data is transferred
* as-is and must be properly framed and checksummed as appropriate
* by userspace. Frames are either sent whole or not at all as this
* avoids pain user side.
*/
static ssize_t gsmld_write(struct tty_struct *tty, struct file *file,
const unsigned char *buf, size_t nr)
{
int space = tty_write_room(tty);
if (space >= nr)
return tty->ops->write(tty, buf, nr);
set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
return -ENOBUFS;
}
/**
* gsmld_poll - poll method for N_GSM0710
* @tty: terminal device
* @file: file accessing it
* @wait: poll table
*
* Called when the line discipline is asked to poll() for data or
* for special events. This code is not serialized with respect to
* other events save open/close.
*
* This code must be sure never to sleep through a hangup.
* Called without the kernel lock held - fine
*/
static __poll_t gsmld_poll(struct tty_struct *tty, struct file *file,
poll_table *wait)
{
__poll_t mask = 0;
struct gsm_mux *gsm = tty->disc_data;
poll_wait(file, &tty->read_wait, wait);
poll_wait(file, &tty->write_wait, wait);
if (tty_hung_up_p(file))
mask |= EPOLLHUP;
if (!tty_is_writelocked(tty) && tty_write_room(tty) > 0)
mask |= EPOLLOUT | EPOLLWRNORM;
if (gsm->dead)
mask |= EPOLLHUP;
return mask;
}
static int gsmld_config(struct tty_struct *tty, struct gsm_mux *gsm,
struct gsm_config *c)
{
int need_close = 0;
int need_restart = 0;
/* Stuff we don't support yet - UI or I frame transport, windowing */
if ((c->adaption != 1 && c->adaption != 2) || c->k)
return -EOPNOTSUPP;
/* Check the MRU/MTU range looks sane */
if (c->mru > MAX_MRU || c->mtu > MAX_MTU || c->mru < 8 || c->mtu < 8)
return -EINVAL;
if (c->n2 < 3)
return -EINVAL;
if (c->encapsulation > 1) /* Basic, advanced, no I */
return -EINVAL;
if (c->initiator > 1)
return -EINVAL;
if (c->i == 0 || c->i > 2) /* UIH and UI only */
return -EINVAL;
/*
* See what is needed for reconfiguration
*/
/* Timing fields */
if (c->t1 != 0 && c->t1 != gsm->t1)
need_restart = 1;
if (c->t2 != 0 && c->t2 != gsm->t2)
need_restart = 1;
if (c->encapsulation != gsm->encoding)
need_restart = 1;
if (c->adaption != gsm->adaption)
need_restart = 1;
/* Requires care */
if (c->initiator != gsm->initiator)
need_close = 1;
if (c->mru != gsm->mru)
need_restart = 1;
if (c->mtu != gsm->mtu)
need_restart = 1;
/*
* Close down what is needed, restart and initiate the new
* configuration
*/
if (need_close || need_restart) {
int ret;
ret = gsm_disconnect(gsm);
if (ret)
return ret;
}
if (need_restart)
gsm_cleanup_mux(gsm);
gsm->initiator = c->initiator;
gsm->mru = c->mru;
gsm->mtu = c->mtu;
gsm->encoding = c->encapsulation;
gsm->adaption = c->adaption;
gsm->n2 = c->n2;
if (c->i == 1)
gsm->ftype = UIH;
else if (c->i == 2)
gsm->ftype = UI;
if (c->t1)
gsm->t1 = c->t1;
if (c->t2)
gsm->t2 = c->t2;
/* FIXME: We need to separate activation/deactivation from adding
and removing from the mux array */
if (need_restart)
gsm_activate_mux(gsm);
if (gsm->initiator && need_close)
gsm_dlci_begin_open(gsm->dlci[0]);
return 0;
}
static int gsmld_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct gsm_config c;
struct gsm_mux *gsm = tty->disc_data;
switch (cmd) {
case GSMIOC_GETCONF:
memset(&c, 0, sizeof(c));
c.adaption = gsm->adaption;
c.encapsulation = gsm->encoding;
c.initiator = gsm->initiator;
c.t1 = gsm->t1;
c.t2 = gsm->t2;
c.t3 = 0; /* Not supported */
c.n2 = gsm->n2;
if (gsm->ftype == UIH)
c.i = 1;
else
c.i = 2;
pr_debug("Ftype %d i %d\n", gsm->ftype, c.i);
c.mru = gsm->mru;
c.mtu = gsm->mtu;
c.k = 0;
if (copy_to_user((void *)arg, &c, sizeof(c)))
return -EFAULT;
return 0;
case GSMIOC_SETCONF:
if (copy_from_user(&c, (void *)arg, sizeof(c)))
return -EFAULT;
return gsmld_config(tty, gsm, &c);
default:
return n_tty_ioctl_helper(tty, file, cmd, arg);
}
}
/*
* Network interface
*
*/
static int gsm_mux_net_open(struct net_device *net)
{
pr_debug("%s called\n", __func__);
netif_start_queue(net);
return 0;
}
static int gsm_mux_net_close(struct net_device *net)
{
netif_stop_queue(net);
return 0;
}
static void dlci_net_free(struct gsm_dlci *dlci)
{
if (!dlci->net) {
WARN_ON(1);
return;
}
dlci->adaption = dlci->prev_adaption;
dlci->data = dlci->prev_data;
free_netdev(dlci->net);
dlci->net = NULL;
}
static void net_free(struct kref *ref)
{
struct gsm_mux_net *mux_net;
struct gsm_dlci *dlci;
mux_net = container_of(ref, struct gsm_mux_net, ref);
dlci = mux_net->dlci;
if (dlci->net) {
unregister_netdev(dlci->net);
dlci_net_free(dlci);
}
}
static inline void muxnet_get(struct gsm_mux_net *mux_net)
{
kref_get(&mux_net->ref);
}
static inline void muxnet_put(struct gsm_mux_net *mux_net)
{
kref_put(&mux_net->ref, net_free);
}
static netdev_tx_t gsm_mux_net_start_xmit(struct sk_buff *skb,
struct net_device *net)
{
struct gsm_mux_net *mux_net = netdev_priv(net);
struct gsm_dlci *dlci = mux_net->dlci;
muxnet_get(mux_net);
skb_queue_head(&dlci->skb_list, skb);
net->stats.tx_packets++;
net->stats.tx_bytes += skb->len;
gsm_dlci_data_kick(dlci);
/* And tell the kernel when the last transmit started. */
netif_trans_update(net);
muxnet_put(mux_net);
return NETDEV_TX_OK;
}
/* called when a packet did not ack after watchdogtimeout */
static void gsm_mux_net_tx_timeout(struct net_device *net)
{
/* Tell syslog we are hosed. */
dev_dbg(&net->dev, "Tx timed out.\n");
/* Update statistics */
net->stats.tx_errors++;
}
static void gsm_mux_rx_netchar(struct gsm_dlci *dlci,
unsigned char *in_buf, int size)
{
struct net_device *net = dlci->net;
struct sk_buff *skb;
struct gsm_mux_net *mux_net = netdev_priv(net);
muxnet_get(mux_net);
/* Allocate an sk_buff */
skb = dev_alloc_skb(size + NET_IP_ALIGN);
if (!skb) {
/* We got no receive buffer. */
net->stats.rx_dropped++;
muxnet_put(mux_net);
return;
}
skb_reserve(skb, NET_IP_ALIGN);
skb_put_data(skb, in_buf, size);
skb->dev = net;
skb->protocol = htons(ETH_P_IP);
/* Ship it off to the kernel */
netif_rx(skb);
/* update out statistics */
net->stats.rx_packets++;
net->stats.rx_bytes += size;
muxnet_put(mux_net);
return;
}
static void gsm_mux_net_init(struct net_device *net)
{
static const struct net_device_ops gsm_netdev_ops = {
.ndo_open = gsm_mux_net_open,
.ndo_stop = gsm_mux_net_close,
.ndo_start_xmit = gsm_mux_net_start_xmit,
.ndo_tx_timeout = gsm_mux_net_tx_timeout,
};
net->netdev_ops = &gsm_netdev_ops;
/* fill in the other fields */
net->watchdog_timeo = GSM_NET_TX_TIMEOUT;
net->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
net->type = ARPHRD_NONE;
net->tx_queue_len = 10;
}
/* caller holds the dlci mutex */
static void gsm_destroy_network(struct gsm_dlci *dlci)
{
struct gsm_mux_net *mux_net;
pr_debug("destroy network interface");
if (!dlci->net)
return;
mux_net = netdev_priv(dlci->net);
muxnet_put(mux_net);
}
/* caller holds the dlci mutex */
static int gsm_create_network(struct gsm_dlci *dlci, struct gsm_netconfig *nc)
{
char *netname;
int retval = 0;
struct net_device *net;
struct gsm_mux_net *mux_net;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
/* Already in a non tty mode */
if (dlci->adaption > 2)
return -EBUSY;
if (nc->protocol != htons(ETH_P_IP))
return -EPROTONOSUPPORT;
if (nc->adaption != 3 && nc->adaption != 4)
return -EPROTONOSUPPORT;
pr_debug("create network interface");
netname = "gsm%d";
if (nc->if_name[0] != '\0')
netname = nc->if_name;
net = alloc_netdev(sizeof(struct gsm_mux_net), netname,
NET_NAME_UNKNOWN, gsm_mux_net_init);
if (!net) {
pr_err("alloc_netdev failed");
return -ENOMEM;
}
net->mtu = dlci->gsm->mtu;
net->min_mtu = 8;
net->max_mtu = dlci->gsm->mtu;
mux_net = netdev_priv(net);
mux_net->dlci = dlci;
kref_init(&mux_net->ref);
strncpy(nc->if_name, net->name, IFNAMSIZ); /* return net name */
/* reconfigure dlci for network */
dlci->prev_adaption = dlci->adaption;
dlci->prev_data = dlci->data;
dlci->adaption = nc->adaption;
dlci->data = gsm_mux_rx_netchar;
dlci->net = net;
pr_debug("register netdev");
retval = register_netdev(net);
if (retval) {
pr_err("network register fail %d\n", retval);
dlci_net_free(dlci);
return retval;
}
return net->ifindex; /* return network index */
}
/* Line discipline for real tty */
static struct tty_ldisc_ops tty_ldisc_packet = {
.owner = THIS_MODULE,
.magic = TTY_LDISC_MAGIC,
.name = "n_gsm",
.open = gsmld_open,
.close = gsmld_close,
.flush_buffer = gsmld_flush_buffer,
.read = gsmld_read,
.write = gsmld_write,
.ioctl = gsmld_ioctl,
.poll = gsmld_poll,
.receive_buf = gsmld_receive_buf,
.write_wakeup = gsmld_write_wakeup
};
/*
* Virtual tty side
*/
#define TX_SIZE 512
static int gsmtty_modem_update(struct gsm_dlci *dlci, u8 brk)
{
u8 modembits[5];
struct gsm_control *ctrl;
int len = 2;
if (brk)
len++;
modembits[0] = len << 1 | EA; /* Data bytes */
modembits[1] = dlci->addr << 2 | 3; /* DLCI, EA, 1 */
modembits[2] = gsm_encode_modem(dlci) << 1 | EA;
if (brk)
modembits[3] = brk << 4 | 2 | EA; /* Valid, EA */
ctrl = gsm_control_send(dlci->gsm, CMD_MSC, modembits, len + 1);
if (ctrl == NULL)
return -ENOMEM;
return gsm_control_wait(dlci->gsm, ctrl);
}
static int gsm_carrier_raised(struct tty_port *port)
{
struct gsm_dlci *dlci = container_of(port, struct gsm_dlci, port);
struct gsm_mux *gsm = dlci->gsm;
/* Not yet open so no carrier info */
if (dlci->state != DLCI_OPEN)
return 0;
if (debug & 2)
return 1;
/*
* Basic mode with control channel in ADM mode may not respond
* to CMD_MSC at all and modem_rx is empty.
*/
if (gsm->encoding == 0 && gsm->dlci[0]->mode == DLCI_MODE_ADM &&
!dlci->modem_rx)
return 1;
return dlci->modem_rx & TIOCM_CD;
}
static void gsm_dtr_rts(struct tty_port *port, int onoff)
{
struct gsm_dlci *dlci = container_of(port, struct gsm_dlci, port);
unsigned int modem_tx = dlci->modem_tx;
if (onoff)
modem_tx |= TIOCM_DTR | TIOCM_RTS;
else
modem_tx &= ~(TIOCM_DTR | TIOCM_RTS);
if (modem_tx != dlci->modem_tx) {
dlci->modem_tx = modem_tx;
gsmtty_modem_update(dlci, 0);
}
}
static const struct tty_port_operations gsm_port_ops = {
.carrier_raised = gsm_carrier_raised,
.dtr_rts = gsm_dtr_rts,
.destruct = gsm_dlci_free,
};
static int gsmtty_install(struct tty_driver *driver, struct tty_struct *tty)
{
struct gsm_mux *gsm;
struct gsm_dlci *dlci;
unsigned int line = tty->index;
unsigned int mux = line >> 6;
bool alloc = false;
int ret;
line = line & 0x3F;
if (mux >= MAX_MUX)
return -ENXIO;
/* FIXME: we need to lock gsm_mux for lifetimes of ttys eventually */
if (gsm_mux[mux] == NULL)
return -EUNATCH;
if (line == 0 || line > 61) /* 62/63 reserved */
return -ECHRNG;
gsm = gsm_mux[mux];
if (gsm->dead)
return -EL2HLT;
/* If DLCI 0 is not yet fully open return an error.
This is ok from a locking
perspective as we don't have to worry about this
if DLCI0 is lost */
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
mutex_lock(&gsm->mutex);
if (gsm->dlci[0] && gsm->dlci[0]->state != DLCI_OPEN) {
mutex_unlock(&gsm->mutex);
return -EL2NSYNC;
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
}
dlci = gsm->dlci[line];
if (dlci == NULL) {
alloc = true;
dlci = gsm_dlci_alloc(gsm, line);
}
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
if (dlci == NULL) {
mutex_unlock(&gsm->mutex);
return -ENOMEM;
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
}
ret = tty_port_install(&dlci->port, driver, tty);
if (ret) {
if (alloc)
dlci_put(dlci);
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
mutex_unlock(&gsm->mutex);
return ret;
}
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
dlci_get(dlci);
dlci_get(gsm->dlci[0]);
mux_get(gsm);
tty->driver_data = dlci;
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
mutex_unlock(&gsm->mutex);
return 0;
}
static int gsmtty_open(struct tty_struct *tty, struct file *filp)
{
struct gsm_dlci *dlci = tty->driver_data;
struct tty_port *port = &dlci->port;
port->count++;
tty_port_tty_set(port, tty);
dlci->modem_rx = 0;
/* We could in theory open and close before we wait - eg if we get
a DM straight back. This is ok as that will have caused a hangup */
tty_port_set_initialized(port, 1);
/* Start sending off SABM messages */
gsm_dlci_begin_open(dlci);
/* And wait for virtual carrier */
return tty_port_block_til_ready(port, tty, filp);
}
static void gsmtty_close(struct tty_struct *tty, struct file *filp)
{
struct gsm_dlci *dlci = tty->driver_data;
if (dlci == NULL)
return;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return;
mutex_lock(&dlci->mutex);
gsm_destroy_network(dlci);
mutex_unlock(&dlci->mutex);
if (tty_port_close_start(&dlci->port, tty, filp) == 0)
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
return;
gsm_dlci_begin_close(dlci);
if (tty_port_initialized(&dlci->port) && C_HUPCL(tty))
tty_port_lower_dtr_rts(&dlci->port);
tty_port_close_end(&dlci->port, tty);
tty_port_tty_set(&dlci->port, NULL);
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
return;
}
static void gsmtty_hangup(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return;
tty_port_hangup(&dlci->port);
gsm_dlci_begin_close(dlci);
}
static int gsmtty_write(struct tty_struct *tty, const unsigned char *buf,
int len)
{
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
int sent;
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
/* Stuff the bytes into the fifo queue */
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
sent = kfifo_in_locked(dlci->fifo, buf, len, &dlci->lock);
/* Need to kick the channel */
gsm_dlci_data_kick(dlci);
return sent;
}
static int gsmtty_write_room(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
return TX_SIZE - kfifo_len(dlci->fifo);
}
static int gsmtty_chars_in_buffer(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
return kfifo_len(dlci->fifo);
}
static void gsmtty_flush_buffer(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return;
/* Caution needed: If we implement reliable transport classes
then the data being transmitted can't simply be junked once
it has first hit the stack. Until then we can just blow it
away */
kfifo_reset(dlci->fifo);
/* Need to unhook this DLCI from the transmit queue logic */
}
static void gsmtty_wait_until_sent(struct tty_struct *tty, int timeout)
{
/* The FIFO handles the queue so the kernel will do the right
thing waiting on chars_in_buffer before calling us. No work
to do here */
}
static int gsmtty_tiocmget(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
return dlci->modem_rx;
}
static int gsmtty_tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct gsm_dlci *dlci = tty->driver_data;
unsigned int modem_tx = dlci->modem_tx;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
modem_tx &= ~clear;
modem_tx |= set;
if (modem_tx != dlci->modem_tx) {
dlci->modem_tx = modem_tx;
return gsmtty_modem_update(dlci, 0);
}
return 0;
}
static int gsmtty_ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
struct gsm_dlci *dlci = tty->driver_data;
struct gsm_netconfig nc;
int index;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
switch (cmd) {
case GSMIOC_ENABLE_NET:
if (copy_from_user(&nc, (void __user *)arg, sizeof(nc)))
return -EFAULT;
nc.if_name[IFNAMSIZ-1] = '\0';
/* return net interface index or error code */
mutex_lock(&dlci->mutex);
index = gsm_create_network(dlci, &nc);
mutex_unlock(&dlci->mutex);
if (copy_to_user((void __user *)arg, &nc, sizeof(nc)))
return -EFAULT;
return index;
case GSMIOC_DISABLE_NET:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
mutex_lock(&dlci->mutex);
gsm_destroy_network(dlci);
mutex_unlock(&dlci->mutex);
return 0;
default:
return -ENOIOCTLCMD;
}
}
static void gsmtty_set_termios(struct tty_struct *tty, struct ktermios *old)
{
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
struct gsm_dlci *dlci = tty->driver_data;
if (dlci->state == DLCI_CLOSED)
return;
/* For the moment its fixed. In actual fact the speed information
for the virtual channel can be propogated in both directions by
the RPN control message. This however rapidly gets nasty as we
then have to remap modem signals each way according to whether
our virtual cable is null modem etc .. */
tty_termios_copy_hw(&tty->termios, old);
}
static void gsmtty_throttle(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return;
if (C_CRTSCTS(tty))
dlci->modem_tx &= ~TIOCM_DTR;
dlci->throttled = 1;
/* Send an MSC with DTR cleared */
gsmtty_modem_update(dlci, 0);
}
static void gsmtty_unthrottle(struct tty_struct *tty)
{
struct gsm_dlci *dlci = tty->driver_data;
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return;
if (C_CRTSCTS(tty))
dlci->modem_tx |= TIOCM_DTR;
dlci->throttled = 0;
/* Send an MSC with DTR set */
gsmtty_modem_update(dlci, 0);
}
static int gsmtty_break_ctl(struct tty_struct *tty, int state)
{
struct gsm_dlci *dlci = tty->driver_data;
int encode = 0; /* Off */
tty: Prevent deadlock in n_gsm driver This change fixes a deadlock when the multiplexer is closed while there are still client side ports open. When the multiplexer is closed and there are active tty's it tries to close them with tty_vhangup. This has a problem though, because tty_vhangup needs the tty_lock. This patch changes it to unlock the tty_lock before attempting the hangup and relocks afterwards. The additional call to tty_port_tty_set is needed because otherwise the port stays active because of the reference counter. This change also exposed another problem that other code paths don't expect that the multiplexer could have been closed. This patch also adds checks for these cases in the gsmtty_ class of function that could be called. The documentation explicitly states that "first close all virtual ports before closing the physical port" but we've found this to not always reality in our field situations. The GPRS / UTMS modem sometimes crashes and needs a power cycle in that case which means cleanly shutting down everything is not always possible. This change makes it much more robust for our situation where at least the system is recoverable with this patch and doesn't hang in a deadlock situation inside the kernel. The patch is against the long term support kernel (3.4.27) and should apply cleanly to more recent branches. Tested with a Telit GE864-QUADV2 and Telit HE910 modem. Signed-off-by: Dirkjan Bussink <dirkjan.bussink@nedap.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-01-30 18:44:50 +08:00
if (dlci->state == DLCI_CLOSED)
return -EINVAL;
if (state == -1) /* "On indefinitely" - we can't encode this
properly */
encode = 0x0F;
else if (state > 0) {
encode = state / 200; /* mS to encoding */
if (encode > 0x0F)
encode = 0x0F; /* Best effort */
}
return gsmtty_modem_update(dlci, encode);
}
static void gsmtty_cleanup(struct tty_struct *tty)
n_gsm: race between ld close and gsmtty open ttyA has ld associated to n_gsm, when ttyA is closing, it triggers to release gsmttyB's ld data dlci[B], then race would happen if gsmttyB is opening in parallel. (Note: This patch set differs from previous set in that it uses mutex instead of spin lock to avoid race, so that it avoids sleeping in automic context) Here are race cases we found recently in test: CASE #1 ==================================================================== releasing dlci[B] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(gsmttyB), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[B]) ----- | | gsm_dlci_free(dlci[B]) ----- | | ----- gsmtty_open(gsmttyB) gsmtty_open() { struct gsm_dlci *dlci = tty->driver_data; => here it uses dlci[B] ... } In gsmtty_open(gsmttyA), it uses dlci[B] which was release, so hit a panic. ===================================================================== CASE #2 ===================================================================== releasing dlci[0] race with gsmtty_install(gsmttyB), then panic in gsmtty_open(), as below: tty_release(ttyA) tty_open(gsmttyB) | | ----- gsmtty_install(gsmttyB) | | ----- gsm_dlci_alloc(gsmttyB) => alloc dlci[B] | | ----- gsmtty_open(gsmttyB) fail | | ----- tty_release(gsmttyB) | | ----- gsmtty_close(gsmttyB) | | ----- gsmtty_detach_dlci(dlci[B]) | | ----- dlci_put(dlci[B]) | | tty_ldisc_release(ttyA) ----- | | gsm_dlci_release(dlci[0]) ----- | | gsm_dlci_free(dlci[0]) ----- | | ----- dlci_put(dlci[0]) In gsmtty_detach_dlci(dlci[B]), it tries to use dlci[0] which was released, then hit panic. ===================================================================== IMHO, n_gsm tty operations would refer released ldisc, as long as gsm_dlci_release() has chance to release ldisc data when some gsmtty operations are ongoing.. This patch is try to avoid it by: 1) in n_gsm driver, use a global gsm mutex lock to avoid gsm_dlci_release() run in parallel with gsmtty_install(); 2) Increase dlci's ref count in gsmtty_install() instead of in gsmtty_open(), the purpose is to prevent gsm_dlci_release() releasing dlci after gsmtty_install() allocats dlci but before gsmtty_open increases dlci's ref count; 3) Decrease dlci's ref count in gsmtty_remove(), a tty framework API, this is the opposite process of step 2). Signed-off-by: Chao Bi <chao.bi@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-11-26 12:09:39 +08:00
{
struct gsm_dlci *dlci = tty->driver_data;
struct gsm_mux *gsm = dlci->gsm;
dlci_put(dlci);
dlci_put(gsm->dlci[0]);
mux_put(gsm);
}
/* Virtual ttys for the demux */
static const struct tty_operations gsmtty_ops = {
.install = gsmtty_install,
.open = gsmtty_open,
.close = gsmtty_close,
.write = gsmtty_write,
.write_room = gsmtty_write_room,
.chars_in_buffer = gsmtty_chars_in_buffer,
.flush_buffer = gsmtty_flush_buffer,
.ioctl = gsmtty_ioctl,
.throttle = gsmtty_throttle,
.unthrottle = gsmtty_unthrottle,
.set_termios = gsmtty_set_termios,
.hangup = gsmtty_hangup,
.wait_until_sent = gsmtty_wait_until_sent,
.tiocmget = gsmtty_tiocmget,
.tiocmset = gsmtty_tiocmset,
.break_ctl = gsmtty_break_ctl,
.cleanup = gsmtty_cleanup,
};
static int __init gsm_init(void)
{
/* Fill in our line protocol discipline, and register it */
int status = tty_register_ldisc(N_GSM0710, &tty_ldisc_packet);
if (status != 0) {
pr_err("n_gsm: can't register line discipline (err = %d)\n",
status);
return status;
}
gsm_tty_driver = alloc_tty_driver(256);
if (!gsm_tty_driver) {
tty_unregister_ldisc(N_GSM0710);
pr_err("gsm_init: tty allocation failed.\n");
return -EINVAL;
}
gsm_tty_driver->driver_name = "gsmtty";
gsm_tty_driver->name = "gsmtty";
gsm_tty_driver->major = 0; /* Dynamic */
gsm_tty_driver->minor_start = 0;
gsm_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
gsm_tty_driver->subtype = SERIAL_TYPE_NORMAL;
gsm_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV
| TTY_DRIVER_HARDWARE_BREAK;
gsm_tty_driver->init_termios = tty_std_termios;
/* Fixme */
gsm_tty_driver->init_termios.c_lflag &= ~ECHO;
tty_set_operations(gsm_tty_driver, &gsmtty_ops);
spin_lock_init(&gsm_mux_lock);
if (tty_register_driver(gsm_tty_driver)) {
put_tty_driver(gsm_tty_driver);
tty_unregister_ldisc(N_GSM0710);
pr_err("gsm_init: tty registration failed.\n");
return -EBUSY;
}
pr_debug("gsm_init: loaded as %d,%d.\n",
gsm_tty_driver->major, gsm_tty_driver->minor_start);
return 0;
}
static void __exit gsm_exit(void)
{
int status = tty_unregister_ldisc(N_GSM0710);
if (status != 0)
pr_err("n_gsm: can't unregister line discipline (err = %d)\n",
status);
tty_unregister_driver(gsm_tty_driver);
put_tty_driver(gsm_tty_driver);
}
module_init(gsm_init);
module_exit(gsm_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS_LDISC(N_GSM0710);