OpenCloudOS-Kernel/drivers/net/wireless/rt2x00/rt2800pci.c

1373 lines
39 KiB
C
Raw Normal View History

/*
Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2800pci
Abstract: rt2800pci device specific routines.
Supported chipsets: RT2800E & RT2800ED.
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>
#include "rt2x00.h"
#include "rt2x00mmio.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
#include "rt2800lib.h"
#include "rt2800.h"
#include "rt2800pci.h"
/*
* Allow hardware encryption to be disabled.
*/
static bool modparam_nohwcrypt = false;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
{
return modparam_nohwcrypt;
}
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
unsigned int i;
u32 reg;
/*
* SOC devices don't support MCU requests.
*/
if (rt2x00_is_soc(rt2x00dev))
return;
for (i = 0; i < 200; i++) {
rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
(rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
break;
udelay(REGISTER_BUSY_DELAY);
}
if (i == 200)
rt2x00_err(rt2x00dev, "MCU request failed, no response from hardware\n");
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
}
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
if (!base_addr)
return -ENOMEM;
memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
iounmap(base_addr);
return 0;
}
#else
static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
return -ENOMEM;
}
#endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
#ifdef CONFIG_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg;
rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
eeprom->reg_data_clock =
!!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
eeprom->reg_chip_select =
!!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}
static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
struct rt2x00_dev *rt2x00dev = eeprom->data;
u32 reg = 0;
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
!!eeprom->reg_data_clock);
rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
!!eeprom->reg_chip_select);
rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
}
static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
struct eeprom_93cx6 eeprom;
u32 reg;
rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
eeprom.data = rt2x00dev;
eeprom.register_read = rt2800pci_eepromregister_read;
eeprom.register_write = rt2800pci_eepromregister_write;
switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
{
case 0:
eeprom.width = PCI_EEPROM_WIDTH_93C46;
break;
case 1:
eeprom.width = PCI_EEPROM_WIDTH_93C66;
break;
default:
eeprom.width = PCI_EEPROM_WIDTH_93C86;
break;
}
eeprom.reg_data_in = 0;
eeprom.reg_data_out = 0;
eeprom.reg_data_clock = 0;
eeprom.reg_chip_select = 0;
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
EEPROM_SIZE / sizeof(u16));
return 0;
}
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
return rt2800_efuse_detect(rt2x00dev);
}
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
return rt2800_read_eeprom_efuse(rt2x00dev);
}
#else
static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
return -EOPNOTSUPP;
}
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
return 0;
}
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_PCI */
/*
* Queue handlers.
*/
static void rt2800pci_start_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;
case QID_BEACON:
rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
rt2x00: Refactor beacon code to make use of start- and stop_queue This patch allows to dynamically remove beaconing interfaces without shutting beaconing down on all interfaces. The only place to start and stop beaconing are now the start- and stop_queue callbacks. Hence, we can remove some register writes during interface bring up (config_intf) and only write the correct sync mode to the register there. When multiple beaconing interfaces are present we should enable beaconing as soon as mac80211 enables beaconing on at least one of them. The beacon queue gets stopped when the last beaconing interface was stopped by mac80211. Therefore, introduce another interface counter to keep track ot the number of enabled beaconing interfaces and start or stop the beacon queue accordingly. To allow single interfaces to stop beaconing, add a new driver callback clear_beacon to clear a single interface's beacon without affecting the other interfaces. Don't overload the clear_entry callback for clearing beacons as that would introduce additional overhead (check for each TX queue) into the clear_entry callback which is used on the drivers TX/RX hotpaths. Furthermore, the write beacon callback doesn't need to enable beaconing anymore but since beaconing should be disabled while a new beacon is written or cleared we still disable beacon generation and enable it afterwards again in the driver specific callbacks. However, beacon related interrupts should not be disabled/enabled here, that's solely done from the start- and stop queue callbacks. It would be nice to stop the beacon queue just before the beacon update and enable it afterwards in rt2x00queue itself instead of the current implementation that relies on the driver doing the right thing. However, since start- and stop_queue are mutex protected we cannot use them for atomic beacon updates. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-01-30 20:16:03 +08:00
rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
rt2x00: Refactor beacon code to make use of start- and stop_queue This patch allows to dynamically remove beaconing interfaces without shutting beaconing down on all interfaces. The only place to start and stop beaconing are now the start- and stop_queue callbacks. Hence, we can remove some register writes during interface bring up (config_intf) and only write the correct sync mode to the register there. When multiple beaconing interfaces are present we should enable beaconing as soon as mac80211 enables beaconing on at least one of them. The beacon queue gets stopped when the last beaconing interface was stopped by mac80211. Therefore, introduce another interface counter to keep track ot the number of enabled beaconing interfaces and start or stop the beacon queue accordingly. To allow single interfaces to stop beaconing, add a new driver callback clear_beacon to clear a single interface's beacon without affecting the other interfaces. Don't overload the clear_entry callback for clearing beacons as that would introduce additional overhead (check for each TX queue) into the clear_entry callback which is used on the drivers TX/RX hotpaths. Furthermore, the write beacon callback doesn't need to enable beaconing anymore but since beaconing should be disabled while a new beacon is written or cleared we still disable beacon generation and enable it afterwards again in the driver specific callbacks. However, beacon related interrupts should not be disabled/enabled here, that's solely done from the start- and stop queue callbacks. It would be nice to stop the beacon queue just before the beacon update and enable it afterwards in rt2x00queue itself instead of the current implementation that relies on the driver doing the right thing. However, since start- and stop_queue are mutex protected we cannot use them for atomic beacon updates. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-01-30 20:16:03 +08:00
rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
break;
default:
break;
}
}
static void rt2800pci_kick_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
struct queue_entry *entry;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
entry = rt2x00queue_get_entry(queue, Q_INDEX);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
entry->entry_idx);
break;
case QID_MGMT:
entry = rt2x00queue_get_entry(queue, Q_INDEX);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
entry->entry_idx);
break;
default:
break;
}
}
static void rt2800pci_stop_queue(struct data_queue *queue)
{
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
u32 reg;
switch (queue->qid) {
case QID_RX:
rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
break;
case QID_BEACON:
rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
rt2x00: Refactor beacon code to make use of start- and stop_queue This patch allows to dynamically remove beaconing interfaces without shutting beaconing down on all interfaces. The only place to start and stop beaconing are now the start- and stop_queue callbacks. Hence, we can remove some register writes during interface bring up (config_intf) and only write the correct sync mode to the register there. When multiple beaconing interfaces are present we should enable beaconing as soon as mac80211 enables beaconing on at least one of them. The beacon queue gets stopped when the last beaconing interface was stopped by mac80211. Therefore, introduce another interface counter to keep track ot the number of enabled beaconing interfaces and start or stop the beacon queue accordingly. To allow single interfaces to stop beaconing, add a new driver callback clear_beacon to clear a single interface's beacon without affecting the other interfaces. Don't overload the clear_entry callback for clearing beacons as that would introduce additional overhead (check for each TX queue) into the clear_entry callback which is used on the drivers TX/RX hotpaths. Furthermore, the write beacon callback doesn't need to enable beaconing anymore but since beaconing should be disabled while a new beacon is written or cleared we still disable beacon generation and enable it afterwards again in the driver specific callbacks. However, beacon related interrupts should not be disabled/enabled here, that's solely done from the start- and stop queue callbacks. It would be nice to stop the beacon queue just before the beacon update and enable it afterwards in rt2x00queue itself instead of the current implementation that relies on the driver doing the right thing. However, since start- and stop_queue are mutex protected we cannot use them for atomic beacon updates. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-01-30 20:16:03 +08:00
rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
rt2x00: Refactor beacon code to make use of start- and stop_queue This patch allows to dynamically remove beaconing interfaces without shutting beaconing down on all interfaces. The only place to start and stop beaconing are now the start- and stop_queue callbacks. Hence, we can remove some register writes during interface bring up (config_intf) and only write the correct sync mode to the register there. When multiple beaconing interfaces are present we should enable beaconing as soon as mac80211 enables beaconing on at least one of them. The beacon queue gets stopped when the last beaconing interface was stopped by mac80211. Therefore, introduce another interface counter to keep track ot the number of enabled beaconing interfaces and start or stop the beacon queue accordingly. To allow single interfaces to stop beaconing, add a new driver callback clear_beacon to clear a single interface's beacon without affecting the other interfaces. Don't overload the clear_entry callback for clearing beacons as that would introduce additional overhead (check for each TX queue) into the clear_entry callback which is used on the drivers TX/RX hotpaths. Furthermore, the write beacon callback doesn't need to enable beaconing anymore but since beaconing should be disabled while a new beacon is written or cleared we still disable beacon generation and enable it afterwards again in the driver specific callbacks. However, beacon related interrupts should not be disabled/enabled here, that's solely done from the start- and stop queue callbacks. It would be nice to stop the beacon queue just before the beacon update and enable it afterwards in rt2x00queue itself instead of the current implementation that relies on the driver doing the right thing. However, since start- and stop_queue are mutex protected we cannot use them for atomic beacon updates. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-01-30 20:16:03 +08:00
rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
/*
* Wait for current invocation to finish. The tasklet
* won't be scheduled anymore afterwards since we disabled
* the TBTT and PRE TBTT timer.
*/
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
break;
default:
break;
}
}
/*
* Firmware functions
*/
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
/*
* Chip rt3290 use specific 4KB firmware named rt3290.bin.
*/
if (rt2x00_rt(rt2x00dev, RT3290))
return FIRMWARE_RT3290;
else
return FIRMWARE_RT2860;
}
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
const u8 *data, const size_t len)
{
u32 reg;
/*
* enable Host program ram write selection
*/
reg = 0;
rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
/*
* Write firmware to device.
*/
rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
data, len);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
return 0;
}
/*
* Initialization functions.
*/
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 1, &word);
return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
} else {
rt2x00_desc_read(entry_priv->desc, 1, &word);
return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
}
}
static void rt2800pci_clear_entry(struct queue_entry *entry)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
u32 word;
if (entry->queue->qid == QID_RX) {
rt2x00_desc_read(entry_priv->desc, 0, &word);
rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
rt2x00_desc_write(entry_priv->desc, 0, word);
rt2x00_desc_read(entry_priv->desc, 1, &word);
rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
rt2x00_desc_write(entry_priv->desc, 1, word);
/*
* Set RX IDX in register to inform hardware that we have
* handled this entry and it is available for reuse again.
*/
rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
entry->entry_idx);
} else {
rt2x00_desc_read(entry_priv->desc, 1, &word);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
rt2x00_desc_write(entry_priv->desc, 1, word);
}
}
static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct queue_entry_priv_mmio *entry_priv;
/*
* Initialize registers.
*/
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
rt2x00dev->tx[0].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
rt2x00dev->tx[1].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
rt2x00dev->tx[2].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
rt2x00dev->tx[3].limit);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
entry_priv = rt2x00dev->rx->entries[0].priv_data;
rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
entry_priv->desc_dma);
rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
rt2x00dev->rx[0].limit);
rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
rt2x00dev->rx[0].limit - 1);
rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
rt2800_disable_wpdma(rt2x00dev);
rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
return 0;
}
/*
* Device state switch handlers.
*/
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u32 reg;
unsigned long flags;
/*
* When interrupts are being enabled, the interrupt registers
* should clear the register to assure a clean state.
*/
if (state == STATE_RADIO_IRQ_ON) {
rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
}
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
reg = 0;
if (state == STATE_RADIO_IRQ_ON) {
rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
}
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
if (state == STATE_RADIO_IRQ_OFF) {
/*
* Wait for possibly running tasklets to finish.
*/
tasklet_kill(&rt2x00dev->txstatus_tasklet);
tasklet_kill(&rt2x00dev->rxdone_tasklet);
tasklet_kill(&rt2x00dev->autowake_tasklet);
tasklet_kill(&rt2x00dev->tbtt_tasklet);
tasklet_kill(&rt2x00dev->pretbtt_tasklet);
}
}
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
u32 reg;
/*
* Reset DMA indexes
*/
rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
if (rt2x00_is_pcie(rt2x00dev) &&
(rt2x00_rt(rt2x00dev, RT3572) ||
rt2x00_rt(rt2x00dev, RT5390) ||
rt2x00_rt(rt2x00dev, RT5392))) {
rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
}
rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
reg = 0;
rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
return 0;
}
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int retval;
/* Wait for DMA, ignore error until we initialize queues. */
rt2800_wait_wpdma_ready(rt2x00dev);
if (unlikely(rt2800pci_init_queues(rt2x00dev)))
return -EIO;
retval = rt2800_enable_radio(rt2x00dev);
if (retval)
return retval;
/* After resume MCU_BOOT_SIGNAL will trash these. */
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
return retval;
}
static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (rt2x00_is_soc(rt2x00dev)) {
rt2800_disable_radio(rt2x00dev);
rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
}
}
static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
if (state == STATE_AWAKE) {
rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
0, 0x02);
rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
} else if (state == STATE_SLEEP) {
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
0xffffffff);
rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
0xffffffff);
rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
0xff, 0x01);
}
return 0;
}
static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt2800pci_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
/*
* After the radio has been disabled, the device should
* be put to sleep for powersaving.
*/
rt2800pci_disable_radio(rt2x00dev);
rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
break;
case STATE_RADIO_IRQ_ON:
case STATE_RADIO_IRQ_OFF:
rt2800pci_toggle_irq(rt2x00dev, state);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt2800pci_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
if (unlikely(retval))
rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
state, retval);
return retval;
}
/*
* TX descriptor initialization
*/
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
{
return (__le32 *) entry->skb->data;
}
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
__le32 *txd = entry_priv->desc;
u32 word;
/*
* The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
* must contains a TXWI structure + 802.11 header + padding + 802.11
* data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
* SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
* data. It means that LAST_SEC0 is always 0.
*/
/*
* Initialize TX descriptor
*/
word = 0;
rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
rt2x00_desc_write(txd, 0, word);
word = 0;
rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
!test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_BURST,
test_bit(ENTRY_TXD_BURST, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
rt2x00_desc_write(txd, 1, word);
word = 0;
rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
skbdesc->skb_dma + TXWI_DESC_SIZE);
rt2x00_desc_write(txd, 2, word);
word = 0;
rt2x00_set_field32(&word, TXD_W3_WIV,
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
rt2x00_desc_write(txd, 3, word);
/*
* Register descriptor details in skb frame descriptor.
*/
skbdesc->desc = txd;
skbdesc->desc_len = TXD_DESC_SIZE;
}
/*
* RX control handlers
*/
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
__le32 *rxd = entry_priv->desc;
u32 word;
rt2x00_desc_read(rxd, 3, &word);
if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
/*
* Unfortunately we don't know the cipher type used during
* decryption. This prevents us from correct providing
* correct statistics through debugfs.
*/
rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
/*
* Hardware has stripped IV/EIV data from 802.11 frame during
* decryption. Unfortunately the descriptor doesn't contain
* any fields with the EIV/IV data either, so they can't
* be restored by rt2x00lib.
*/
rxdesc->flags |= RX_FLAG_IV_STRIPPED;
/*
* The hardware has already checked the Michael Mic and has
* stripped it from the frame. Signal this to mac80211.
*/
rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
rxdesc->flags |= RX_FLAG_DECRYPTED;
else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
rxdesc->flags |= RX_FLAG_MMIC_ERROR;
}
if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
if (rt2x00_get_field32(word, RXD_W3_L2PAD))
rxdesc->dev_flags |= RXDONE_L2PAD;
/*
* Process the RXWI structure that is at the start of the buffer.
*/
rt2800_process_rxwi(entry, rxdesc);
}
/*
* Interrupt functions.
*/
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
struct ieee80211_conf conf = { .flags = 0 };
struct rt2x00lib_conf libconf = { .conf = &conf };
rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}
static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
{
__le32 *txwi;
u32 word;
int wcid, tx_wcid;
wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
txwi = rt2800_drv_get_txwi(entry);
rt2x00_desc_read(txwi, 1, &word);
tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
return (tx_wcid == wcid);
}
static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
{
u32 status = *(u32 *)data;
/*
* rt2800pci hardware might reorder frames when exchanging traffic
* with multiple BA enabled STAs.
*
* For example, a tx queue
* [ STA1 | STA2 | STA1 | STA2 ]
* can result in tx status reports
* [ STA1 | STA1 | STA2 | STA2 ]
* when the hw decides to aggregate the frames for STA1 into one AMPDU.
*
* To mitigate this effect, associate the tx status to the first frame
* in the tx queue with a matching wcid.
*/
if (rt2800pci_txdone_entry_check(entry, status) &&
!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
/*
* Got a matching frame, associate the tx status with
* the frame
*/
entry->status = status;
set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
return true;
}
/* Check the next frame */
return false;
}
static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
{
u32 status = *(u32 *)data;
/*
* Find the first frame without tx status and assign this status to it
* regardless if it matches or not.
*/
if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
/*
* Got a matching frame, associate the tx status with
* the frame
*/
entry->status = status;
set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
return true;
}
/* Check the next frame */
return false;
}
static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
void *data)
{
if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
rt2800_txdone_entry(entry, entry->status,
rt2800pci_get_txwi(entry));
return false;
}
/* No more frames to release */
return true;
}
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
{
struct data_queue *queue;
u32 status;
u8 qid;
int max_tx_done = 16;
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
if (unlikely(qid >= QID_RX)) {
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
/*
* Unknown queue, this shouldn't happen. Just drop
* this tx status.
*/
rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
qid);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
break;
}
queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
if (unlikely(queue == NULL)) {
/*
* The queue is NULL, this shouldn't happen. Stop
* processing here and drop the tx status
*/
rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
qid);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
break;
}
if (unlikely(rt2x00queue_empty(queue))) {
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
/*
* The queue is empty. Stop processing here
* and drop the tx status.
*/
rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
qid);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
break;
}
/*
* Let's associate this tx status with the first
* matching frame.
*/
if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
Q_INDEX, &status,
rt2800pci_txdone_find_entry)) {
/*
* We cannot match the tx status to any frame, so just
* use the first one.
*/
if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
Q_INDEX, &status,
rt2800pci_txdone_match_first)) {
rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
qid);
break;
}
}
/*
* Release all frames with a valid tx status.
*/
rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
Q_INDEX, NULL,
rt2800pci_txdone_release_entries);
if (--max_tx_done == 0)
break;
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
}
return !max_tx_done;
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
}
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
struct rt2x00_field32 irq_field)
{
u32 reg;
/*
* Enable a single interrupt. The interrupt mask register
* access needs locking.
*/
spin_lock_irq(&rt2x00dev->irqmask_lock);
rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
rt2x00_set_field32(&reg, irq_field, 1);
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock_irq(&rt2x00dev->irqmask_lock);
}
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
if (rt2800pci_txdone(rt2x00dev))
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
/*
* No need to enable the tx status interrupt here as we always
* leave it enabled to minimize the possibility of a tx status
* register overflow. See comment in interrupt handler.
*/
}
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt2x00lib_pretbtt(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
}
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
u32 reg;
rt2x00lib_beacondone(rt2x00dev);
if (rt2x00dev->intf_ap_count) {
/*
* The rt2800pci hardware tbtt timer is off by 1us per tbtt
* causing beacon skew and as a result causing problems with
* some powersaving clients over time. Shorten the beacon
* interval every 64 beacons by 64us to mitigate this effect.
*/
if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
(rt2x00dev->beacon_int * 16) - 1);
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
(rt2x00dev->beacon_int * 16));
rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
}
drv_data->tbtt_tick++;
drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
}
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
}
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
if (rt2x00mmio_rxdone(rt2x00dev))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
}
static void rt2800pci_autowake_tasklet(unsigned long data)
{
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
rt2800pci_wakeup(rt2x00dev);
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
}
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
u32 status;
int i;
/*
* The TX_FIFO_STATUS interrupt needs special care. We should
* read TX_STA_FIFO but we should do it immediately as otherwise
* the register can overflow and we would lose status reports.
*
* Hence, read the TX_STA_FIFO register and copy all tx status
* reports into a kernel FIFO which is handled in the txstatus
* tasklet. We use a tasklet to process the tx status reports
* because we can schedule the tasklet multiple times (when the
* interrupt fires again during tx status processing).
*
* Furthermore we don't disable the TX_FIFO_STATUS
* interrupt here but leave it enabled so that the TX_STA_FIFO
* can also be read while the tx status tasklet gets executed.
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
*
* Since we have only one producer and one consumer we don't
* need to lock the kfifo.
*/
for (i = 0; i < rt2x00dev->tx->limit; i++) {
rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
break;
if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
break;
}
}
/* Schedule the tasklet for processing the tx status. */
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
struct rt2x00_dev *rt2x00dev = dev_instance;
u32 reg, mask;
/* Read status and ACK all interrupts */
rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
if (!reg)
return IRQ_NONE;
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
return IRQ_HANDLED;
/*
* Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
* for interrupts and interrupt masks we can just use the value of
* INT_SOURCE_CSR to create the interrupt mask.
*/
mask = ~reg;
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
rt2800pci_txstatus_interrupt(rt2x00dev);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
/*
* Never disable the TX_FIFO_STATUS interrupt.
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
*/
rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
}
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
rt2x00: rework tx status handling in rt2800pci This patch changes the way tx status reports are handled by rt2800pci. Previously rt2800pci would sometimes lose tx status reports as the TX_STA_FIFO register is a fifo of 16 entries that can overflow in case we don't read it often/fast enough. Since interrupts are disabled in the device during the execution of the interrupt thread it happend sometimes under high network and CPU load that processing took too long and a few tx status reports were dropped by the hw. To fix this issue the TX_STA_FIFO register is read directly in the interrupt handler and stored in a kfifo which is large enough to hold all status reports of all used tx queues. To process the status reports a new tasklet txstatus_tasklet is used. Using the already used interrupt thread is not possible since we don't want to disable the TX_FIFO_STATUS interrupt while processing them and it is not possible to schedule the interrupt thread multiple times for execution. A tasklet instead can be scheduled multiple times which allows to leave the TX_FIFO_STATUS interrupt enabled while a previously scheduled tasklet is still executing. In short: All other interrupts are handled in the interrupt thread as before. Only the TX_FIFO_STATUS interrupt is partly handled in the interrupt handler and finished in the according tasklet. One drawback of this patch is that it duplicates some code from rt2800lib. However, that can be cleaned up in the future once the rt2800usb and rt2800pci tx status handling converge more. Using this patch on a Ralink RT3052 embedded board gives me a reliable wireless connection even under high CPU and network load. I've transferred several gigabytes without any queue lockups. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-10-02 17:27:35 +08:00
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
tasklet_schedule(&rt2x00dev->autowake_tasklet);
/*
* Disable all interrupts for which a tasklet was scheduled right now,
* the tasklet will reenable the appropriate interrupts.
*/
spin_lock(&rt2x00dev->irqmask_lock);
rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
reg &= mask;
rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
spin_unlock(&rt2x00dev->irqmask_lock);
return IRQ_HANDLED;
}
/*
* Device probe functions.
*/
static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (rt2x00_is_soc(rt2x00dev))
retval = rt2800pci_read_eeprom_soc(rt2x00dev);
else if (rt2800pci_efuse_detect(rt2x00dev))
retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
else
retval = rt2800pci_read_eeprom_pci(rt2x00dev);
return retval;
}
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.configure_filter = rt2x00mac_configure_filter,
.set_key = rt2x00mac_set_key,
.sw_scan_start = rt2x00mac_sw_scan_start,
.sw_scan_complete = rt2x00mac_sw_scan_complete,
.get_stats = rt2x00mac_get_stats,
.get_tkip_seq = rt2800_get_tkip_seq,
.set_rts_threshold = rt2800_set_rts_threshold,
.sta_add = rt2x00mac_sta_add,
.sta_remove = rt2x00mac_sta_remove,
.bss_info_changed = rt2x00mac_bss_info_changed,
.conf_tx = rt2800_conf_tx,
.get_tsf = rt2800_get_tsf,
.rfkill_poll = rt2x00mac_rfkill_poll,
.ampdu_action = rt2800_ampdu_action,
.flush = rt2x00mac_flush,
.get_survey = rt2800_get_survey,
.get_ringparam = rt2x00mac_get_ringparam,
.tx_frames_pending = rt2x00mac_tx_frames_pending,
};
static const struct rt2800_ops rt2800pci_rt2800_ops = {
.register_read = rt2x00mmio_register_read,
.register_read_lock = rt2x00mmio_register_read, /* same for PCI */
.register_write = rt2x00mmio_register_write,
.register_write_lock = rt2x00mmio_register_write, /* same for PCI */
.register_multiread = rt2x00mmio_register_multiread,
.register_multiwrite = rt2x00mmio_register_multiwrite,
.regbusy_read = rt2x00mmio_regbusy_read,
.read_eeprom = rt2800pci_read_eeprom,
.hwcrypt_disabled = rt2800pci_hwcrypt_disabled,
.drv_write_firmware = rt2800pci_write_firmware,
.drv_init_registers = rt2800pci_init_registers,
.drv_get_txwi = rt2800pci_get_txwi,
};
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
.irq_handler = rt2800pci_interrupt,
.txstatus_tasklet = rt2800pci_txstatus_tasklet,
.pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
.tbtt_tasklet = rt2800pci_tbtt_tasklet,
.rxdone_tasklet = rt2800pci_rxdone_tasklet,
.autowake_tasklet = rt2800pci_autowake_tasklet,
.probe_hw = rt2800_probe_hw,
.get_firmware_name = rt2800pci_get_firmware_name,
.check_firmware = rt2800_check_firmware,
.load_firmware = rt2800_load_firmware,
.initialize = rt2x00mmio_initialize,
.uninitialize = rt2x00mmio_uninitialize,
.get_entry_state = rt2800pci_get_entry_state,
.clear_entry = rt2800pci_clear_entry,
.set_device_state = rt2800pci_set_device_state,
.rfkill_poll = rt2800_rfkill_poll,
.link_stats = rt2800_link_stats,
.reset_tuner = rt2800_reset_tuner,
.link_tuner = rt2800_link_tuner,
.gain_calibration = rt2800_gain_calibration,
.vco_calibration = rt2800_vco_calibration,
.start_queue = rt2800pci_start_queue,
.kick_queue = rt2800pci_kick_queue,
.stop_queue = rt2800pci_stop_queue,
.flush_queue = rt2x00mmio_flush_queue,
.write_tx_desc = rt2800pci_write_tx_desc,
.write_tx_data = rt2800_write_tx_data,
.write_beacon = rt2800_write_beacon,
rt2x00: Refactor beacon code to make use of start- and stop_queue This patch allows to dynamically remove beaconing interfaces without shutting beaconing down on all interfaces. The only place to start and stop beaconing are now the start- and stop_queue callbacks. Hence, we can remove some register writes during interface bring up (config_intf) and only write the correct sync mode to the register there. When multiple beaconing interfaces are present we should enable beaconing as soon as mac80211 enables beaconing on at least one of them. The beacon queue gets stopped when the last beaconing interface was stopped by mac80211. Therefore, introduce another interface counter to keep track ot the number of enabled beaconing interfaces and start or stop the beacon queue accordingly. To allow single interfaces to stop beaconing, add a new driver callback clear_beacon to clear a single interface's beacon without affecting the other interfaces. Don't overload the clear_entry callback for clearing beacons as that would introduce additional overhead (check for each TX queue) into the clear_entry callback which is used on the drivers TX/RX hotpaths. Furthermore, the write beacon callback doesn't need to enable beaconing anymore but since beaconing should be disabled while a new beacon is written or cleared we still disable beacon generation and enable it afterwards again in the driver specific callbacks. However, beacon related interrupts should not be disabled/enabled here, that's solely done from the start- and stop queue callbacks. It would be nice to stop the beacon queue just before the beacon update and enable it afterwards in rt2x00queue itself instead of the current implementation that relies on the driver doing the right thing. However, since start- and stop_queue are mutex protected we cannot use them for atomic beacon updates. Signed-off-by: Helmut Schaa <helmut.schaa@googlemail.com> Acked-by: Gertjan van Wingerde <gwingerde@gmail.com> Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-01-30 20:16:03 +08:00
.clear_beacon = rt2800_clear_beacon,
.fill_rxdone = rt2800pci_fill_rxdone,
.config_shared_key = rt2800_config_shared_key,
.config_pairwise_key = rt2800_config_pairwise_key,
.config_filter = rt2800_config_filter,
.config_intf = rt2800_config_intf,
.config_erp = rt2800_config_erp,
.config_ant = rt2800_config_ant,
.config = rt2800_config,
.sta_add = rt2800_sta_add,
.sta_remove = rt2800_sta_remove,
};
static void rt2800pci_queue_init(struct data_queue *queue)
{
switch (queue->qid) {
case QID_RX:
queue->limit = 128;
queue->data_size = AGGREGATION_SIZE;
queue->desc_size = RXD_DESC_SIZE;
queue->winfo_size = RXWI_DESC_SIZE;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
queue->limit = 64;
queue->data_size = AGGREGATION_SIZE;
queue->desc_size = TXD_DESC_SIZE;
queue->winfo_size = TXWI_DESC_SIZE;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_BEACON:
queue->limit = 8;
queue->data_size = 0; /* No DMA required for beacons */
queue->desc_size = TXD_DESC_SIZE;
queue->winfo_size = TXWI_DESC_SIZE;
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
break;
case QID_ATIM:
/* fallthrough */
default:
BUG();
break;
}
}
static const struct rt2x00_ops rt2800pci_ops = {
.name = KBUILD_MODNAME,
.drv_data_size = sizeof(struct rt2800_drv_data),
.max_ap_intf = 8,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.tx_queues = NUM_TX_QUEUES,
.queue_init = rt2800pci_queue_init,
.lib = &rt2800pci_rt2x00_ops,
.drv = &rt2800pci_rt2800_ops,
.hw = &rt2800pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt2800_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* RT2800pci module information.
*/
#ifdef CONFIG_PCI
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
{ PCI_DEVICE(0x1814, 0x0601) },
{ PCI_DEVICE(0x1814, 0x0681) },
{ PCI_DEVICE(0x1814, 0x0701) },
{ PCI_DEVICE(0x1814, 0x0781) },
{ PCI_DEVICE(0x1814, 0x3090) },
{ PCI_DEVICE(0x1814, 0x3091) },
{ PCI_DEVICE(0x1814, 0x3092) },
{ PCI_DEVICE(0x1432, 0x7708) },
{ PCI_DEVICE(0x1432, 0x7727) },
{ PCI_DEVICE(0x1432, 0x7728) },
{ PCI_DEVICE(0x1432, 0x7738) },
{ PCI_DEVICE(0x1432, 0x7748) },
{ PCI_DEVICE(0x1432, 0x7758) },
{ PCI_DEVICE(0x1432, 0x7768) },
{ PCI_DEVICE(0x1462, 0x891a) },
{ PCI_DEVICE(0x1a3b, 0x1059) },
#ifdef CONFIG_RT2800PCI_RT3290
{ PCI_DEVICE(0x1814, 0x3290) },
#endif
#ifdef CONFIG_RT2800PCI_RT33XX
{ PCI_DEVICE(0x1814, 0x3390) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
{ PCI_DEVICE(0x1432, 0x7711) },
{ PCI_DEVICE(0x1432, 0x7722) },
{ PCI_DEVICE(0x1814, 0x3060) },
{ PCI_DEVICE(0x1814, 0x3062) },
{ PCI_DEVICE(0x1814, 0x3562) },
{ PCI_DEVICE(0x1814, 0x3592) },
{ PCI_DEVICE(0x1814, 0x3593) },
{ PCI_DEVICE(0x1814, 0x359f) },
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
{ PCI_DEVICE(0x1814, 0x5360) },
{ PCI_DEVICE(0x1814, 0x5362) },
{ PCI_DEVICE(0x1814, 0x5390) },
{ PCI_DEVICE(0x1814, 0x5392) },
{ PCI_DEVICE(0x1814, 0x539a) },
{ PCI_DEVICE(0x1814, 0x539b) },
{ PCI_DEVICE(0x1814, 0x539f) },
#endif
{ 0, }
};
#endif /* CONFIG_PCI */
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_PCI */
MODULE_LICENSE("GPL");
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
static int rt2800soc_probe(struct platform_device *pdev)
{
return rt2x00soc_probe(pdev, &rt2800pci_ops);
}
static struct platform_driver rt2800soc_driver = {
.driver = {
.name = "rt2800_wmac",
.owner = THIS_MODULE,
.mod_name = KBUILD_MODNAME,
},
.probe = rt2800soc_probe,
.remove = rt2x00soc_remove,
.suspend = rt2x00soc_suspend,
.resume = rt2x00soc_resume,
};
#endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
#ifdef CONFIG_PCI
static int rt2800pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *id)
{
return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}
static struct pci_driver rt2800pci_driver = {
.name = KBUILD_MODNAME,
.id_table = rt2800pci_device_table,
.probe = rt2800pci_probe,
.remove = rt2x00pci_remove,
.suspend = rt2x00pci_suspend,
.resume = rt2x00pci_resume,
};
#endif /* CONFIG_PCI */
static int __init rt2800pci_init(void)
{
int ret = 0;
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
ret = platform_driver_register(&rt2800soc_driver);
if (ret)
return ret;
#endif
#ifdef CONFIG_PCI
ret = pci_register_driver(&rt2800pci_driver);
if (ret) {
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
platform_driver_unregister(&rt2800soc_driver);
#endif
return ret;
}
#endif
return ret;
}
static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_PCI
pci_unregister_driver(&rt2800pci_driver);
#endif
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
platform_driver_unregister(&rt2800soc_driver);
#endif
}
module_init(rt2800pci_init);
module_exit(rt2800pci_exit);