OpenCloudOS-Kernel/sound/usb/urb.c

942 lines
25 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/usb.h>
#include <linux/usb/audio.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include "usbaudio.h"
#include "helper.h"
#include "card.h"
#include "urb.h"
#include "pcm.h"
/*
* convert a sampling rate into our full speed format (fs/1000 in Q16.16)
* this will overflow at approx 524 kHz
*/
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
{
return ((rate << 13) + 62) / 125;
}
/*
* convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
* this will overflow at approx 4 MHz
*/
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
{
return ((rate << 10) + 62) / 125;
}
/*
* unlink active urbs.
*/
static int deactivate_urbs(struct snd_usb_substream *subs, int force, int can_sleep)
{
struct snd_usb_audio *chip = subs->stream->chip;
unsigned int i;
int async;
subs->running = 0;
if (!force && subs->stream->chip->shutdown) /* to be sure... */
return -EBADFD;
async = !can_sleep && chip->async_unlink;
if (!async && in_interrupt())
return 0;
for (i = 0; i < subs->nurbs; i++) {
if (test_bit(i, &subs->active_mask)) {
if (!test_and_set_bit(i, &subs->unlink_mask)) {
struct urb *u = subs->dataurb[i].urb;
if (async)
usb_unlink_urb(u);
else
usb_kill_urb(u);
}
}
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (test_bit(i+16, &subs->active_mask)) {
if (!test_and_set_bit(i+16, &subs->unlink_mask)) {
struct urb *u = subs->syncurb[i].urb;
if (async)
usb_unlink_urb(u);
else
usb_kill_urb(u);
}
}
}
}
return 0;
}
/*
* release a urb data
*/
static void release_urb_ctx(struct snd_urb_ctx *u)
{
if (u->urb) {
if (u->buffer_size)
usb_free_coherent(u->subs->dev, u->buffer_size,
u->urb->transfer_buffer,
u->urb->transfer_dma);
usb_free_urb(u->urb);
u->urb = NULL;
}
}
/*
* wait until all urbs are processed.
*/
static int wait_clear_urbs(struct snd_usb_substream *subs)
{
unsigned long end_time = jiffies + msecs_to_jiffies(1000);
unsigned int i;
int alive;
do {
alive = 0;
for (i = 0; i < subs->nurbs; i++) {
if (test_bit(i, &subs->active_mask))
alive++;
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (test_bit(i + 16, &subs->active_mask))
alive++;
}
}
if (! alive)
break;
schedule_timeout_uninterruptible(1);
} while (time_before(jiffies, end_time));
if (alive)
snd_printk(KERN_ERR "timeout: still %d active urbs..\n", alive);
return 0;
}
/*
* release a substream
*/
void snd_usb_release_substream_urbs(struct snd_usb_substream *subs, int force)
{
int i;
/* stop urbs (to be sure) */
deactivate_urbs(subs, force, 1);
wait_clear_urbs(subs);
for (i = 0; i < MAX_URBS; i++)
release_urb_ctx(&subs->dataurb[i]);
for (i = 0; i < SYNC_URBS; i++)
release_urb_ctx(&subs->syncurb[i]);
usb_free_coherent(subs->dev, SYNC_URBS * 4,
subs->syncbuf, subs->sync_dma);
subs->syncbuf = NULL;
subs->nurbs = 0;
}
/*
* complete callback from data urb
*/
static void snd_complete_urb(struct urb *urb)
{
struct snd_urb_ctx *ctx = urb->context;
struct snd_usb_substream *subs = ctx->subs;
struct snd_pcm_substream *substream = ctx->subs->pcm_substream;
int err = 0;
if ((subs->running && subs->ops.retire(subs, substream->runtime, urb)) ||
!subs->running || /* can be stopped during retire callback */
(err = subs->ops.prepare(subs, substream->runtime, urb)) < 0 ||
(err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
clear_bit(ctx->index, &subs->active_mask);
if (err < 0) {
snd_printd(KERN_ERR "cannot submit urb (err = %d)\n", err);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
}
}
}
/*
* complete callback from sync urb
*/
static void snd_complete_sync_urb(struct urb *urb)
{
struct snd_urb_ctx *ctx = urb->context;
struct snd_usb_substream *subs = ctx->subs;
struct snd_pcm_substream *substream = ctx->subs->pcm_substream;
int err = 0;
if ((subs->running && subs->ops.retire_sync(subs, substream->runtime, urb)) ||
!subs->running || /* can be stopped during retire callback */
(err = subs->ops.prepare_sync(subs, substream->runtime, urb)) < 0 ||
(err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
clear_bit(ctx->index + 16, &subs->active_mask);
if (err < 0) {
snd_printd(KERN_ERR "cannot submit sync urb (err = %d)\n", err);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
}
}
}
/*
* initialize a substream for plaback/capture
*/
int snd_usb_init_substream_urbs(struct snd_usb_substream *subs,
unsigned int period_bytes,
unsigned int rate,
unsigned int frame_bits)
{
unsigned int maxsize, i;
int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK;
unsigned int urb_packs, total_packs, packs_per_ms;
struct snd_usb_audio *chip = subs->stream->chip;
/* calculate the frequency in 16.16 format */
if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL)
subs->freqn = get_usb_full_speed_rate(rate);
else
subs->freqn = get_usb_high_speed_rate(rate);
subs->freqm = subs->freqn;
subs->freqshift = INT_MIN;
/* calculate max. frequency */
if (subs->maxpacksize) {
/* whatever fits into a max. size packet */
maxsize = subs->maxpacksize;
subs->freqmax = (maxsize / (frame_bits >> 3))
<< (16 - subs->datainterval);
} else {
/* no max. packet size: just take 25% higher than nominal */
subs->freqmax = subs->freqn + (subs->freqn >> 2);
maxsize = ((subs->freqmax + 0xffff) * (frame_bits >> 3))
>> (16 - subs->datainterval);
}
subs->phase = 0;
if (subs->fill_max)
subs->curpacksize = subs->maxpacksize;
else
subs->curpacksize = maxsize;
if (snd_usb_get_speed(subs->dev) != USB_SPEED_FULL)
packs_per_ms = 8 >> subs->datainterval;
else
packs_per_ms = 1;
if (is_playback) {
urb_packs = max(chip->nrpacks, 1);
urb_packs = min(urb_packs, (unsigned int)MAX_PACKS);
} else
urb_packs = 1;
urb_packs *= packs_per_ms;
if (subs->syncpipe)
urb_packs = min(urb_packs, 1U << subs->syncinterval);
/* decide how many packets to be used */
if (is_playback) {
unsigned int minsize, maxpacks;
/* determine how small a packet can be */
minsize = (subs->freqn >> (16 - subs->datainterval))
* (frame_bits >> 3);
/* with sync from device, assume it can be 12% lower */
if (subs->syncpipe)
minsize -= minsize >> 3;
minsize = max(minsize, 1u);
total_packs = (period_bytes + minsize - 1) / minsize;
/* we need at least two URBs for queueing */
if (total_packs < 2) {
total_packs = 2;
} else {
/* and we don't want too long a queue either */
maxpacks = max(MAX_QUEUE * packs_per_ms, urb_packs * 2);
total_packs = min(total_packs, maxpacks);
}
} else {
while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
urb_packs >>= 1;
total_packs = MAX_URBS * urb_packs;
}
subs->nurbs = (total_packs + urb_packs - 1) / urb_packs;
if (subs->nurbs > MAX_URBS) {
/* too much... */
subs->nurbs = MAX_URBS;
total_packs = MAX_URBS * urb_packs;
} else if (subs->nurbs < 2) {
/* too little - we need at least two packets
* to ensure contiguous playback/capture
*/
subs->nurbs = 2;
}
/* allocate and initialize data urbs */
for (i = 0; i < subs->nurbs; i++) {
struct snd_urb_ctx *u = &subs->dataurb[i];
u->index = i;
u->subs = subs;
u->packets = (i + 1) * total_packs / subs->nurbs
- i * total_packs / subs->nurbs;
u->buffer_size = maxsize * u->packets;
if (subs->fmt_type == UAC_FORMAT_TYPE_II)
u->packets++; /* for transfer delimiter */
u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
if (!u->urb)
goto out_of_memory;
u->urb->transfer_buffer =
usb_alloc_coherent(subs->dev, u->buffer_size,
GFP_KERNEL, &u->urb->transfer_dma);
if (!u->urb->transfer_buffer)
goto out_of_memory;
u->urb->pipe = subs->datapipe;
u->urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
u->urb->interval = 1 << subs->datainterval;
u->urb->context = u;
u->urb->complete = snd_complete_urb;
}
if (subs->syncpipe) {
/* allocate and initialize sync urbs */
subs->syncbuf = usb_alloc_coherent(subs->dev, SYNC_URBS * 4,
GFP_KERNEL, &subs->sync_dma);
if (!subs->syncbuf)
goto out_of_memory;
for (i = 0; i < SYNC_URBS; i++) {
struct snd_urb_ctx *u = &subs->syncurb[i];
u->index = i;
u->subs = subs;
u->packets = 1;
u->urb = usb_alloc_urb(1, GFP_KERNEL);
if (!u->urb)
goto out_of_memory;
u->urb->transfer_buffer = subs->syncbuf + i * 4;
u->urb->transfer_dma = subs->sync_dma + i * 4;
u->urb->transfer_buffer_length = 4;
u->urb->pipe = subs->syncpipe;
u->urb->transfer_flags = URB_ISO_ASAP |
URB_NO_TRANSFER_DMA_MAP;
u->urb->number_of_packets = 1;
u->urb->interval = 1 << subs->syncinterval;
u->urb->context = u;
u->urb->complete = snd_complete_sync_urb;
}
}
return 0;
out_of_memory:
snd_usb_release_substream_urbs(subs, 0);
return -ENOMEM;
}
/*
* prepare urb for full speed capture sync pipe
*
* fill the length and offset of each urb descriptor.
* the fixed 10.14 frequency is passed through the pipe.
*/
static int prepare_capture_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
struct snd_urb_ctx *ctx = urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 3;
urb->iso_frame_desc[0].offset = 0;
cp[0] = subs->freqn >> 2;
cp[1] = subs->freqn >> 10;
cp[2] = subs->freqn >> 18;
return 0;
}
/*
* prepare urb for high speed capture sync pipe
*
* fill the length and offset of each urb descriptor.
* the fixed 12.13 frequency is passed as 16.16 through the pipe.
*/
static int prepare_capture_sync_urb_hs(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned char *cp = urb->transfer_buffer;
struct snd_urb_ctx *ctx = urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = 4;
urb->iso_frame_desc[0].offset = 0;
cp[0] = subs->freqn;
cp[1] = subs->freqn >> 8;
cp[2] = subs->freqn >> 16;
cp[3] = subs->freqn >> 24;
return 0;
}
/*
* process after capture sync complete
* - nothing to do
*/
static int retire_capture_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
return 0;
}
/*
* prepare urb for capture data pipe
*
* fill the offset and length of each descriptor.
*
* we use a temporary buffer to write the captured data.
* since the length of written data is determined by host, we cannot
* write onto the pcm buffer directly... the data is thus copied
* later at complete callback to the global buffer.
*/
static int prepare_capture_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
int i, offs;
struct snd_urb_ctx *ctx = urb->context;
offs = 0;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
for (i = 0; i < ctx->packets; i++) {
urb->iso_frame_desc[i].offset = offs;
urb->iso_frame_desc[i].length = subs->curpacksize;
offs += subs->curpacksize;
}
urb->transfer_buffer_length = offs;
urb->number_of_packets = ctx->packets;
return 0;
}
/*
* process after capture complete
*
* copy the data from each desctiptor to the pcm buffer, and
* update the current position.
*/
static int retire_capture_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned long flags;
unsigned char *cp;
int i;
unsigned int stride, frames, bytes, oldptr;
int period_elapsed = 0;
stride = runtime->frame_bits >> 3;
for (i = 0; i < urb->number_of_packets; i++) {
cp = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) {
snd_printd(KERN_ERR "frame %d active: %d\n", i, urb->iso_frame_desc[i].status);
// continue;
}
bytes = urb->iso_frame_desc[i].actual_length;
frames = bytes / stride;
if (!subs->txfr_quirk)
bytes = frames * stride;
if (bytes % (runtime->sample_bits >> 3) != 0) {
#ifdef CONFIG_SND_DEBUG_VERBOSE
int oldbytes = bytes;
#endif
bytes = frames * stride;
snd_printdd(KERN_ERR "Corrected urb data len. %d->%d\n",
oldbytes, bytes);
}
/* update the current pointer */
spin_lock_irqsave(&subs->lock, flags);
oldptr = subs->hwptr_done;
subs->hwptr_done += bytes;
if (subs->hwptr_done >= runtime->buffer_size * stride)
subs->hwptr_done -= runtime->buffer_size * stride;
frames = (bytes + (oldptr % stride)) / stride;
subs->transfer_done += frames;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
period_elapsed = 1;
}
spin_unlock_irqrestore(&subs->lock, flags);
/* copy a data chunk */
if (oldptr + bytes > runtime->buffer_size * stride) {
unsigned int bytes1 =
runtime->buffer_size * stride - oldptr;
memcpy(runtime->dma_area + oldptr, cp, bytes1);
memcpy(runtime->dma_area, cp + bytes1, bytes - bytes1);
} else {
memcpy(runtime->dma_area + oldptr, cp, bytes);
}
}
if (period_elapsed)
snd_pcm_period_elapsed(subs->pcm_substream);
return 0;
}
/*
* Process after capture complete when paused. Nothing to do.
*/
static int retire_paused_capture_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
return 0;
}
/*
* prepare urb for playback sync pipe
*
* set up the offset and length to receive the current frequency.
*/
static int prepare_playback_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
struct snd_urb_ctx *ctx = urb->context;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->iso_frame_desc[0].length = min(4u, ctx->subs->syncmaxsize);
urb->iso_frame_desc[0].offset = 0;
return 0;
}
/*
* process after playback sync complete
*
* Full speed devices report feedback values in 10.14 format as samples per
* frame, high speed devices in 16.16 format as samples per microframe.
* Because the Audio Class 1 spec was written before USB 2.0, many high speed
* devices use a wrong interpretation, some others use an entirely different
* format. Therefore, we cannot predict what format any particular device uses
* and must detect it automatically.
*/
static int retire_playback_sync_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned int f;
int shift;
unsigned long flags;
if (urb->iso_frame_desc[0].status != 0 ||
urb->iso_frame_desc[0].actual_length < 3)
return 0;
f = le32_to_cpup(urb->transfer_buffer);
if (urb->iso_frame_desc[0].actual_length == 3)
f &= 0x00ffffff;
else
f &= 0x0fffffff;
if (f == 0)
return 0;
if (unlikely(subs->freqshift == INT_MIN)) {
/*
* The first time we see a feedback value, determine its format
* by shifting it left or right until it matches the nominal
* frequency value. This assumes that the feedback does not
* differ from the nominal value more than +50% or -25%.
*/
shift = 0;
while (f < subs->freqn - subs->freqn / 4) {
f <<= 1;
shift++;
}
while (f > subs->freqn + subs->freqn / 2) {
f >>= 1;
shift--;
}
subs->freqshift = shift;
}
else if (subs->freqshift >= 0)
f <<= subs->freqshift;
else
f >>= -subs->freqshift;
if (likely(f >= subs->freqn - subs->freqn / 8 && f <= subs->freqmax)) {
/*
* If the frequency looks valid, set it.
* This value is referred to in prepare_playback_urb().
*/
spin_lock_irqsave(&subs->lock, flags);
subs->freqm = f;
spin_unlock_irqrestore(&subs->lock, flags);
} else {
/*
* Out of range; maybe the shift value is wrong.
* Reset it so that we autodetect again the next time.
*/
subs->freqshift = INT_MIN;
}
return 0;
}
/* determine the number of frames in the next packet */
static int snd_usb_audio_next_packet_size(struct snd_usb_substream *subs)
{
if (subs->fill_max)
return subs->maxframesize;
else {
subs->phase = (subs->phase & 0xffff)
+ (subs->freqm << subs->datainterval);
return min(subs->phase >> 16, subs->maxframesize);
}
}
/*
* Prepare urb for streaming before playback starts or when paused.
*
* We don't have any data, so we send silence.
*/
static int prepare_nodata_playback_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned int i, offs, counts;
struct snd_urb_ctx *ctx = urb->context;
int stride = runtime->frame_bits >> 3;
offs = 0;
urb->dev = ctx->subs->dev;
for (i = 0; i < ctx->packets; ++i) {
counts = snd_usb_audio_next_packet_size(subs);
urb->iso_frame_desc[i].offset = offs * stride;
urb->iso_frame_desc[i].length = counts * stride;
offs += counts;
}
urb->number_of_packets = ctx->packets;
urb->transfer_buffer_length = offs * stride;
memset(urb->transfer_buffer,
runtime->format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0,
offs * stride);
return 0;
}
/*
* prepare urb for playback data pipe
*
* Since a URB can handle only a single linear buffer, we must use double
* buffering when the data to be transferred overflows the buffer boundary.
* To avoid inconsistencies when updating hwptr_done, we use double buffering
* for all URBs.
*/
static int prepare_playback_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
int i, stride;
unsigned int counts, frames, bytes;
unsigned long flags;
int period_elapsed = 0;
struct snd_urb_ctx *ctx = urb->context;
stride = runtime->frame_bits >> 3;
frames = 0;
urb->dev = ctx->subs->dev; /* we need to set this at each time */
urb->number_of_packets = 0;
spin_lock_irqsave(&subs->lock, flags);
for (i = 0; i < ctx->packets; i++) {
counts = snd_usb_audio_next_packet_size(subs);
/* set up descriptor */
urb->iso_frame_desc[i].offset = frames * stride;
urb->iso_frame_desc[i].length = counts * stride;
frames += counts;
urb->number_of_packets++;
subs->transfer_done += counts;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
period_elapsed = 1;
if (subs->fmt_type == UAC_FORMAT_TYPE_II) {
if (subs->transfer_done > 0) {
/* FIXME: fill-max mode is not
* supported yet */
frames -= subs->transfer_done;
counts -= subs->transfer_done;
urb->iso_frame_desc[i].length =
counts * stride;
subs->transfer_done = 0;
}
i++;
if (i < ctx->packets) {
/* add a transfer delimiter */
urb->iso_frame_desc[i].offset =
frames * stride;
urb->iso_frame_desc[i].length = 0;
urb->number_of_packets++;
}
break;
}
}
if (period_elapsed) /* finish at the period boundary */
break;
}
bytes = frames * stride;
if (subs->hwptr_done + bytes > runtime->buffer_size * stride) {
/* err, the transferred area goes over buffer boundary. */
unsigned int bytes1 =
runtime->buffer_size * stride - subs->hwptr_done;
memcpy(urb->transfer_buffer,
runtime->dma_area + subs->hwptr_done, bytes1);
memcpy(urb->transfer_buffer + bytes1,
runtime->dma_area, bytes - bytes1);
} else {
memcpy(urb->transfer_buffer,
runtime->dma_area + subs->hwptr_done, bytes);
}
subs->hwptr_done += bytes;
if (subs->hwptr_done >= runtime->buffer_size * stride)
subs->hwptr_done -= runtime->buffer_size * stride;
runtime->delay += frames;
spin_unlock_irqrestore(&subs->lock, flags);
urb->transfer_buffer_length = bytes;
if (period_elapsed)
snd_pcm_period_elapsed(subs->pcm_substream);
return 0;
}
/*
* process after playback data complete
* - decrease the delay count again
*/
static int retire_playback_urb(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime,
struct urb *urb)
{
unsigned long flags;
int stride = runtime->frame_bits >> 3;
int processed = urb->transfer_buffer_length / stride;
spin_lock_irqsave(&subs->lock, flags);
if (processed > runtime->delay)
runtime->delay = 0;
else
runtime->delay -= processed;
spin_unlock_irqrestore(&subs->lock, flags);
return 0;
}
static const char *usb_error_string(int err)
{
switch (err) {
case -ENODEV:
return "no device";
case -ENOENT:
return "endpoint not enabled";
case -EPIPE:
return "endpoint stalled";
case -ENOSPC:
return "not enough bandwidth";
case -ESHUTDOWN:
return "device disabled";
case -EHOSTUNREACH:
return "device suspended";
case -EINVAL:
case -EAGAIN:
case -EFBIG:
case -EMSGSIZE:
return "internal error";
default:
return "unknown error";
}
}
/*
* set up and start data/sync urbs
*/
static int start_urbs(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime)
{
unsigned int i;
int err;
if (subs->stream->chip->shutdown)
return -EBADFD;
for (i = 0; i < subs->nurbs; i++) {
if (snd_BUG_ON(!subs->dataurb[i].urb))
return -EINVAL;
if (subs->ops.prepare(subs, runtime, subs->dataurb[i].urb) < 0) {
snd_printk(KERN_ERR "cannot prepare datapipe for urb %d\n", i);
goto __error;
}
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
if (snd_BUG_ON(!subs->syncurb[i].urb))
return -EINVAL;
if (subs->ops.prepare_sync(subs, runtime, subs->syncurb[i].urb) < 0) {
snd_printk(KERN_ERR "cannot prepare syncpipe for urb %d\n", i);
goto __error;
}
}
}
subs->active_mask = 0;
subs->unlink_mask = 0;
subs->running = 1;
for (i = 0; i < subs->nurbs; i++) {
err = usb_submit_urb(subs->dataurb[i].urb, GFP_ATOMIC);
if (err < 0) {
snd_printk(KERN_ERR "cannot submit datapipe "
"for urb %d, error %d: %s\n",
i, err, usb_error_string(err));
goto __error;
}
set_bit(i, &subs->active_mask);
}
if (subs->syncpipe) {
for (i = 0; i < SYNC_URBS; i++) {
err = usb_submit_urb(subs->syncurb[i].urb, GFP_ATOMIC);
if (err < 0) {
snd_printk(KERN_ERR "cannot submit syncpipe "
"for urb %d, error %d: %s\n",
i, err, usb_error_string(err));
goto __error;
}
set_bit(i + 16, &subs->active_mask);
}
}
return 0;
__error:
// snd_pcm_stop(subs->pcm_substream, SNDRV_PCM_STATE_XRUN);
deactivate_urbs(subs, 0, 0);
return -EPIPE;
}
/*
*/
static struct snd_urb_ops audio_urb_ops[2] = {
{
.prepare = prepare_nodata_playback_urb,
.retire = retire_playback_urb,
.prepare_sync = prepare_playback_sync_urb,
.retire_sync = retire_playback_sync_urb,
},
{
.prepare = prepare_capture_urb,
.retire = retire_capture_urb,
.prepare_sync = prepare_capture_sync_urb,
.retire_sync = retire_capture_sync_urb,
},
};
/*
* initialize the substream instance.
*/
void snd_usb_init_substream(struct snd_usb_stream *as,
int stream, struct audioformat *fp)
{
struct snd_usb_substream *subs = &as->substream[stream];
INIT_LIST_HEAD(&subs->fmt_list);
spin_lock_init(&subs->lock);
subs->stream = as;
subs->direction = stream;
subs->dev = as->chip->dev;
subs->txfr_quirk = as->chip->txfr_quirk;
subs->ops = audio_urb_ops[stream];
if (snd_usb_get_speed(subs->dev) >= USB_SPEED_HIGH)
subs->ops.prepare_sync = prepare_capture_sync_urb_hs;
snd_usb_set_pcm_ops(as->pcm, stream);
list_add_tail(&fp->list, &subs->fmt_list);
subs->formats |= fp->formats;
subs->endpoint = fp->endpoint;
subs->num_formats++;
subs->fmt_type = fp->fmt_type;
}
int snd_usb_substream_playback_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_usb_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
subs->ops.prepare = prepare_playback_urb;
return 0;
case SNDRV_PCM_TRIGGER_STOP:
return deactivate_urbs(subs, 0, 0);
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
subs->ops.prepare = prepare_nodata_playback_urb;
return 0;
}
return -EINVAL;
}
int snd_usb_substream_capture_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct snd_usb_substream *subs = substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
subs->ops.retire = retire_capture_urb;
return start_urbs(subs, substream->runtime);
case SNDRV_PCM_TRIGGER_STOP:
return deactivate_urbs(subs, 0, 0);
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
subs->ops.retire = retire_paused_capture_urb;
return 0;
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
subs->ops.retire = retire_capture_urb;
return 0;
}
return -EINVAL;
}
int snd_usb_substream_prepare(struct snd_usb_substream *subs,
struct snd_pcm_runtime *runtime)
{
/* clear urbs (to be sure) */
deactivate_urbs(subs, 0, 1);
wait_clear_urbs(subs);
/* for playback, submit the URBs now; otherwise, the first hwptr_done
* updates for all URBs would happen at the same time when starting */
if (subs->direction == SNDRV_PCM_STREAM_PLAYBACK) {
subs->ops.prepare = prepare_nodata_playback_urb;
return start_urbs(subs, runtime);
}
return 0;
}