OpenCloudOS-Kernel/arch/arm64/kernel/vmlinux.lds.S

243 lines
5.7 KiB
ArmAsm
Raw Normal View History

/*
* ld script to make ARM Linux kernel
* taken from the i386 version by Russell King
* Written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*/
#include <asm-generic/vmlinux.lds.h>
#include <asm/cache.h>
#include <asm/kernel-pgtable.h>
#include <asm/thread_info.h>
#include <asm/memory.h>
#include <asm/page.h>
#include <asm/pgtable.h>
arm64: Update the Image header Currently the kernel Image is stripped of everything past the initial stack, and at runtime the memory is initialised and used by the kernel. This makes the effective minimum memory footprint of the kernel larger than the size of the loaded binary, though bootloaders have no mechanism to identify how large this minimum memory footprint is. This makes it difficult to choose safe locations to place both the kernel and other binaries required at boot (DTB, initrd, etc), such that the kernel won't clobber said binaries or other reserved memory during initialisation. Additionally when big endian support was added the image load offset was overlooked, and is currently of an arbitrary endianness, which makes it difficult for bootloaders to make use of it. It seems that bootloaders aren't respecting the image load offset at present anyway, and are assuming that offset 0x80000 will always be correct. This patch adds an effective image size to the kernel header which describes the amount of memory from the start of the kernel Image binary which the kernel expects to use before detecting memory and handling any memory reservations. This can be used by bootloaders to choose suitable locations to load the kernel and/or other binaries such that the kernel will not clobber any memory unexpectedly. As before, memory reservations are required to prevent the kernel from clobbering these locations later. Both the image load offset and the effective image size are forced to be little-endian regardless of the native endianness of the kernel to enable bootloaders to load a kernel of arbitrary endianness. Bootloaders which wish to make use of the load offset can inspect the effective image size field for a non-zero value to determine if the offset is of a known endianness. To enable software to determine the endinanness of the kernel as may be required for certain use-cases, a new flags field (also little-endian) is added to the kernel header to export this information. The documentation is updated to clarify these details. To discourage future assumptions regarding the value of text_offset, the value at this point in time is removed from the main flow of the documentation (though kept as a compatibility note). Some minor formatting issues in the documentation are also corrected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Tom Rini <trini@ti.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Kevin Hilman <kevin.hilman@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-06-24 23:51:36 +08:00
#include "image.h"
/* .exit.text needed in case of alternative patching */
#define ARM_EXIT_KEEP(x) x
#define ARM_EXIT_DISCARD(x)
OUTPUT_ARCH(aarch64)
ENTRY(_text)
jiffies = jiffies_64;
#define HYPERVISOR_TEXT \
/* \
* Align to 4 KB so that \
* a) the HYP vector table is at its minimum \
* alignment of 2048 bytes \
* b) the HYP init code will not cross a page \
* boundary if its size does not exceed \
* 4 KB (see related ASSERT() below) \
*/ \
. = ALIGN(SZ_4K); \
VMLINUX_SYMBOL(__hyp_idmap_text_start) = .; \
*(.hyp.idmap.text) \
VMLINUX_SYMBOL(__hyp_idmap_text_end) = .; \
VMLINUX_SYMBOL(__hyp_text_start) = .; \
*(.hyp.text) \
VMLINUX_SYMBOL(__hyp_text_end) = .;
#define IDMAP_TEXT \
. = ALIGN(SZ_4K); \
VMLINUX_SYMBOL(__idmap_text_start) = .; \
*(.idmap.text) \
VMLINUX_SYMBOL(__idmap_text_end) = .;
#ifdef CONFIG_HIBERNATION
#define HIBERNATE_TEXT \
. = ALIGN(SZ_4K); \
VMLINUX_SYMBOL(__hibernate_exit_text_start) = .;\
*(.hibernate_exit.text) \
VMLINUX_SYMBOL(__hibernate_exit_text_end) = .;
#else
#define HIBERNATE_TEXT
#endif
/*
* The size of the PE/COFF section that covers the kernel image, which
* runs from stext to _edata, must be a round multiple of the PE/COFF
* FileAlignment, which we set to its minimum value of 0x200. 'stext'
* itself is 4 KB aligned, so padding out _edata to a 0x200 aligned
* boundary should be sufficient.
*/
PECOFF_FILE_ALIGNMENT = 0x200;
#ifdef CONFIG_EFI
#define PECOFF_EDATA_PADDING \
.pecoff_edata_padding : { BYTE(0); . = ALIGN(PECOFF_FILE_ALIGNMENT); }
#else
#define PECOFF_EDATA_PADDING
#endif
#if defined(CONFIG_DEBUG_ALIGN_RODATA)
/*
* 4 KB granule: 1 level 2 entry
* 16 KB granule: 128 level 3 entries, with contiguous bit
* 64 KB granule: 32 level 3 entries, with contiguous bit
*/
#define SEGMENT_ALIGN SZ_2M
#else
/*
* 4 KB granule: 16 level 3 entries, with contiguous bit
* 16 KB granule: 4 level 3 entries, without contiguous bit
* 64 KB granule: 1 level 3 entry
*/
#define SEGMENT_ALIGN SZ_64K
#endif
SECTIONS
{
/*
* XXX: The linker does not define how output sections are
* assigned to input sections when there are multiple statements
* matching the same input section name. There is no documented
* order of matching.
*/
/DISCARD/ : {
ARM_EXIT_DISCARD(EXIT_TEXT)
ARM_EXIT_DISCARD(EXIT_DATA)
EXIT_CALL
*(.discard)
*(.discard.*)
*(.interp .dynamic)
arm64: relocatable: suppress R_AARCH64_ABS64 relocations in vmlinux The linker routines that we rely on to produce a relocatable PIE binary treat it as a shared ELF object in some ways, i.e., it emits symbol based R_AARCH64_ABS64 relocations into the final binary since doing so would be appropriate when linking a shared library that is subject to symbol preemption. (This means that an executable can override certain symbols that are exported by a shared library it is linked with, and that the shared library *must* update all its internal references as well, and point them to the version provided by the executable.) Symbol preemption does not occur for OS hosted PIE executables, let alone for vmlinux, and so we would prefer to get rid of these symbol based relocations. This would allow us to simplify the relocation routines, and to strip the .dynsym, .dynstr and .hash sections from the binary. (Note that these are tiny, and are placed in the .init segment, but they clutter up the vmlinux binary.) Note that these R_AARCH64_ABS64 relocations are only emitted for absolute references to symbols defined in the linker script, all other relocatable quantities are covered by anonymous R_AARCH64_RELATIVE relocations that simply list the offsets to all 64-bit values in the binary that need to be fixed up based on the offset between the link time and run time addresses. Fortunately, GNU ld has a -Bsymbolic option, which is intended for shared libraries to allow them to ignore symbol preemption, and unconditionally bind all internal symbol references to its own definitions. So set it for our PIE binary as well, and get rid of the asoociated sections and the relocation code that processes them. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [will: fixed conflict with __dynsym_offset linker script entry] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-07-24 20:00:13 +08:00
*(.dynsym .dynstr .hash)
}
. = KIMAGE_VADDR + TEXT_OFFSET;
.head.text : {
_text = .;
HEAD_TEXT
}
.text : { /* Real text segment */
_stext = .; /* Text and read-only data */
__exception_text_start = .;
*(.exception.text)
__exception_text_end = .;
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
ENTRY_TEXT
TEXT_TEXT
SCHED_TEXT
CPUIDLE_TEXT
LOCK_TEXT
arm64: Kprobes with single stepping support Add support for basic kernel probes(kprobes) and jump probes (jprobes) for ARM64. Kprobes utilizes software breakpoint and single step debug exceptions supported on ARM v8. A software breakpoint is placed at the probe address to trap the kernel execution into the kprobe handler. ARM v8 supports enabling single stepping before the break exception return (ERET), with next PC in exception return address (ELR_EL1). The kprobe handler prepares an executable memory slot for out-of-line execution with a copy of the original instruction being probed, and enables single stepping. The PC is set to the out-of-line slot address before the ERET. With this scheme, the instruction is executed with the exact same register context except for the PC (and DAIF) registers. Debug mask (PSTATE.D) is enabled only when single stepping a recursive kprobe, e.g.: during kprobes reenter so that probed instruction can be single stepped within the kprobe handler -exception- context. The recursion depth of kprobe is always 2, i.e. upon probe re-entry, any further re-entry is prevented by not calling handlers and the case counted as a missed kprobe). Single stepping from the x-o-l slot has a drawback for PC-relative accesses like branching and symbolic literals access as the offset from the new PC (slot address) may not be ensured to fit in the immediate value of the opcode. Such instructions need simulation, so reject probing them. Instructions generating exceptions or cpu mode change are rejected for probing. Exclusive load/store instructions are rejected too. Additionally, the code is checked to see if it is inside an exclusive load/store sequence (code from Pratyush). System instructions are mostly enabled for stepping, except MSR/MRS accesses to "DAIF" flags in PSTATE, which are not safe for probing. This also changes arch/arm64/include/asm/ptrace.h to use include/asm-generic/ptrace.h. Thanks to Steve Capper and Pratyush Anand for several suggested Changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: David A. Long <dave.long@linaro.org> Signed-off-by: Pratyush Anand <panand@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-09 00:35:48 +08:00
KPROBES_TEXT
HYPERVISOR_TEXT
IDMAP_TEXT
HIBERNATE_TEXT
*(.fixup)
*(.gnu.warning)
. = ALIGN(16);
*(.got) /* Global offset table */
}
. = ALIGN(SEGMENT_ALIGN);
_etext = .; /* End of text section */
RO_DATA(PAGE_SIZE) /* everything from this point to */
EXCEPTION_TABLE(8) /* __init_begin will be marked RO NX */
NOTES
. = ALIGN(SEGMENT_ALIGN);
__init_begin = .;
INIT_TEXT_SECTION(8)
.exit.text : {
ARM_EXIT_KEEP(EXIT_TEXT)
}
.init.data : {
INIT_DATA
INIT_SETUP(16)
INIT_CALLS
CON_INITCALL
SECURITY_INITCALL
INIT_RAM_FS
*(.init.rodata.* .init.bss) /* from the EFI stub */
}
.exit.data : {
ARM_EXIT_KEEP(EXIT_DATA)
}
PERCPU_SECTION(L1_CACHE_BYTES)
. = ALIGN(4);
.altinstructions : {
__alt_instructions = .;
*(.altinstructions)
__alt_instructions_end = .;
}
.altinstr_replacement : {
*(.altinstr_replacement)
}
.rela : ALIGN(8) {
*(.rela .rela*)
}
__rela_offset = ABSOLUTE(ADDR(.rela) - KIMAGE_VADDR);
__rela_size = SIZEOF(.rela);
. = ALIGN(SEGMENT_ALIGN);
__init_end = .;
_data = .;
_sdata = .;
RW_DATA_SECTION(L1_CACHE_BYTES, PAGE_SIZE, THREAD_SIZE)
/*
* Data written with the MMU off but read with the MMU on requires
* cache lines to be invalidated, discarding up to a Cache Writeback
* Granule (CWG) of data from the cache. Keep the section that
* requires this type of maintenance to be in its own Cache Writeback
* Granule (CWG) area so the cache maintenance operations don't
* interfere with adjacent data.
*/
.mmuoff.data.write : ALIGN(SZ_2K) {
__mmuoff_data_start = .;
*(.mmuoff.data.write)
}
. = ALIGN(SZ_2K);
.mmuoff.data.read : {
*(.mmuoff.data.read)
__mmuoff_data_end = .;
}
PECOFF_EDATA_PADDING
_edata = .;
BSS_SECTION(0, 0, 0)
. = ALIGN(PAGE_SIZE);
idmap_pg_dir = .;
. += IDMAP_DIR_SIZE;
swapper_pg_dir = .;
. += SWAPPER_DIR_SIZE;
_end = .;
STABS_DEBUG
arm64: Update the Image header Currently the kernel Image is stripped of everything past the initial stack, and at runtime the memory is initialised and used by the kernel. This makes the effective minimum memory footprint of the kernel larger than the size of the loaded binary, though bootloaders have no mechanism to identify how large this minimum memory footprint is. This makes it difficult to choose safe locations to place both the kernel and other binaries required at boot (DTB, initrd, etc), such that the kernel won't clobber said binaries or other reserved memory during initialisation. Additionally when big endian support was added the image load offset was overlooked, and is currently of an arbitrary endianness, which makes it difficult for bootloaders to make use of it. It seems that bootloaders aren't respecting the image load offset at present anyway, and are assuming that offset 0x80000 will always be correct. This patch adds an effective image size to the kernel header which describes the amount of memory from the start of the kernel Image binary which the kernel expects to use before detecting memory and handling any memory reservations. This can be used by bootloaders to choose suitable locations to load the kernel and/or other binaries such that the kernel will not clobber any memory unexpectedly. As before, memory reservations are required to prevent the kernel from clobbering these locations later. Both the image load offset and the effective image size are forced to be little-endian regardless of the native endianness of the kernel to enable bootloaders to load a kernel of arbitrary endianness. Bootloaders which wish to make use of the load offset can inspect the effective image size field for a non-zero value to determine if the offset is of a known endianness. To enable software to determine the endinanness of the kernel as may be required for certain use-cases, a new flags field (also little-endian) is added to the kernel header to export this information. The documentation is updated to clarify these details. To discourage future assumptions regarding the value of text_offset, the value at this point in time is removed from the main flow of the documentation (though kept as a compatibility note). Some minor formatting issues in the documentation are also corrected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Tom Rini <trini@ti.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Kevin Hilman <kevin.hilman@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-06-24 23:51:36 +08:00
HEAD_SYMBOLS
}
/*
* The HYP init code and ID map text can't be longer than a page each,
* and should not cross a page boundary.
*/
ASSERT(__hyp_idmap_text_end - (__hyp_idmap_text_start & ~(SZ_4K - 1)) <= SZ_4K,
"HYP init code too big or misaligned")
ASSERT(__idmap_text_end - (__idmap_text_start & ~(SZ_4K - 1)) <= SZ_4K,
"ID map text too big or misaligned")
#ifdef CONFIG_HIBERNATION
ASSERT(__hibernate_exit_text_end - (__hibernate_exit_text_start & ~(SZ_4K - 1))
<= SZ_4K, "Hibernate exit text too big or misaligned")
#endif
/*
* If padding is applied before .head.text, virt<->phys conversions will fail.
*/
ASSERT(_text == (KIMAGE_VADDR + TEXT_OFFSET), "HEAD is misaligned")