drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2011 Samsung Electronics Co.Ltd
|
|
|
|
* Authors:
|
|
|
|
* Seung-Woo Kim <sw0312.kim@samsung.com>
|
|
|
|
* Inki Dae <inki.dae@samsung.com>
|
|
|
|
* Joonyoung Shim <jy0922.shim@samsung.com>
|
|
|
|
*
|
|
|
|
* Based on drivers/media/video/s5p-tv/hdmi_drv.c
|
|
|
|
*
|
2016-01-14 13:28:20 +08:00
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
* option) any later version.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2012-10-03 01:01:07 +08:00
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include <drm/drm_edid.h>
|
|
|
|
#include <drm/drm_crtc_helper.h>
|
2015-06-01 23:04:44 +08:00
|
|
|
#include <drm/drm_atomic_helper.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
#include "regs-hdmi.h"
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/i2c.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <linux/clk.h>
|
2015-09-25 20:48:24 +08:00
|
|
|
#include <linux/gpio/consumer.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
#include <linux/regulator/consumer.h>
|
2012-10-04 23:18:55 +08:00
|
|
|
#include <linux/io.h>
|
2014-05-09 14:34:18 +08:00
|
|
|
#include <linux/of_address.h>
|
2015-07-09 22:28:09 +08:00
|
|
|
#include <linux/of_device.h>
|
2014-02-04 11:10:18 +08:00
|
|
|
#include <linux/hdmi.h>
|
2014-05-09 13:25:20 +08:00
|
|
|
#include <linux/component.h>
|
2014-05-20 13:06:05 +08:00
|
|
|
#include <linux/mfd/syscon.h>
|
|
|
|
#include <linux/regmap.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
#include <drm/exynos_drm.h>
|
|
|
|
|
|
|
|
#include "exynos_drm_drv.h"
|
2014-05-09 13:25:20 +08:00
|
|
|
#include "exynos_drm_crtc.h"
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
#define HOTPLUG_DEBOUNCE_MS 1100
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
/* AVI header and aspect ratio */
|
|
|
|
#define HDMI_AVI_VERSION 0x02
|
2016-01-14 13:28:20 +08:00
|
|
|
#define HDMI_AVI_LENGTH 0x0d
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
/* AUI header info */
|
2016-01-14 13:28:20 +08:00
|
|
|
#define HDMI_AUI_VERSION 0x01
|
|
|
|
#define HDMI_AUI_LENGTH 0x0a
|
|
|
|
|
|
|
|
/* AVI active format aspect ratio */
|
|
|
|
#define AVI_SAME_AS_PIC_ASPECT_RATIO 0x08
|
|
|
|
#define AVI_4_3_CENTER_RATIO 0x09
|
|
|
|
#define AVI_16_9_CENTER_RATIO 0x0a
|
2012-11-26 13:22:57 +08:00
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
enum hdmi_type {
|
|
|
|
HDMI_TYPE13,
|
|
|
|
HDMI_TYPE14,
|
2015-09-25 20:48:16 +08:00
|
|
|
HDMI_TYPE_COUNT
|
|
|
|
};
|
|
|
|
|
|
|
|
#define HDMI_MAPPED_BASE 0xffff0000
|
|
|
|
|
|
|
|
enum hdmi_mapped_regs {
|
|
|
|
HDMI_PHY_STATUS = HDMI_MAPPED_BASE,
|
|
|
|
HDMI_PHY_RSTOUT,
|
|
|
|
HDMI_ACR_CON,
|
2015-09-25 20:48:27 +08:00
|
|
|
HDMI_ACR_MCTS0,
|
|
|
|
HDMI_ACR_CTS0,
|
|
|
|
HDMI_ACR_N0
|
2015-09-25 20:48:16 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static const u32 hdmi_reg_map[][HDMI_TYPE_COUNT] = {
|
|
|
|
{ HDMI_V13_PHY_STATUS, HDMI_PHY_STATUS_0 },
|
|
|
|
{ HDMI_V13_PHY_RSTOUT, HDMI_V14_PHY_RSTOUT },
|
|
|
|
{ HDMI_V13_ACR_CON, HDMI_V14_ACR_CON },
|
2015-09-25 20:48:27 +08:00
|
|
|
{ HDMI_V13_ACR_MCTS0, HDMI_V14_ACR_MCTS0 },
|
|
|
|
{ HDMI_V13_ACR_CTS0, HDMI_V14_ACR_CTS0 },
|
|
|
|
{ HDMI_V13_ACR_N0, HDMI_V14_ACR_N0 },
|
2012-10-04 23:18:54 +08:00
|
|
|
};
|
|
|
|
|
2015-09-25 20:48:22 +08:00
|
|
|
static const char * const supply[] = {
|
|
|
|
"vdd",
|
|
|
|
"vdd_osc",
|
|
|
|
"vdd_pll",
|
|
|
|
};
|
|
|
|
|
2015-11-02 21:16:41 +08:00
|
|
|
struct hdmiphy_config {
|
|
|
|
int pixel_clock;
|
|
|
|
u8 conf[32];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct hdmiphy_configs {
|
|
|
|
int count;
|
|
|
|
const struct hdmiphy_config *data;
|
|
|
|
};
|
|
|
|
|
2016-01-14 13:22:47 +08:00
|
|
|
struct string_array_spec {
|
|
|
|
int count;
|
|
|
|
const char * const *data;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define INIT_ARRAY_SPEC(a) { .count = ARRAY_SIZE(a), .data = a }
|
|
|
|
|
2014-03-06 13:18:17 +08:00
|
|
|
struct hdmi_driver_data {
|
|
|
|
unsigned int type;
|
|
|
|
unsigned int is_apb_phy:1;
|
2016-01-14 13:40:07 +08:00
|
|
|
unsigned int has_sysreg:1;
|
2015-11-02 21:16:41 +08:00
|
|
|
struct hdmiphy_configs phy_confs;
|
2016-01-14 13:22:47 +08:00
|
|
|
struct string_array_spec clk_gates;
|
|
|
|
/*
|
|
|
|
* Array of triplets (p_off, p_on, clock), where p_off and p_on are
|
|
|
|
* required parents of clock when HDMI-PHY is respectively off or on.
|
|
|
|
*/
|
|
|
|
struct string_array_spec clk_muxes;
|
2014-03-06 13:18:17 +08:00
|
|
|
};
|
|
|
|
|
2012-03-16 17:47:14 +08:00
|
|
|
struct hdmi_context {
|
2015-08-15 23:14:08 +08:00
|
|
|
struct drm_encoder encoder;
|
2012-03-16 17:47:14 +08:00
|
|
|
struct device *dev;
|
|
|
|
struct drm_device *drm_dev;
|
2014-01-31 05:19:29 +08:00
|
|
|
struct drm_connector connector;
|
2012-04-23 18:35:50 +08:00
|
|
|
bool powered;
|
2012-04-24 16:39:15 +08:00
|
|
|
bool dvi_mode;
|
2014-05-09 14:05:10 +08:00
|
|
|
struct delayed_work hotplug_work;
|
2014-04-03 23:11:04 +08:00
|
|
|
struct drm_display_mode current_mode;
|
2015-07-09 22:28:10 +08:00
|
|
|
u8 cea_video_id;
|
2015-07-09 22:28:09 +08:00
|
|
|
const struct hdmi_driver_data *drv_data;
|
2012-04-23 18:35:47 +08:00
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
void __iomem *regs;
|
2014-05-09 14:34:18 +08:00
|
|
|
void __iomem *regs_hdmiphy;
|
2015-09-25 20:48:25 +08:00
|
|
|
struct i2c_client *hdmiphy_port;
|
|
|
|
struct i2c_adapter *ddc_adpt;
|
2015-11-02 19:39:18 +08:00
|
|
|
struct gpio_desc *hpd_gpio;
|
2015-09-25 20:48:25 +08:00
|
|
|
int irq;
|
2014-05-20 13:06:05 +08:00
|
|
|
struct regmap *pmureg;
|
2016-01-14 13:40:07 +08:00
|
|
|
struct regmap *sysreg;
|
2016-01-14 13:22:47 +08:00
|
|
|
struct clk **clk_gates;
|
|
|
|
struct clk **clk_muxes;
|
2015-09-25 20:48:25 +08:00
|
|
|
struct regulator_bulk_data regul_bulk[ARRAY_SIZE(supply)];
|
|
|
|
struct regulator *reg_hdmi_en;
|
2012-03-16 17:47:14 +08:00
|
|
|
};
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
static inline struct hdmi_context *encoder_to_hdmi(struct drm_encoder *e)
|
2014-11-17 16:54:21 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
return container_of(e, struct hdmi_context, encoder);
|
2014-11-17 16:54:21 +08:00
|
|
|
}
|
|
|
|
|
2015-09-25 20:48:26 +08:00
|
|
|
static inline struct hdmi_context *connector_to_hdmi(struct drm_connector *c)
|
|
|
|
{
|
|
|
|
return container_of(c, struct hdmi_context, connector);
|
|
|
|
}
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_v13_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x1C, 0x30, 0x40,
|
|
|
|
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x80,
|
2013-03-06 16:33:29 +08:00
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD4, 0x10, 0x9C, 0x09, 0x64,
|
|
|
|
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x80,
|
2013-03-06 16:33:29 +08:00
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xef, 0x5B,
|
|
|
|
0x6D, 0x10, 0x01, 0x51, 0xef, 0xF3, 0x54, 0xb9,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x22, 0x40, 0xa5, 0x26, 0x01, 0x00, 0x00, 0x80,
|
2013-03-06 16:33:29 +08:00
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xd8, 0x10, 0x9c, 0xf8, 0x40,
|
|
|
|
0x6a, 0x10, 0x01, 0x51, 0xff, 0xf1, 0x54, 0xba,
|
|
|
|
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xe0,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x22, 0x40, 0xa4, 0x26, 0x01, 0x00, 0x00, 0x80,
|
2013-03-06 16:33:29 +08:00
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xf8, 0x40,
|
|
|
|
0x6A, 0x18, 0x00, 0x51, 0xff, 0xF1, 0x54, 0xba,
|
|
|
|
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x22, 0x40, 0xa4, 0x26, 0x02, 0x00, 0x00, 0x80,
|
2013-03-06 16:33:29 +08:00
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_v14_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 25200000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2A, 0x75, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0xfc, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xf4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x22, 0x51, 0x40, 0x08, 0xfc, 0x20,
|
|
|
|
0x98, 0xa0, 0xcb, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x06, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xe4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x2d, 0x72, 0x40, 0x64, 0x12, 0x08,
|
|
|
|
0x43, 0xa0, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x54, 0xe3, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
2013-01-15 21:11:08 +08:00
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 36000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x55, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xab, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 40000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x32, 0x55, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x2c, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x9a, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 65000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x36, 0x34, 0x40, 0x1e, 0x0a, 0x08,
|
|
|
|
0x82, 0xa0, 0x45, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xbd, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2014-03-13 13:28:27 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 71000000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x3b, 0x35, 0x40, 0x0c, 0x04, 0x08,
|
|
|
|
0x85, 0xa0, 0x63, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0xad, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 73250000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x3d, 0x35, 0x40, 0x18, 0x02, 0x08,
|
|
|
|
0x83, 0xa0, 0x6e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0xa8, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x3e, 0x35, 0x40, 0x5b, 0xde, 0x08,
|
|
|
|
0x82, 0xa0, 0x73, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x56, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xa6, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x1f, 0x10, 0x40, 0x40, 0xf8, 0x08,
|
|
|
|
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x54, 0xa5, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
2013-01-15 21:11:08 +08:00
|
|
|
},
|
2012-04-24 16:55:06 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 83500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x23, 0x11, 0x40, 0x0c, 0xfb, 0x08,
|
|
|
|
0x85, 0xa0, 0xd1, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x93, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-04-24 16:55:06 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 106500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x2c, 0x12, 0x40, 0x0c, 0x09, 0x08,
|
|
|
|
0x84, 0xa0, 0x0a, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x73, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 108000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x15, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xc7, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2014-03-13 13:28:27 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 115500000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x30, 0x12, 0x40, 0x40, 0x10, 0x08,
|
|
|
|
0x80, 0x80, 0x21, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0xaa, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 119000000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x32, 0x1a, 0x40, 0x30, 0xd8, 0x08,
|
|
|
|
0x04, 0xa0, 0x2a, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0x9d, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 146250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x3d, 0x15, 0x40, 0x18, 0xfd, 0x08,
|
|
|
|
0x83, 0xa0, 0x6e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x50, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x1f, 0x00, 0x40, 0x40, 0xf8, 0x08,
|
|
|
|
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2015-09-25 20:48:18 +08:00
|
|
|
0x54, 0x4b, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
2013-01-15 21:11:08 +08:00
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2014-04-20 18:21:17 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_5420_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 25200000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x52, 0x3F, 0x55, 0x40, 0x01, 0x00, 0xC8,
|
|
|
|
0x82, 0xC8, 0xBD, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x06, 0x80, 0x01, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xF4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x22, 0x51, 0x40, 0x08, 0xFC, 0xE0,
|
|
|
|
0x98, 0xE8, 0xCB, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x06, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xE4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x2D, 0x72, 0x40, 0x64, 0x12, 0xC8,
|
|
|
|
0x43, 0xE8, 0x0E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x26, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xE3, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 36000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2D, 0x55, 0x40, 0x40, 0x00, 0xC8,
|
|
|
|
0x02, 0xC8, 0x0E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xAB, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 40000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x21, 0x31, 0x40, 0x3C, 0x28, 0xC8,
|
|
|
|
0x87, 0xE8, 0xC8, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x9A, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 65000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x36, 0x34, 0x40, 0x0C, 0x04, 0xC8,
|
|
|
|
0x82, 0xE8, 0x45, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xBD, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 71000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x3B, 0x35, 0x40, 0x0C, 0x04, 0xC8,
|
|
|
|
0x85, 0xE8, 0x63, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x57, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 73250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x10, 0x40, 0x78, 0x8D, 0xC8,
|
|
|
|
0x81, 0xE8, 0xB7, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x56, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xA8, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x10, 0x40, 0x5B, 0xEF, 0xC8,
|
|
|
|
0x81, 0xE8, 0xB9, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x56, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xA6, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x10, 0x40, 0x40, 0xF8, 0x08,
|
|
|
|
0x81, 0xE8, 0xBA, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x26, 0x80, 0x09, 0x84, 0x05, 0x22, 0x24, 0x66,
|
|
|
|
0x54, 0xA5, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 83500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x23, 0x11, 0x40, 0x0C, 0xFB, 0xC8,
|
|
|
|
0x85, 0xE8, 0xD1, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x4A, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 88750000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x25, 0x11, 0x40, 0x18, 0xFF, 0xC8,
|
|
|
|
0x83, 0xE8, 0xDE, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x45, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 106500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x2C, 0x12, 0x40, 0x0C, 0x09, 0xC8,
|
|
|
|
0x84, 0xE8, 0x0A, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x73, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 108000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2D, 0x15, 0x40, 0x01, 0x00, 0xC8,
|
|
|
|
0x82, 0xC8, 0x0E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xC7, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 115500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x30, 0x14, 0x40, 0x0C, 0x03, 0xC8,
|
|
|
|
0x88, 0xE8, 0x21, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x6A, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 146250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x3D, 0x15, 0x40, 0x18, 0xFD, 0xC8,
|
|
|
|
0x83, 0xE8, 0x6E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x54, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x00, 0x40, 0x40, 0xF8, 0x08,
|
|
|
|
0x81, 0xE8, 0xBA, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x26, 0x80, 0x09, 0x84, 0x05, 0x22, 0x24, 0x66,
|
|
|
|
0x54, 0x4B, 0x25, 0x03, 0x00, 0x80, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_5433_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x22, 0x51, 0x08, 0xfc, 0x88, 0x46,
|
|
|
|
0x72, 0x50, 0x24, 0x0c, 0x24, 0x0f, 0x7c, 0xa5,
|
|
|
|
0xd4, 0x2b, 0x87, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x72, 0x64, 0x09, 0x88, 0xc3,
|
|
|
|
0x71, 0x50, 0x24, 0x14, 0x24, 0x0f, 0x7c, 0xa5,
|
|
|
|
0xd4, 0x2b, 0x87, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x28, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 40000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x32, 0x55, 0x01, 0x00, 0x88, 0x02,
|
|
|
|
0x4d, 0x50, 0x44, 0x8C, 0x27, 0x00, 0x7C, 0xAC,
|
|
|
|
0xD6, 0x2B, 0x67, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 50000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x34, 0x40, 0x64, 0x09, 0x88, 0xc3,
|
|
|
|
0x3d, 0x50, 0x44, 0x8C, 0x27, 0x00, 0x7C, 0xAC,
|
|
|
|
0xD6, 0x2B, 0x67, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 65000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x36, 0x31, 0x40, 0x10, 0x04, 0xc6,
|
|
|
|
0x2e, 0xe8, 0x44, 0x8C, 0x27, 0x00, 0x7C, 0xAC,
|
|
|
|
0xD6, 0x2B, 0x67, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x3E, 0x35, 0x5B, 0xDE, 0x88, 0x42,
|
|
|
|
0x53, 0x51, 0x44, 0x8C, 0x27, 0x00, 0x7C, 0xAC,
|
|
|
|
0xD6, 0x2B, 0x67, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x3E, 0x35, 0x40, 0xF0, 0x88, 0xC2,
|
|
|
|
0x52, 0x51, 0x44, 0x8C, 0x27, 0x00, 0x7C, 0xAC,
|
|
|
|
0xD6, 0x2B, 0x67, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 108000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x15, 0x01, 0x00, 0x88, 0x02,
|
|
|
|
0x72, 0x52, 0x44, 0x8C, 0x27, 0x00, 0x7C, 0xAC,
|
|
|
|
0xD6, 0x2B, 0x67, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x40, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x1f, 0x00, 0x40, 0xf8, 0x88, 0xc1,
|
|
|
|
0x52, 0x52, 0x24, 0x0c, 0x24, 0x0f, 0x7c, 0xa5,
|
|
|
|
0xd4, 0x2b, 0x87, 0x00, 0x00, 0x04, 0x00, 0x30,
|
|
|
|
0x08, 0x10, 0x01, 0x01, 0x48, 0x4a, 0x00, 0x40,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2015-11-02 21:16:40 +08:00
|
|
|
static const char * const hdmi_clk_gates4[] = {
|
2016-01-14 13:22:47 +08:00
|
|
|
"hdmi", "sclk_hdmi"
|
|
|
|
};
|
|
|
|
|
2015-11-02 21:16:40 +08:00
|
|
|
static const char * const hdmi_clk_muxes4[] = {
|
2016-01-14 13:22:47 +08:00
|
|
|
"sclk_pixel", "sclk_hdmiphy", "mout_hdmi"
|
|
|
|
};
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
static const char * const hdmi_clk_gates5433[] = {
|
|
|
|
"hdmi_pclk", "hdmi_i_pclk", "i_tmds_clk", "i_pixel_clk", "i_spdif_clk"
|
|
|
|
};
|
|
|
|
|
|
|
|
static const char * const hdmi_clk_muxes5433[] = {
|
|
|
|
"oscclk", "tmds_clko", "tmds_clko_user",
|
|
|
|
"oscclk", "pixel_clko", "pixel_clko_user"
|
|
|
|
};
|
|
|
|
|
2016-01-14 13:28:20 +08:00
|
|
|
static const struct hdmi_driver_data exynos4210_hdmi_driver_data = {
|
|
|
|
.type = HDMI_TYPE13,
|
|
|
|
.phy_confs = INIT_ARRAY_SPEC(hdmiphy_v13_configs),
|
2016-01-14 13:22:47 +08:00
|
|
|
.clk_gates = INIT_ARRAY_SPEC(hdmi_clk_gates4),
|
|
|
|
.clk_muxes = INIT_ARRAY_SPEC(hdmi_clk_muxes4),
|
2014-04-20 18:21:17 +08:00
|
|
|
};
|
2014-05-09 14:34:18 +08:00
|
|
|
|
2015-11-02 21:16:40 +08:00
|
|
|
static const struct hdmi_driver_data exynos4212_hdmi_driver_data = {
|
2014-05-09 14:34:18 +08:00
|
|
|
.type = HDMI_TYPE14,
|
2015-11-02 21:16:41 +08:00
|
|
|
.phy_confs = INIT_ARRAY_SPEC(hdmiphy_v14_configs),
|
2016-01-14 13:22:47 +08:00
|
|
|
.clk_gates = INIT_ARRAY_SPEC(hdmi_clk_gates4),
|
|
|
|
.clk_muxes = INIT_ARRAY_SPEC(hdmi_clk_muxes4),
|
2014-05-09 14:34:18 +08:00
|
|
|
};
|
|
|
|
|
2016-01-14 13:28:20 +08:00
|
|
|
static const struct hdmi_driver_data exynos5420_hdmi_driver_data = {
|
|
|
|
.type = HDMI_TYPE14,
|
|
|
|
.is_apb_phy = 1,
|
|
|
|
.phy_confs = INIT_ARRAY_SPEC(hdmiphy_5420_configs),
|
2016-01-14 13:22:47 +08:00
|
|
|
.clk_gates = INIT_ARRAY_SPEC(hdmi_clk_gates4),
|
|
|
|
.clk_muxes = INIT_ARRAY_SPEC(hdmi_clk_muxes4),
|
2014-07-01 16:10:07 +08:00
|
|
|
};
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
static const struct hdmi_driver_data exynos5433_hdmi_driver_data = {
|
|
|
|
.type = HDMI_TYPE14,
|
|
|
|
.is_apb_phy = 1,
|
|
|
|
.has_sysreg = 1,
|
|
|
|
.phy_confs = INIT_ARRAY_SPEC(hdmiphy_5433_configs),
|
|
|
|
.clk_gates = INIT_ARRAY_SPEC(hdmi_clk_gates5433),
|
|
|
|
.clk_muxes = INIT_ARRAY_SPEC(hdmi_clk_muxes5433),
|
|
|
|
};
|
|
|
|
|
2015-09-25 20:48:16 +08:00
|
|
|
static inline u32 hdmi_map_reg(struct hdmi_context *hdata, u32 reg_id)
|
|
|
|
{
|
|
|
|
if ((reg_id & 0xffff0000) == HDMI_MAPPED_BASE)
|
|
|
|
return hdmi_reg_map[reg_id & 0xffff][hdata->drv_data->type];
|
|
|
|
return reg_id;
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static inline u32 hdmi_reg_read(struct hdmi_context *hdata, u32 reg_id)
|
|
|
|
{
|
2015-09-25 20:48:16 +08:00
|
|
|
return readl(hdata->regs + hdmi_map_reg(hdata, reg_id));
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hdmi_reg_writeb(struct hdmi_context *hdata,
|
|
|
|
u32 reg_id, u8 value)
|
|
|
|
{
|
2015-09-25 20:48:19 +08:00
|
|
|
writel(value, hdata->regs + hdmi_map_reg(hdata, reg_id));
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-07-09 22:28:11 +08:00
|
|
|
static inline void hdmi_reg_writev(struct hdmi_context *hdata, u32 reg_id,
|
|
|
|
int bytes, u32 val)
|
|
|
|
{
|
2015-09-25 20:48:16 +08:00
|
|
|
reg_id = hdmi_map_reg(hdata, reg_id);
|
|
|
|
|
2015-07-09 22:28:11 +08:00
|
|
|
while (--bytes >= 0) {
|
2015-09-25 20:48:19 +08:00
|
|
|
writel(val & 0xff, hdata->regs + reg_id);
|
2015-07-09 22:28:11 +08:00
|
|
|
val >>= 8;
|
|
|
|
reg_id += 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static inline void hdmi_reg_writemask(struct hdmi_context *hdata,
|
|
|
|
u32 reg_id, u32 value, u32 mask)
|
|
|
|
{
|
2015-09-25 20:48:16 +08:00
|
|
|
u32 old;
|
|
|
|
|
|
|
|
reg_id = hdmi_map_reg(hdata, reg_id);
|
|
|
|
old = readl(hdata->regs + reg_id);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
value = (value & mask) | (old & ~mask);
|
|
|
|
writel(value, hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
2014-05-09 14:34:18 +08:00
|
|
|
static int hdmiphy_reg_write_buf(struct hdmi_context *hdata,
|
|
|
|
u32 reg_offset, const u8 *buf, u32 len)
|
|
|
|
{
|
|
|
|
if ((reg_offset + len) > 32)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (hdata->hdmiphy_port) {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = i2c_master_send(hdata->hdmiphy_port, buf, len);
|
|
|
|
if (ret == len)
|
|
|
|
return 0;
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
2015-09-25 20:48:19 +08:00
|
|
|
writel(buf[i], hdata->regs_hdmiphy +
|
2014-05-09 14:34:18 +08:00
|
|
|
((reg_offset + i)<<2));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-01-14 13:22:47 +08:00
|
|
|
static int hdmi_clk_enable_gates(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
for (i = 0; i < hdata->drv_data->clk_gates.count; ++i) {
|
|
|
|
ret = clk_prepare_enable(hdata->clk_gates[i]);
|
|
|
|
if (!ret)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
dev_err(hdata->dev, "Cannot enable clock '%s', %d\n",
|
|
|
|
hdata->drv_data->clk_gates.data[i], ret);
|
|
|
|
while (i--)
|
|
|
|
clk_disable_unprepare(hdata->clk_gates[i]);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_clk_disable_gates(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
int i = hdata->drv_data->clk_gates.count;
|
|
|
|
|
|
|
|
while (i--)
|
|
|
|
clk_disable_unprepare(hdata->clk_gates[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hdmi_clk_set_parents(struct hdmi_context *hdata, bool to_phy)
|
|
|
|
{
|
|
|
|
struct device *dev = hdata->dev;
|
|
|
|
int ret = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < hdata->drv_data->clk_muxes.count; i += 3) {
|
|
|
|
struct clk **c = &hdata->clk_muxes[i];
|
|
|
|
|
|
|
|
ret = clk_set_parent(c[2], c[to_phy]);
|
|
|
|
if (!ret)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
dev_err(dev, "Cannot set clock parent of '%s' to '%s', %d\n",
|
|
|
|
hdata->drv_data->clk_muxes.data[i + 2],
|
|
|
|
hdata->drv_data->clk_muxes.data[i + to_phy], ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
static u8 hdmi_chksum(struct hdmi_context *hdata,
|
|
|
|
u32 start, u8 len, u32 hdr_sum)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* hdr_sum : header0 + header1 + header2
|
|
|
|
* start : start address of packet byte1
|
|
|
|
* len : packet bytes - 1 */
|
|
|
|
for (i = 0; i < len; ++i)
|
|
|
|
hdr_sum += 0xff & hdmi_reg_read(hdata, start + i * 4);
|
|
|
|
|
|
|
|
/* return 2's complement of 8 bit hdr_sum */
|
|
|
|
return (u8)(~(hdr_sum & 0xff) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_reg_infoframe(struct hdmi_context *hdata,
|
2014-02-04 11:10:18 +08:00
|
|
|
union hdmi_infoframe *infoframe)
|
2012-11-26 13:22:57 +08:00
|
|
|
{
|
|
|
|
u32 hdr_sum;
|
|
|
|
u8 chksum;
|
2015-07-09 22:28:10 +08:00
|
|
|
u8 ar;
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
if (hdata->dvi_mode) {
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VSI_CON,
|
|
|
|
HDMI_VSI_CON_DO_NOT_TRANSMIT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CON,
|
|
|
|
HDMI_AVI_CON_DO_NOT_TRANSMIT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, HDMI_AUI_CON_NO_TRAN);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2014-02-04 11:10:18 +08:00
|
|
|
switch (infoframe->any.type) {
|
|
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CON, HDMI_AVI_CON_EVERY_VSYNC);
|
2014-02-04 11:10:18 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER0, infoframe->any.type);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER1,
|
|
|
|
infoframe->any.version);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER2, infoframe->any.length);
|
|
|
|
hdr_sum = infoframe->any.type + infoframe->any.version +
|
|
|
|
infoframe->any.length;
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
/* Output format zero hardcoded ,RGB YBCR selection */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(1), 0 << 5 |
|
|
|
|
AVI_ACTIVE_FORMAT_VALID |
|
|
|
|
AVI_UNDERSCANNED_DISPLAY_VALID);
|
|
|
|
|
2014-03-13 13:28:28 +08:00
|
|
|
/*
|
|
|
|
* Set the aspect ratio as per the mode, mentioned in
|
|
|
|
* Table 9 AVI InfoFrame Data Byte 2 of CEA-861-D Standard
|
|
|
|
*/
|
2015-07-09 22:28:10 +08:00
|
|
|
ar = hdata->current_mode.picture_aspect_ratio;
|
|
|
|
switch (ar) {
|
2014-03-13 13:28:28 +08:00
|
|
|
case HDMI_PICTURE_ASPECT_4_3:
|
2015-07-09 22:28:10 +08:00
|
|
|
ar |= AVI_4_3_CENTER_RATIO;
|
2014-03-13 13:28:28 +08:00
|
|
|
break;
|
|
|
|
case HDMI_PICTURE_ASPECT_16_9:
|
2015-07-09 22:28:10 +08:00
|
|
|
ar |= AVI_16_9_CENTER_RATIO;
|
2014-03-13 13:28:28 +08:00
|
|
|
break;
|
|
|
|
case HDMI_PICTURE_ASPECT_NONE:
|
|
|
|
default:
|
2015-07-09 22:28:10 +08:00
|
|
|
ar |= AVI_SAME_AS_PIC_ASPECT_RATIO;
|
2014-03-13 13:28:28 +08:00
|
|
|
break;
|
|
|
|
}
|
2015-07-09 22:28:10 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(2), ar);
|
2012-11-26 13:22:57 +08:00
|
|
|
|
2015-07-09 22:28:10 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(4), hdata->cea_video_id);
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
chksum = hdmi_chksum(hdata, HDMI_AVI_BYTE(1),
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe->any.length, hdr_sum);
|
2012-11-26 13:22:57 +08:00
|
|
|
DRM_DEBUG_KMS("AVI checksum = 0x%x\n", chksum);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CHECK_SUM, chksum);
|
|
|
|
break;
|
2014-02-04 11:10:18 +08:00
|
|
|
case HDMI_INFOFRAME_TYPE_AUDIO:
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, 0x02);
|
2014-02-04 11:10:18 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER0, infoframe->any.type);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER1,
|
|
|
|
infoframe->any.version);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER2, infoframe->any.length);
|
|
|
|
hdr_sum = infoframe->any.type + infoframe->any.version +
|
|
|
|
infoframe->any.length;
|
2012-11-26 13:22:57 +08:00
|
|
|
chksum = hdmi_chksum(hdata, HDMI_AUI_BYTE(1),
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe->any.length, hdr_sum);
|
2012-11-26 13:22:57 +08:00
|
|
|
DRM_DEBUG_KMS("AUI checksum = 0x%x\n", chksum);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CHECK_SUM, chksum);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static enum drm_connector_status hdmi_detect(struct drm_connector *connector,
|
|
|
|
bool force)
|
2014-01-31 05:19:05 +08:00
|
|
|
{
|
2015-09-25 20:48:26 +08:00
|
|
|
struct hdmi_context *hdata = connector_to_hdmi(connector);
|
2014-01-31 05:19:05 +08:00
|
|
|
|
2015-09-25 20:48:24 +08:00
|
|
|
if (gpiod_get_value(hdata->hpd_gpio))
|
2015-07-09 22:28:07 +08:00
|
|
|
return connector_status_connected;
|
2014-04-03 23:11:03 +08:00
|
|
|
|
2015-07-09 22:28:07 +08:00
|
|
|
return connector_status_disconnected;
|
2014-01-31 05:19:05 +08:00
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static void hdmi_connector_destroy(struct drm_connector *connector)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-09-09 21:16:13 +08:00
|
|
|
drm_connector_unregister(connector);
|
|
|
|
drm_connector_cleanup(connector);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-12-15 19:21:06 +08:00
|
|
|
static const struct drm_connector_funcs hdmi_connector_funcs = {
|
2015-06-01 23:04:53 +08:00
|
|
|
.dpms = drm_atomic_helper_connector_dpms,
|
2014-01-31 05:19:29 +08:00
|
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
|
|
.detect = hdmi_detect,
|
|
|
|
.destroy = hdmi_connector_destroy,
|
2015-06-01 23:04:44 +08:00
|
|
|
.reset = drm_atomic_helper_connector_reset,
|
|
|
|
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
|
|
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
2014-01-31 05:19:29 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static int hdmi_get_modes(struct drm_connector *connector)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-09-25 20:48:26 +08:00
|
|
|
struct hdmi_context *hdata = connector_to_hdmi(connector);
|
2014-01-31 05:19:29 +08:00
|
|
|
struct edid *edid;
|
2015-07-09 14:25:38 +08:00
|
|
|
int ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-03-13 15:38:31 +08:00
|
|
|
if (!hdata->ddc_adpt)
|
2014-01-31 05:19:29 +08:00
|
|
|
return -ENODEV;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-03-13 15:38:31 +08:00
|
|
|
edid = drm_get_edid(connector, hdata->ddc_adpt);
|
2014-01-31 05:19:29 +08:00
|
|
|
if (!edid)
|
|
|
|
return -ENODEV;
|
2013-01-04 20:59:11 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
hdata->dvi_mode = !drm_detect_hdmi_monitor(edid);
|
2013-01-04 20:59:11 +08:00
|
|
|
DRM_DEBUG_KMS("%s : width[%d] x height[%d]\n",
|
|
|
|
(hdata->dvi_mode ? "dvi monitor" : "hdmi monitor"),
|
2014-01-31 05:19:29 +08:00
|
|
|
edid->width_cm, edid->height_cm);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
drm_mode_connector_update_edid_property(connector, edid);
|
|
|
|
|
2015-07-09 14:25:38 +08:00
|
|
|
ret = drm_add_edid_modes(connector, edid);
|
|
|
|
|
|
|
|
kfree(edid);
|
|
|
|
|
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
static int hdmi_find_phy_conf(struct hdmi_context *hdata, u32 pixel_clock)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-11-02 21:16:41 +08:00
|
|
|
const struct hdmiphy_configs *confs = &hdata->drv_data->phy_confs;
|
2014-05-09 14:34:18 +08:00
|
|
|
int i;
|
2013-03-06 16:33:29 +08:00
|
|
|
|
2015-11-02 21:16:41 +08:00
|
|
|
for (i = 0; i < confs->count; i++)
|
|
|
|
if (confs->data[i].pixel_clock == pixel_clock)
|
2013-01-15 21:11:08 +08:00
|
|
|
return i;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("Could not find phy config for %d\n", pixel_clock);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static int hdmi_mode_valid(struct drm_connector *connector,
|
2014-01-31 05:19:15 +08:00
|
|
|
struct drm_display_mode *mode)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2015-09-25 20:48:26 +08:00
|
|
|
struct hdmi_context *hdata = connector_to_hdmi(connector);
|
2013-03-06 16:33:29 +08:00
|
|
|
int ret;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%d clock=%d\n",
|
|
|
|
mode->hdisplay, mode->vdisplay, mode->vrefresh,
|
|
|
|
(mode->flags & DRM_MODE_FLAG_INTERLACE) ? true :
|
|
|
|
false, mode->clock * 1000);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
ret = hdmi_find_phy_conf(hdata, mode->clock * 1000);
|
2013-03-06 16:33:29 +08:00
|
|
|
if (ret < 0)
|
2014-01-31 05:19:29 +08:00
|
|
|
return MODE_BAD;
|
|
|
|
|
|
|
|
return MODE_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct drm_encoder *hdmi_best_encoder(struct drm_connector *connector)
|
|
|
|
{
|
2015-09-25 20:48:26 +08:00
|
|
|
struct hdmi_context *hdata = connector_to_hdmi(connector);
|
2014-01-31 05:19:29 +08:00
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
return &hdata->encoder;
|
2014-01-31 05:19:29 +08:00
|
|
|
}
|
|
|
|
|
2015-12-15 19:21:06 +08:00
|
|
|
static const struct drm_connector_helper_funcs hdmi_connector_helper_funcs = {
|
2014-01-31 05:19:29 +08:00
|
|
|
.get_modes = hdmi_get_modes,
|
|
|
|
.mode_valid = hdmi_mode_valid,
|
|
|
|
.best_encoder = hdmi_best_encoder,
|
|
|
|
};
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
static int hdmi_create_connector(struct drm_encoder *encoder)
|
2014-01-31 05:19:29 +08:00
|
|
|
{
|
2015-08-15 23:14:08 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2014-01-31 05:19:29 +08:00
|
|
|
struct drm_connector *connector = &hdata->connector;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
connector->interlace_allowed = true;
|
|
|
|
connector->polled = DRM_CONNECTOR_POLL_HPD;
|
|
|
|
|
|
|
|
ret = drm_connector_init(hdata->drm_dev, connector,
|
|
|
|
&hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA);
|
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("Failed to initialize connector with drm\n");
|
2013-03-06 16:33:29 +08:00
|
|
|
return ret;
|
2014-01-31 05:19:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
drm_connector_helper_add(connector, &hdmi_connector_helper_funcs);
|
2014-05-29 23:57:41 +08:00
|
|
|
drm_connector_register(connector);
|
2015-08-15 23:14:08 +08:00
|
|
|
drm_mode_connector_attach_encoder(connector, encoder);
|
2014-01-31 05:19:29 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
static bool hdmi_mode_fixup(struct drm_encoder *encoder,
|
|
|
|
const struct drm_display_mode *mode,
|
|
|
|
struct drm_display_mode *adjusted_mode)
|
2014-01-31 05:19:15 +08:00
|
|
|
{
|
2015-08-15 23:14:08 +08:00
|
|
|
struct drm_device *dev = encoder->dev;
|
|
|
|
struct drm_connector *connector;
|
2014-01-31 05:19:15 +08:00
|
|
|
struct drm_display_mode *m;
|
|
|
|
int mode_ok;
|
|
|
|
|
|
|
|
drm_mode_set_crtcinfo(adjusted_mode, 0);
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
|
|
if (connector->encoder == encoder)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (connector->encoder != encoder)
|
|
|
|
return true;
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
mode_ok = hdmi_mode_valid(connector, adjusted_mode);
|
2014-01-31 05:19:15 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
if (mode_ok == MODE_OK)
|
2015-08-15 23:14:08 +08:00
|
|
|
return true;
|
2014-01-31 05:19:15 +08:00
|
|
|
|
|
|
|
/*
|
2016-01-14 13:28:20 +08:00
|
|
|
* Find the most suitable mode and copy it to adjusted_mode.
|
2014-01-31 05:19:15 +08:00
|
|
|
*/
|
|
|
|
list_for_each_entry(m, &connector->modes, head) {
|
2014-01-31 05:19:29 +08:00
|
|
|
mode_ok = hdmi_mode_valid(connector, m);
|
2014-01-31 05:19:15 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
if (mode_ok == MODE_OK) {
|
2014-01-31 05:19:15 +08:00
|
|
|
DRM_INFO("desired mode doesn't exist so\n");
|
|
|
|
DRM_INFO("use the most suitable mode among modes.\n");
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("Adjusted Mode: [%d]x[%d] [%d]Hz\n",
|
|
|
|
m->hdisplay, m->vdisplay, m->vrefresh);
|
|
|
|
|
2014-01-31 05:19:16 +08:00
|
|
|
drm_mode_copy(adjusted_mode, m);
|
2014-01-31 05:19:15 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2015-08-15 23:14:08 +08:00
|
|
|
|
|
|
|
return true;
|
2014-01-31 05:19:15 +08:00
|
|
|
}
|
|
|
|
|
2015-09-25 20:48:27 +08:00
|
|
|
static void hdmi_reg_acr(struct hdmi_context *hdata, u32 freq)
|
2012-03-16 17:47:16 +08:00
|
|
|
{
|
|
|
|
u32 n, cts;
|
|
|
|
|
2015-09-25 20:48:27 +08:00
|
|
|
cts = (freq % 9) ? 27000 : 30000;
|
|
|
|
n = 128 * freq / (27000000 / cts);
|
2012-03-16 17:47:16 +08:00
|
|
|
|
2015-09-25 20:48:27 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_ACR_N0, 3, n);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_ACR_MCTS0, 3, cts);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_ACR_CTS0, 3, cts);
|
2015-09-25 20:48:16 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CON, 4);
|
2012-03-16 17:47:16 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_audio_init(struct hdmi_context *hdata)
|
|
|
|
{
|
2014-07-02 12:03:07 +08:00
|
|
|
u32 sample_rate, bits_per_sample;
|
2012-03-16 17:47:16 +08:00
|
|
|
u32 data_num, bit_ch, sample_frq;
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
sample_rate = 44100;
|
|
|
|
bits_per_sample = 16;
|
|
|
|
|
|
|
|
switch (bits_per_sample) {
|
|
|
|
case 20:
|
|
|
|
data_num = 2;
|
2016-01-14 13:28:20 +08:00
|
|
|
bit_ch = 1;
|
2012-03-16 17:47:16 +08:00
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
data_num = 3;
|
2016-01-14 13:28:20 +08:00
|
|
|
bit_ch = 1;
|
2012-03-16 17:47:16 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
data_num = 1;
|
2016-01-14 13:28:20 +08:00
|
|
|
bit_ch = 0;
|
2012-03-16 17:47:16 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2015-09-25 20:48:27 +08:00
|
|
|
hdmi_reg_acr(hdata, sample_rate);
|
2012-03-16 17:47:16 +08:00
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CON, HDMI_I2S_IN_DISABLE
|
|
|
|
| HDMI_I2S_AUD_I2S | HDMI_I2S_CUV_I2S_ENABLE
|
|
|
|
| HDMI_I2S_MUX_ENABLE);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CH, HDMI_I2S_CH0_EN
|
|
|
|
| HDMI_I2S_CH1_EN | HDMI_I2S_CH2_EN);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CUV, HDMI_I2S_CUV_RL_EN);
|
|
|
|
|
|
|
|
sample_frq = (sample_rate == 44100) ? 0 :
|
|
|
|
(sample_rate == 48000) ? 2 :
|
|
|
|
(sample_rate == 32000) ? 3 :
|
|
|
|
(sample_rate == 96000) ? 0xa : 0x0;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_DIS);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_EN);
|
|
|
|
|
|
|
|
val = hdmi_reg_read(hdata, HDMI_I2S_DSD_CON) | 0x01;
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_DSD_CON, val);
|
|
|
|
|
|
|
|
/* Configuration I2S input ports. Configure I2S_PIN_SEL_0~4 */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_0, HDMI_I2S_SEL_SCLK(5)
|
|
|
|
| HDMI_I2S_SEL_LRCK(6));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_1, HDMI_I2S_SEL_SDATA1(1)
|
|
|
|
| HDMI_I2S_SEL_SDATA2(4));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_2, HDMI_I2S_SEL_SDATA3(1)
|
|
|
|
| HDMI_I2S_SEL_SDATA2(2));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_3, HDMI_I2S_SEL_DSD(0));
|
|
|
|
|
|
|
|
/* I2S_CON_1 & 2 */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CON_1, HDMI_I2S_SCLK_FALLING_EDGE
|
|
|
|
| HDMI_I2S_L_CH_LOW_POL);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CON_2, HDMI_I2S_MSB_FIRST_MODE
|
|
|
|
| HDMI_I2S_SET_BIT_CH(bit_ch)
|
|
|
|
| HDMI_I2S_SET_SDATA_BIT(data_num)
|
|
|
|
| HDMI_I2S_BASIC_FORMAT);
|
|
|
|
|
|
|
|
/* Configure register related to CUV information */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_0, HDMI_I2S_CH_STATUS_MODE_0
|
|
|
|
| HDMI_I2S_2AUD_CH_WITHOUT_PREEMPH
|
|
|
|
| HDMI_I2S_COPYRIGHT
|
|
|
|
| HDMI_I2S_LINEAR_PCM
|
|
|
|
| HDMI_I2S_CONSUMER_FORMAT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_1, HDMI_I2S_CD_PLAYER);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_2, HDMI_I2S_SET_SOURCE_NUM(0));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_3, HDMI_I2S_CLK_ACCUR_LEVEL_2
|
|
|
|
| HDMI_I2S_SET_SMP_FREQ(sample_frq));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_4,
|
|
|
|
HDMI_I2S_ORG_SMP_FREQ_44_1
|
|
|
|
| HDMI_I2S_WORD_LEN_MAX24_24BITS
|
|
|
|
| HDMI_I2S_WORD_LEN_MAX_24BITS);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_CON, HDMI_I2S_CH_STATUS_RELOAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_audio_control(struct hdmi_context *hdata, bool onoff)
|
|
|
|
{
|
2012-04-24 16:39:15 +08:00
|
|
|
if (hdata->dvi_mode)
|
2012-03-16 17:47:16 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, onoff ? 2 : 0);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, onoff ?
|
|
|
|
HDMI_ASP_EN : HDMI_ASP_DIS, HDMI_ASP_MASK);
|
|
|
|
}
|
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
static void hdmi_start(struct hdmi_context *hdata, bool start)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-04-03 23:11:04 +08:00
|
|
|
u32 val = start ? HDMI_TG_EN : 0;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
if (hdata->current_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
|
|
val |= HDMI_FIELD_EN;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, val, HDMI_EN);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_TG_CMD, val, HDMI_TG_EN | HDMI_FIELD_EN);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_conf_init(struct hdmi_context *hdata)
|
|
|
|
{
|
2014-02-04 11:10:18 +08:00
|
|
|
union hdmi_infoframe infoframe;
|
2012-11-26 13:22:57 +08:00
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
/* disable HPD interrupts from HDMI IP block, use GPIO instead */
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_INTC_CON, 0, HDMI_INTC_EN_GLOBAL |
|
|
|
|
HDMI_INTC_EN_HPD_PLUG | HDMI_INTC_EN_HPD_UNPLUG);
|
|
|
|
|
|
|
|
/* choose HDMI mode */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
|
|
|
|
HDMI_MODE_HDMI_EN, HDMI_MODE_MASK);
|
2016-01-14 13:28:20 +08:00
|
|
|
/* apply video pre-amble and guard band in HDMI mode only */
|
2014-02-14 15:34:57 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_CON_2, 0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* disable bluescreen */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, 0, HDMI_BLUE_SCR_EN);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2012-04-24 16:39:15 +08:00
|
|
|
if (hdata->dvi_mode) {
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
|
|
|
|
HDMI_MODE_DVI_EN, HDMI_MODE_MASK);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_CON_2,
|
|
|
|
HDMI_VID_PREAMBLE_DIS | HDMI_GUARD_BAND_DIS);
|
|
|
|
}
|
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13) {
|
2012-03-16 17:47:03 +08:00
|
|
|
/* choose bluescreen (fecal) color */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_0, 0x12);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_1, 0x34);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_2, 0x56);
|
|
|
|
|
|
|
|
/* enable AVI packet every vsync, fixes purple line problem */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AVI_CON, 0x02);
|
|
|
|
/* force RGB, look to CEA-861-D, table 7 for more detail */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AVI_BYTE(0), 0 << 5);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_1, 0x10 << 5, 0x11 << 5);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_SPD_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AUI_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 0x04);
|
|
|
|
} else {
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe.any.type = HDMI_INFOFRAME_TYPE_AVI;
|
|
|
|
infoframe.any.version = HDMI_AVI_VERSION;
|
|
|
|
infoframe.any.length = HDMI_AVI_LENGTH;
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_infoframe(hdata, &infoframe);
|
|
|
|
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe.any.type = HDMI_INFOFRAME_TYPE_AUDIO;
|
|
|
|
infoframe.any.version = HDMI_AUI_VERSION;
|
|
|
|
infoframe.any.length = HDMI_AUI_LENGTH;
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_infoframe(hdata, &infoframe);
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
/* enable AVI packet every vsync, fixes purple line problem */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_1, 2, 3 << 5);
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-09-25 20:48:17 +08:00
|
|
|
static void hdmiphy_wait_for_pll(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
int tries;
|
|
|
|
|
|
|
|
for (tries = 0; tries < 10; ++tries) {
|
|
|
|
u32 val = hdmi_reg_read(hdata, HDMI_PHY_STATUS);
|
|
|
|
|
|
|
|
if (val & HDMI_PHY_STATUS_READY) {
|
|
|
|
DRM_DEBUG_KMS("PLL stabilized after %d tries\n", tries);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
usleep_range(10, 20);
|
|
|
|
}
|
|
|
|
|
|
|
|
DRM_ERROR("PLL could not reach steady state\n");
|
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_v13_mode_apply(struct hdmi_context *hdata)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-07-09 22:28:11 +08:00
|
|
|
struct drm_display_mode *m = &hdata->current_mode;
|
|
|
|
unsigned int val;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2015-07-09 22:28:11 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_H_BLANK_0, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_H_V_LINE_0, 3,
|
|
|
|
(m->htotal << 12) | m->vtotal);
|
|
|
|
|
|
|
|
val = (m->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VSYNC_POL, 1, val);
|
|
|
|
|
|
|
|
val = (m->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_INT_PRO_MODE, 1, val);
|
|
|
|
|
|
|
|
val = (m->hsync_start - m->hdisplay - 2);
|
|
|
|
val |= ((m->hsync_end - m->hdisplay - 2) << 10);
|
2016-01-14 13:28:20 +08:00
|
|
|
val |= ((m->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0)<<20;
|
2015-07-09 22:28:11 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_H_SYNC_GEN_0, 3, val);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quirk requirement for exynos HDMI IP design,
|
|
|
|
* 2 pixels less than the actual calculation for hsync_start
|
|
|
|
* and end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Following values & calculations differ for different type of modes */
|
|
|
|
if (m->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
|
|
val = ((m->vsync_end - m->vdisplay) / 2);
|
|
|
|
val |= ((m->vsync_start - m->vdisplay) / 2) << 12;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_1_0, 3, val);
|
|
|
|
|
|
|
|
val = m->vtotal / 2;
|
|
|
|
val |= ((m->vtotal - m->vdisplay) / 2) << 11;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_0, 3, val);
|
|
|
|
|
|
|
|
val = (m->vtotal +
|
|
|
|
((m->vsync_end - m->vsync_start) * 4) + 5) / 2;
|
|
|
|
val |= m->vtotal << 11;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_F_0, 3, val);
|
|
|
|
|
|
|
|
val = ((m->vtotal / 2) + 7);
|
|
|
|
val |= ((m->vtotal / 2) + 2) << 12;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_2_0, 3, val);
|
|
|
|
|
|
|
|
val = ((m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
val |= ((m->htotal / 2) +
|
|
|
|
(m->hsync_start - m->hdisplay)) << 12;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_3_0, 3, val);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
(m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay / 2);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST2_L, 2, 0x249);
|
|
|
|
} else {
|
|
|
|
val = m->vtotal;
|
|
|
|
val |= (m->vtotal - m->vdisplay) << 11;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_0, 3, val);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_F_0, 3, 0);
|
|
|
|
|
|
|
|
val = (m->vsync_end - m->vdisplay);
|
|
|
|
val |= ((m->vsync_start - m->vdisplay) << 12);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_1_0, 3, val);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_2_0, 3, 0x1001);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_3_0, 3, 0x1001);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
m->vtotal - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay);
|
|
|
|
}
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_H_FSZ_L, 2, m->htotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_ST_L, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_SZ_L, 2, m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_V_FSZ_L, 2, m->vtotal);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_v14_mode_apply(struct hdmi_context *hdata)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2015-07-09 22:28:12 +08:00
|
|
|
struct drm_display_mode *m = &hdata->current_mode;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2015-07-09 22:28:12 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_H_BLANK_0, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_LINE_0, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_H_LINE_0, 2, m->htotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_HSYNC_POL, 1,
|
2016-01-14 13:28:20 +08:00
|
|
|
(m->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0);
|
2015-07-09 22:28:12 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_VSYNC_POL, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_INT_PRO_MODE, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quirk requirement for exynos 5 HDMI IP design,
|
|
|
|
* 2 pixels less than the actual calculation for hsync_start
|
|
|
|
* and end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Following values & calculations differ for different type of modes */
|
|
|
|
if (m->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_2_0, 2,
|
|
|
|
(m->vsync_end - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_1_0, 2,
|
|
|
|
(m->vsync_start - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V2_BLANK_0, 2, m->vtotal / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V1_BLANK_0, 2,
|
|
|
|
(m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F0_0, 2,
|
|
|
|
m->vtotal - m->vdisplay / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F1_0, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_2_0, 2,
|
|
|
|
(m->vtotal / 2) + 7);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_1_0, 2,
|
|
|
|
(m->vtotal / 2) + 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_0, 2,
|
|
|
|
(m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_0, 2,
|
|
|
|
(m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
(m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST2_L, 2,
|
|
|
|
m->vtotal - m->vdisplay / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC2_L, 2,
|
|
|
|
(m->vtotal / 2) + 1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, 2,
|
|
|
|
(m->vtotal / 2) + 1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_BOT_HDMI_L, 2,
|
|
|
|
(m->vtotal / 2) + 1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST3_L, 2, 0x0);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST4_L, 2, 0x0);
|
|
|
|
} else {
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_2_0, 2,
|
|
|
|
m->vsync_end - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_1_0, 2,
|
|
|
|
m->vsync_start - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V2_BLANK_0, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V1_BLANK_0, 2,
|
|
|
|
m->vtotal - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F0_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
m->vtotal - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay);
|
|
|
|
}
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_H_SYNC_START_0, 2,
|
|
|
|
m->hsync_start - m->hdisplay - 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_H_SYNC_END_0, 2,
|
|
|
|
m->hsync_end - m->hdisplay - 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_6_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_6_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_6_0, 2, 0xffff);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2015-07-09 22:28:12 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_H_FSZ_L, 2, m->htotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_ST_L, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_SZ_L, 2, m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_V_FSZ_L, 2, m->vtotal);
|
2016-01-14 13:40:07 +08:00
|
|
|
if (hdata->drv_data == &exynos5433_hdmi_driver_data)
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_TG_DECON_EN, 1);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_mode_apply(struct hdmi_context *hdata)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13)
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_v13_mode_apply(hdata);
|
2012-03-16 17:47:03 +08:00
|
|
|
else
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_v14_mode_apply(hdata);
|
2015-09-25 20:48:17 +08:00
|
|
|
|
|
|
|
hdmi_start(hdata, true);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmiphy_conf_reset(struct hdmi_context *hdata)
|
|
|
|
{
|
2016-03-23 21:15:14 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_CORE_RSTOUT, 0, 1);
|
|
|
|
usleep_range(10000, 12000);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CORE_RSTOUT, ~0, 1);
|
|
|
|
usleep_range(10000, 12000);
|
2015-09-25 20:48:16 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_PHY_RSTOUT, ~0, HDMI_PHY_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
2016-01-14 13:28:20 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_PHY_RSTOUT, 0, HDMI_PHY_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
static void hdmiphy_enable_mode_set(struct hdmi_context *hdata, bool enable)
|
|
|
|
{
|
|
|
|
u8 v = enable ? HDMI_PHY_ENABLE_MODE_SET : HDMI_PHY_DISABLE_MODE_SET;
|
|
|
|
|
|
|
|
if (hdata->drv_data == &exynos5433_hdmi_driver_data)
|
|
|
|
writel(v, hdata->regs_hdmiphy + HDMIPHY5433_MODE_SET_DONE);
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmiphy_conf_apply(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
int ret;
|
2016-03-23 21:15:12 +08:00
|
|
|
const u8 *phy_conf;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2016-03-23 21:15:12 +08:00
|
|
|
ret = hdmi_find_phy_conf(hdata, hdata->current_mode.clock * 1000);
|
|
|
|
if (ret < 0) {
|
2013-03-06 16:33:29 +08:00
|
|
|
DRM_ERROR("failed to find hdmiphy conf\n");
|
|
|
|
return;
|
|
|
|
}
|
2016-03-23 21:15:12 +08:00
|
|
|
phy_conf = hdata->drv_data->phy_confs.data[ret].conf;
|
|
|
|
|
|
|
|
hdmi_clk_set_parents(hdata, false);
|
|
|
|
|
|
|
|
hdmiphy_conf_reset(hdata);
|
2013-03-06 16:33:29 +08:00
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
hdmiphy_enable_mode_set(hdata, true);
|
2016-03-23 21:15:12 +08:00
|
|
|
ret = hdmiphy_reg_write_buf(hdata, 0, phy_conf, 32);
|
2014-05-09 14:34:18 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to configure hdmiphy\n");
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
return;
|
|
|
|
}
|
2016-01-14 13:40:07 +08:00
|
|
|
hdmiphy_enable_mode_set(hdata, false);
|
2016-03-23 21:15:12 +08:00
|
|
|
hdmi_clk_set_parents(hdata, true);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
2016-03-23 21:15:12 +08:00
|
|
|
hdmiphy_wait_for_pll(hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_conf_apply(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
hdmiphy_conf_apply(hdata);
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_start(hdata, false);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_conf_init(hdata);
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_audio_init(hdata);
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_mode_apply(hdata);
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_audio_control(hdata, true);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
static void hdmi_mode_set(struct drm_encoder *encoder,
|
|
|
|
struct drm_display_mode *mode,
|
|
|
|
struct drm_display_mode *adjusted_mode)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2015-08-15 23:14:08 +08:00
|
|
|
struct drm_display_mode *m = adjusted_mode;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-12 09:44:40 +08:00
|
|
|
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%s\n",
|
|
|
|
m->hdisplay, m->vdisplay,
|
2013-03-06 16:33:29 +08:00
|
|
|
m->vrefresh, (m->flags & DRM_MODE_FLAG_INTERLACE) ?
|
2015-04-07 07:14:50 +08:00
|
|
|
"INTERLACED" : "PROGRESSIVE");
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
drm_mode_copy(&hdata->current_mode, m);
|
2015-07-09 22:28:10 +08:00
|
|
|
hdata->cea_video_id = drm_match_cea_mode(mode);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
static void hdmi_set_refclk(struct hdmi_context *hdata, bool on)
|
|
|
|
{
|
|
|
|
if (!hdata->sysreg)
|
|
|
|
return;
|
|
|
|
|
|
|
|
regmap_update_bits(hdata->sysreg, EXYNOS5433_SYSREG_DISP_HDMI_PHY,
|
|
|
|
SYSREG_HDMI_REFCLK_INT_CLK, on ? ~0 : 0);
|
|
|
|
}
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
static void hdmi_enable(struct drm_encoder *encoder)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2015-07-09 22:28:08 +08:00
|
|
|
if (hdata->powered)
|
2012-04-23 18:35:50 +08:00
|
|
|
return;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_get_sync(hdata->dev);
|
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
if (regulator_bulk_enable(ARRAY_SIZE(supply), hdata->regul_bulk))
|
2013-06-05 13:34:38 +08:00
|
|
|
DRM_DEBUG_KMS("failed to enable regulator bulk\n");
|
|
|
|
|
2014-05-20 13:06:05 +08:00
|
|
|
regmap_update_bits(hdata->pmureg, PMU_HDMI_PHY_CONTROL,
|
|
|
|
PMU_HDMI_PHY_ENABLE_BIT, 1);
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
hdmi_set_refclk(hdata, true);
|
|
|
|
|
2016-03-23 21:15:13 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_PHY_CON_0, 0, HDMI_PHY_POWER_OFF_EN);
|
|
|
|
|
2015-08-06 07:24:17 +08:00
|
|
|
hdmi_conf_apply(hdata);
|
2015-11-02 19:39:18 +08:00
|
|
|
|
|
|
|
hdata->powered = true;
|
2012-04-23 18:35:50 +08:00
|
|
|
}
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
static void hdmi_disable(struct drm_encoder *encoder)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2015-08-15 23:14:08 +08:00
|
|
|
struct drm_crtc *crtc = encoder->crtc;
|
2015-08-11 08:37:04 +08:00
|
|
|
const struct drm_crtc_helper_funcs *funcs = NULL;
|
2012-04-23 18:35:50 +08:00
|
|
|
|
|
|
|
if (!hdata->powered)
|
2015-07-09 22:28:08 +08:00
|
|
|
return;
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2015-08-11 08:37:04 +08:00
|
|
|
/*
|
|
|
|
* The SFRs of VP and Mixer are updated by Vertical Sync of
|
|
|
|
* Timing generator which is a part of HDMI so the sequence
|
|
|
|
* to disable TV Subsystem should be as following,
|
|
|
|
* VP -> Mixer -> HDMI
|
|
|
|
*
|
|
|
|
* Below codes will try to disable Mixer and VP(if used)
|
|
|
|
* prior to disabling HDMI.
|
|
|
|
*/
|
|
|
|
if (crtc)
|
|
|
|
funcs = crtc->helper_private;
|
|
|
|
if (funcs && funcs->disable)
|
|
|
|
(*funcs->disable)(crtc);
|
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, 0, HDMI_EN);
|
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
cancel_delayed_work(&hdata->hotplug_work);
|
|
|
|
|
2016-03-23 21:15:13 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_PHY_CON_0, ~0, HDMI_PHY_POWER_OFF_EN);
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
hdmi_set_refclk(hdata, false);
|
|
|
|
|
2014-05-20 13:06:05 +08:00
|
|
|
regmap_update_bits(hdata->pmureg, PMU_HDMI_PHY_CONTROL,
|
|
|
|
PMU_HDMI_PHY_ENABLE_BIT, 0);
|
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
regulator_bulk_disable(ARRAY_SIZE(supply), hdata->regul_bulk);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_put_sync(hdata->dev);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
|
|
|
hdata->powered = false;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-12-15 19:21:06 +08:00
|
|
|
static const struct drm_encoder_helper_funcs exynos_hdmi_encoder_helper_funcs = {
|
2014-01-31 05:19:15 +08:00
|
|
|
.mode_fixup = hdmi_mode_fixup,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.mode_set = hdmi_mode_set,
|
2015-08-11 08:37:04 +08:00
|
|
|
.enable = hdmi_enable,
|
|
|
|
.disable = hdmi_disable,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
};
|
|
|
|
|
2015-12-15 19:21:06 +08:00
|
|
|
static const struct drm_encoder_funcs exynos_hdmi_encoder_funcs = {
|
2015-08-15 23:14:08 +08:00
|
|
|
.destroy = drm_encoder_cleanup,
|
|
|
|
};
|
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
static void hdmi_hotplug_work_func(struct work_struct *work)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
2014-05-09 14:05:10 +08:00
|
|
|
struct hdmi_context *hdata;
|
|
|
|
|
|
|
|
hdata = container_of(work, struct hdmi_context, hotplug_work.work);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2014-01-31 05:19:05 +08:00
|
|
|
if (hdata->drm_dev)
|
|
|
|
drm_helper_hpd_irq_event(hdata->drm_dev);
|
2014-05-09 14:05:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t hdmi_irq_thread(int irq, void *arg)
|
|
|
|
{
|
|
|
|
struct hdmi_context *hdata = arg;
|
|
|
|
|
|
|
|
mod_delayed_work(system_wq, &hdata->hotplug_work,
|
|
|
|
msecs_to_jiffies(HOTPLUG_DEBOUNCE_MS));
|
2012-04-23 18:35:50 +08:00
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
2016-01-14 13:22:47 +08:00
|
|
|
static int hdmi_clks_get(struct hdmi_context *hdata,
|
|
|
|
const struct string_array_spec *names,
|
|
|
|
struct clk **clks)
|
|
|
|
{
|
|
|
|
struct device *dev = hdata->dev;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < names->count; ++i) {
|
|
|
|
struct clk *clk = devm_clk_get(dev, names->data[i]);
|
|
|
|
|
|
|
|
if (IS_ERR(clk)) {
|
|
|
|
int ret = PTR_ERR(clk);
|
|
|
|
|
|
|
|
dev_err(dev, "Cannot get clock %s, %d\n",
|
|
|
|
names->data[i], ret);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
clks[i] = clk;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hdmi_clk_init(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
const struct hdmi_driver_data *drv_data = hdata->drv_data;
|
|
|
|
int count = drv_data->clk_gates.count + drv_data->clk_muxes.count;
|
|
|
|
struct device *dev = hdata->dev;
|
|
|
|
struct clk **clks;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!count)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
clks = devm_kzalloc(dev, sizeof(*clks) * count, GFP_KERNEL);
|
|
|
|
if (!clks)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
hdata->clk_gates = clks;
|
|
|
|
hdata->clk_muxes = clks + drv_data->clk_gates.count;
|
|
|
|
|
|
|
|
ret = hdmi_clks_get(hdata, &drv_data->clk_gates, hdata->clk_gates);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return hdmi_clks_get(hdata, &drv_data->clk_muxes, hdata->clk_muxes);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_resources_init(struct hdmi_context *hdata)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
struct device *dev = hdata->dev;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("HDMI resource init\n");
|
|
|
|
|
2015-09-25 20:48:24 +08:00
|
|
|
hdata->hpd_gpio = devm_gpiod_get(dev, "hpd", GPIOD_IN);
|
|
|
|
if (IS_ERR(hdata->hpd_gpio)) {
|
|
|
|
DRM_ERROR("cannot get hpd gpio property\n");
|
|
|
|
return PTR_ERR(hdata->hpd_gpio);
|
|
|
|
}
|
|
|
|
|
|
|
|
hdata->irq = gpiod_to_irq(hdata->hpd_gpio);
|
|
|
|
if (hdata->irq < 0) {
|
|
|
|
DRM_ERROR("failed to get GPIO irq\n");
|
|
|
|
return hdata->irq;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2016-01-14 13:22:47 +08:00
|
|
|
ret = hdmi_clk_init(hdata);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = hdmi_clk_set_parents(hdata, false);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(supply); ++i) {
|
2015-09-25 20:48:25 +08:00
|
|
|
hdata->regul_bulk[i].supply = supply[i];
|
|
|
|
hdata->regul_bulk[i].consumer = NULL;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
2015-09-25 20:48:25 +08:00
|
|
|
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(supply), hdata->regul_bulk);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to get regulators\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
hdata->reg_hdmi_en = devm_regulator_get_optional(dev, "hdmi-en");
|
2015-09-25 20:48:21 +08:00
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
if (PTR_ERR(hdata->reg_hdmi_en) == -ENODEV)
|
2015-09-25 20:48:21 +08:00
|
|
|
return 0;
|
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
if (IS_ERR(hdata->reg_hdmi_en))
|
|
|
|
return PTR_ERR(hdata->reg_hdmi_en);
|
2015-09-25 20:48:21 +08:00
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
ret = regulator_enable(hdata->reg_hdmi_en);
|
2015-09-25 20:48:21 +08:00
|
|
|
if (ret)
|
|
|
|
DRM_ERROR("failed to enable hdmi-en regulator\n");
|
2014-07-01 16:10:06 +08:00
|
|
|
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:55 +08:00
|
|
|
static struct of_device_id hdmi_match_types[] = {
|
|
|
|
{
|
2014-07-01 16:10:07 +08:00
|
|
|
.compatible = "samsung,exynos4210-hdmi",
|
|
|
|
.data = &exynos4210_hdmi_driver_data,
|
2013-06-19 20:51:07 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos4212-hdmi",
|
2014-03-06 13:18:17 +08:00
|
|
|
.data = &exynos4212_hdmi_driver_data,
|
2014-04-20 18:21:17 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos5420-hdmi",
|
|
|
|
.data = &exynos5420_hdmi_driver_data,
|
2016-01-14 13:40:07 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos5433-hdmi",
|
|
|
|
.data = &exynos5433_hdmi_driver_data,
|
2012-10-04 23:18:44 +08:00
|
|
|
}, {
|
|
|
|
/* end node */
|
|
|
|
}
|
|
|
|
};
|
2014-07-19 04:36:41 +08:00
|
|
|
MODULE_DEVICE_TABLE (of, hdmi_match_types);
|
2012-10-04 23:18:44 +08:00
|
|
|
|
2014-05-09 13:25:20 +08:00
|
|
|
static int hdmi_bind(struct device *dev, struct device *master, void *data)
|
|
|
|
{
|
|
|
|
struct drm_device *drm_dev = data;
|
2014-11-17 16:54:20 +08:00
|
|
|
struct hdmi_context *hdata = dev_get_drvdata(dev);
|
2015-08-15 23:14:08 +08:00
|
|
|
struct drm_encoder *encoder = &hdata->encoder;
|
|
|
|
int ret, pipe;
|
2014-05-09 13:25:20 +08:00
|
|
|
|
|
|
|
hdata->drm_dev = drm_dev;
|
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
pipe = exynos_drm_crtc_get_pipe_from_type(drm_dev,
|
|
|
|
EXYNOS_DISPLAY_TYPE_HDMI);
|
|
|
|
if (pipe < 0)
|
|
|
|
return pipe;
|
|
|
|
|
|
|
|
encoder->possible_crtcs = 1 << pipe;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("possible_crtcs = 0x%x\n", encoder->possible_crtcs);
|
|
|
|
|
|
|
|
drm_encoder_init(drm_dev, encoder, &exynos_hdmi_encoder_funcs,
|
drm: Pass 'name' to drm_encoder_init()
Done with coccinelle for the most part. However, it thinks '...' is
part of the semantic patch, so I put an 'int DOTDOTDOT' placeholder
in its place and got rid of it with sed afterwards.
@@
identifier dev, encoder, funcs;
@@
int drm_encoder_init(struct drm_device *dev,
struct drm_encoder *encoder,
const struct drm_encoder_funcs *funcs,
int encoder_type
+ ,const char *name, int DOTDOTDOT
)
{ ... }
@@
identifier dev, encoder, funcs;
@@
int drm_encoder_init(struct drm_device *dev,
struct drm_encoder *encoder,
const struct drm_encoder_funcs *funcs,
int encoder_type
+ ,const char *name, int DOTDOTDOT
);
@@
expression E1, E2, E3, E4;
@@
drm_encoder_init(E1, E2, E3, E4
+ ,NULL
)
v2: Add ', or NULL...' to @name kernel doc (Jani)
Annotate the function with __printf() attribute (Jani)
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: http://patchwork.freedesktop.org/patch/msgid/1449670818-2966-1-git-send-email-ville.syrjala@linux.intel.com
2015-12-09 22:20:18 +08:00
|
|
|
DRM_MODE_ENCODER_TMDS, NULL);
|
2015-08-15 23:14:08 +08:00
|
|
|
|
|
|
|
drm_encoder_helper_add(encoder, &exynos_hdmi_encoder_helper_funcs);
|
2015-08-06 07:24:20 +08:00
|
|
|
|
2015-08-15 23:14:08 +08:00
|
|
|
ret = hdmi_create_connector(encoder);
|
2015-08-06 07:24:20 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to create connector ret = %d\n", ret);
|
2015-08-15 23:14:08 +08:00
|
|
|
drm_encoder_cleanup(encoder);
|
2015-08-06 07:24:20 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
2014-05-09 13:25:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_unbind(struct device *dev, struct device *master, void *data)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct component_ops hdmi_component_ops = {
|
|
|
|
.bind = hdmi_bind,
|
|
|
|
.unbind = hdmi_unbind,
|
|
|
|
};
|
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
static struct device_node *hdmi_legacy_ddc_dt_binding(struct device *dev)
|
|
|
|
{
|
|
|
|
const char *compatible_str = "samsung,exynos4210-hdmiddc";
|
|
|
|
struct device_node *np;
|
|
|
|
|
|
|
|
np = of_find_compatible_node(NULL, NULL, compatible_str);
|
|
|
|
if (np)
|
|
|
|
return of_get_next_parent(np);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct device_node *hdmi_legacy_phy_dt_binding(struct device *dev)
|
|
|
|
{
|
|
|
|
const char *compatible_str = "samsung,exynos4212-hdmiphy";
|
|
|
|
|
|
|
|
return of_find_compatible_node(NULL, NULL, compatible_str);
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_probe(struct platform_device *pdev)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-05-09 13:25:20 +08:00
|
|
|
struct device_node *ddc_node, *phy_node;
|
|
|
|
const struct of_device_id *match;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct hdmi_context *hdata;
|
|
|
|
struct resource *res;
|
|
|
|
int ret;
|
|
|
|
|
2013-08-28 13:17:57 +08:00
|
|
|
hdata = devm_kzalloc(dev, sizeof(struct hdmi_context), GFP_KERNEL);
|
2014-11-17 16:54:20 +08:00
|
|
|
if (!hdata)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
match = of_match_device(hdmi_match_types, dev);
|
|
|
|
if (!match)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
hdata->drv_data = match->data;
|
2014-11-17 16:54:20 +08:00
|
|
|
|
|
|
|
platform_set_drvdata(pdev, hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
hdata->dev = dev;
|
|
|
|
|
|
|
|
ret = hdmi_resources_init(hdata);
|
|
|
|
if (ret) {
|
2012-10-04 23:18:55 +08:00
|
|
|
DRM_ERROR("hdmi_resources_init failed\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
2013-05-22 20:14:14 +08:00
|
|
|
hdata->regs = devm_ioremap_resource(dev, res);
|
2014-05-29 17:28:02 +08:00
|
|
|
if (IS_ERR(hdata->regs)) {
|
|
|
|
ret = PTR_ERR(hdata->regs);
|
2015-06-11 22:23:37 +08:00
|
|
|
return ret;
|
2014-05-29 17:28:02 +08:00
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
ddc_node = hdmi_legacy_ddc_dt_binding(dev);
|
|
|
|
if (ddc_node)
|
|
|
|
goto out_get_ddc_adpt;
|
|
|
|
|
2014-02-24 17:52:51 +08:00
|
|
|
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
|
|
|
|
if (!ddc_node) {
|
|
|
|
DRM_ERROR("Failed to find ddc node in device tree\n");
|
2015-06-11 22:23:37 +08:00
|
|
|
return -ENODEV;
|
2014-02-24 17:52:51 +08:00
|
|
|
}
|
2014-05-09 15:46:10 +08:00
|
|
|
|
|
|
|
out_get_ddc_adpt:
|
2014-03-13 15:38:31 +08:00
|
|
|
hdata->ddc_adpt = of_find_i2c_adapter_by_node(ddc_node);
|
|
|
|
if (!hdata->ddc_adpt) {
|
|
|
|
DRM_ERROR("Failed to get ddc i2c adapter by node\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return -EPROBE_DEFER;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
phy_node = hdmi_legacy_phy_dt_binding(dev);
|
|
|
|
if (phy_node)
|
|
|
|
goto out_get_phy_port;
|
|
|
|
|
2014-02-24 17:52:51 +08:00
|
|
|
phy_node = of_parse_phandle(dev->of_node, "phy", 0);
|
|
|
|
if (!phy_node) {
|
|
|
|
DRM_ERROR("Failed to find hdmiphy node in device tree\n");
|
|
|
|
ret = -ENODEV;
|
|
|
|
goto err_ddc;
|
|
|
|
}
|
2014-05-09 14:34:18 +08:00
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
out_get_phy_port:
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->is_apb_phy) {
|
2014-05-09 14:34:18 +08:00
|
|
|
hdata->regs_hdmiphy = of_iomap(phy_node, 0);
|
|
|
|
if (!hdata->regs_hdmiphy) {
|
|
|
|
DRM_ERROR("failed to ioremap hdmi phy\n");
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err_ddc;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
hdata->hdmiphy_port = of_find_i2c_device_by_node(phy_node);
|
|
|
|
if (!hdata->hdmiphy_port) {
|
|
|
|
DRM_ERROR("Failed to get hdmi phy i2c client\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = -EPROBE_DEFER;
|
2014-05-09 14:34:18 +08:00
|
|
|
goto err_ddc;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
INIT_DELAYED_WORK(&hdata->hotplug_work, hdmi_hotplug_work_func);
|
|
|
|
|
2013-05-22 20:14:17 +08:00
|
|
|
ret = devm_request_threaded_irq(dev, hdata->irq, NULL,
|
2013-01-16 23:17:20 +08:00
|
|
|
hdmi_irq_thread, IRQF_TRIGGER_RISING |
|
2012-04-23 18:35:50 +08:00
|
|
|
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
|
2014-01-31 05:19:15 +08:00
|
|
|
"hdmi", hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
2013-01-16 23:17:20 +08:00
|
|
|
DRM_ERROR("failed to register hdmi interrupt\n");
|
2012-04-23 18:35:49 +08:00
|
|
|
goto err_hdmiphy;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2014-05-20 13:06:05 +08:00
|
|
|
hdata->pmureg = syscon_regmap_lookup_by_phandle(dev->of_node,
|
|
|
|
"samsung,syscon-phandle");
|
|
|
|
if (IS_ERR(hdata->pmureg)) {
|
|
|
|
DRM_ERROR("syscon regmap lookup failed.\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = -EPROBE_DEFER;
|
2014-05-20 13:06:05 +08:00
|
|
|
goto err_hdmiphy;
|
|
|
|
}
|
|
|
|
|
2016-01-14 13:40:07 +08:00
|
|
|
if (hdata->drv_data->has_sysreg) {
|
|
|
|
hdata->sysreg = syscon_regmap_lookup_by_phandle(dev->of_node,
|
|
|
|
"samsung,sysreg-phandle");
|
|
|
|
if (IS_ERR(hdata->sysreg)) {
|
|
|
|
DRM_ERROR("sysreg regmap lookup failed.\n");
|
|
|
|
ret = -EPROBE_DEFER;
|
|
|
|
goto err_hdmiphy;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_enable(dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = component_add(&pdev->dev, &hdmi_component_ops);
|
|
|
|
if (ret)
|
|
|
|
goto err_disable_pm_runtime;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
err_disable_pm_runtime:
|
|
|
|
pm_runtime_disable(dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
err_hdmiphy:
|
2014-05-09 14:06:28 +08:00
|
|
|
if (hdata->hdmiphy_port)
|
|
|
|
put_device(&hdata->hdmiphy_port->dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
err_ddc:
|
2014-03-13 15:38:31 +08:00
|
|
|
put_device(&hdata->ddc_adpt->dev);
|
2014-05-29 17:28:02 +08:00
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_remove(struct platform_device *pdev)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-11-17 16:54:20 +08:00
|
|
|
struct hdmi_context *hdata = platform_get_drvdata(pdev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
cancel_delayed_work_sync(&hdata->hotplug_work);
|
|
|
|
|
2015-09-25 20:48:20 +08:00
|
|
|
component_del(&pdev->dev, &hdmi_component_ops);
|
|
|
|
|
|
|
|
pm_runtime_disable(&pdev->dev);
|
|
|
|
|
2015-09-25 20:48:25 +08:00
|
|
|
if (!IS_ERR(hdata->reg_hdmi_en))
|
|
|
|
regulator_disable(hdata->reg_hdmi_en);
|
2014-07-01 16:10:06 +08:00
|
|
|
|
2014-07-28 16:15:22 +08:00
|
|
|
if (hdata->hdmiphy_port)
|
|
|
|
put_device(&hdata->hdmiphy_port->dev);
|
2014-05-09 13:25:20 +08:00
|
|
|
|
2015-09-25 20:48:20 +08:00
|
|
|
put_device(&hdata->ddc_adpt->dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-11-02 19:39:18 +08:00
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static int exynos_hdmi_suspend(struct device *dev)
|
|
|
|
{
|
|
|
|
struct hdmi_context *hdata = dev_get_drvdata(dev);
|
|
|
|
|
2016-01-14 13:22:47 +08:00
|
|
|
hdmi_clk_disable_gates(hdata);
|
2015-11-02 19:39:18 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int exynos_hdmi_resume(struct device *dev)
|
|
|
|
{
|
|
|
|
struct hdmi_context *hdata = dev_get_drvdata(dev);
|
|
|
|
int ret;
|
|
|
|
|
2016-01-14 13:22:47 +08:00
|
|
|
ret = hdmi_clk_enable_gates(hdata);
|
|
|
|
if (ret < 0)
|
2015-11-02 19:39:18 +08:00
|
|
|
return ret;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static const struct dev_pm_ops exynos_hdmi_pm_ops = {
|
|
|
|
SET_RUNTIME_PM_OPS(exynos_hdmi_suspend, exynos_hdmi_resume, NULL)
|
|
|
|
};
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
struct platform_driver hdmi_driver = {
|
|
|
|
.probe = hdmi_probe,
|
2012-12-22 07:09:25 +08:00
|
|
|
.remove = hdmi_remove,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.driver = {
|
2012-10-04 23:18:55 +08:00
|
|
|
.name = "exynos-hdmi",
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.owner = THIS_MODULE,
|
2015-11-02 19:39:18 +08:00
|
|
|
.pm = &exynos_hdmi_pm_ops,
|
2013-08-28 13:17:57 +08:00
|
|
|
.of_match_table = hdmi_match_types,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
|
|
|
};
|