OpenCloudOS-Kernel/drivers/nvme/target/tcp.c

1768 lines
42 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* NVMe over Fabrics TCP target.
* Copyright (c) 2018 Lightbits Labs. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/nvme-tcp.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <linux/inet.h>
#include <linux/llist.h>
#include <crypto/hash.h>
#include "nvmet.h"
#define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
/* Define the socket priority to use for connections were it is desirable
* that the NIC consider performing optimized packet processing or filtering.
* A non-zero value being sufficient to indicate general consideration of any
* possible optimization. Making it a module param allows for alternative
* values that may be unique for some NIC implementations.
*/
static int so_priority;
module_param(so_priority, int, 0644);
MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
#define NVMET_TCP_RECV_BUDGET 8
#define NVMET_TCP_SEND_BUDGET 8
#define NVMET_TCP_IO_WORK_BUDGET 64
enum nvmet_tcp_send_state {
NVMET_TCP_SEND_DATA_PDU,
NVMET_TCP_SEND_DATA,
NVMET_TCP_SEND_R2T,
NVMET_TCP_SEND_DDGST,
NVMET_TCP_SEND_RESPONSE
};
enum nvmet_tcp_recv_state {
NVMET_TCP_RECV_PDU,
NVMET_TCP_RECV_DATA,
NVMET_TCP_RECV_DDGST,
NVMET_TCP_RECV_ERR,
};
enum {
NVMET_TCP_F_INIT_FAILED = (1 << 0),
};
struct nvmet_tcp_cmd {
struct nvmet_tcp_queue *queue;
struct nvmet_req req;
struct nvme_tcp_cmd_pdu *cmd_pdu;
struct nvme_tcp_rsp_pdu *rsp_pdu;
struct nvme_tcp_data_pdu *data_pdu;
struct nvme_tcp_r2t_pdu *r2t_pdu;
u32 rbytes_done;
u32 wbytes_done;
u32 pdu_len;
u32 pdu_recv;
int sg_idx;
int nr_mapped;
struct msghdr recv_msg;
struct kvec *iov;
u32 flags;
struct list_head entry;
struct llist_node lentry;
/* send state */
u32 offset;
struct scatterlist *cur_sg;
enum nvmet_tcp_send_state state;
__le32 exp_ddgst;
__le32 recv_ddgst;
};
enum nvmet_tcp_queue_state {
NVMET_TCP_Q_CONNECTING,
NVMET_TCP_Q_LIVE,
NVMET_TCP_Q_DISCONNECTING,
};
struct nvmet_tcp_queue {
struct socket *sock;
struct nvmet_tcp_port *port;
struct work_struct io_work;
int cpu;
struct nvmet_cq nvme_cq;
struct nvmet_sq nvme_sq;
/* send state */
struct nvmet_tcp_cmd *cmds;
unsigned int nr_cmds;
struct list_head free_list;
struct llist_head resp_list;
struct list_head resp_send_list;
int send_list_len;
struct nvmet_tcp_cmd *snd_cmd;
/* recv state */
int offset;
int left;
enum nvmet_tcp_recv_state rcv_state;
struct nvmet_tcp_cmd *cmd;
union nvme_tcp_pdu pdu;
/* digest state */
bool hdr_digest;
bool data_digest;
struct ahash_request *snd_hash;
struct ahash_request *rcv_hash;
spinlock_t state_lock;
enum nvmet_tcp_queue_state state;
struct sockaddr_storage sockaddr;
struct sockaddr_storage sockaddr_peer;
struct work_struct release_work;
int idx;
struct list_head queue_list;
struct nvmet_tcp_cmd connect;
struct page_frag_cache pf_cache;
void (*data_ready)(struct sock *);
void (*state_change)(struct sock *);
void (*write_space)(struct sock *);
};
struct nvmet_tcp_port {
struct socket *sock;
struct work_struct accept_work;
struct nvmet_port *nport;
struct sockaddr_storage addr;
int last_cpu;
void (*data_ready)(struct sock *);
};
static DEFINE_IDA(nvmet_tcp_queue_ida);
static LIST_HEAD(nvmet_tcp_queue_list);
static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
static struct workqueue_struct *nvmet_tcp_wq;
static const struct nvmet_fabrics_ops nvmet_tcp_ops;
static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
struct nvmet_tcp_cmd *cmd)
{
return cmd - queue->cmds;
}
static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
{
return nvme_is_write(cmd->req.cmd) &&
cmd->rbytes_done < cmd->req.transfer_len;
}
static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
{
return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
}
static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
{
return !nvme_is_write(cmd->req.cmd) &&
cmd->req.transfer_len > 0 &&
!cmd->req.cqe->status;
}
static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
{
return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
!cmd->rbytes_done;
}
static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
{
struct nvmet_tcp_cmd *cmd;
cmd = list_first_entry_or_null(&queue->free_list,
struct nvmet_tcp_cmd, entry);
if (!cmd)
return NULL;
list_del_init(&cmd->entry);
cmd->rbytes_done = cmd->wbytes_done = 0;
cmd->pdu_len = 0;
cmd->pdu_recv = 0;
cmd->iov = NULL;
cmd->flags = 0;
return cmd;
}
static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
{
if (unlikely(cmd == &cmd->queue->connect))
return;
list_add_tail(&cmd->entry, &cmd->queue->free_list);
}
static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
{
return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
}
static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
{
return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
}
static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
void *pdu, size_t len)
{
struct scatterlist sg;
sg_init_one(&sg, pdu, len);
ahash_request_set_crypt(hash, &sg, pdu + len, len);
crypto_ahash_digest(hash);
}
static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
void *pdu, size_t len)
{
struct nvme_tcp_hdr *hdr = pdu;
__le32 recv_digest;
__le32 exp_digest;
if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
pr_err("queue %d: header digest enabled but no header digest\n",
queue->idx);
return -EPROTO;
}
recv_digest = *(__le32 *)(pdu + hdr->hlen);
nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
exp_digest = *(__le32 *)(pdu + hdr->hlen);
if (recv_digest != exp_digest) {
pr_err("queue %d: header digest error: recv %#x expected %#x\n",
queue->idx, le32_to_cpu(recv_digest),
le32_to_cpu(exp_digest));
return -EPROTO;
}
return 0;
}
static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
{
struct nvme_tcp_hdr *hdr = pdu;
u8 digest_len = nvmet_tcp_hdgst_len(queue);
u32 len;
len = le32_to_cpu(hdr->plen) - hdr->hlen -
(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
pr_err("queue %d: data digest flag is cleared\n", queue->idx);
return -EPROTO;
}
return 0;
}
static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
{
struct scatterlist *sg;
int i;
sg = &cmd->req.sg[cmd->sg_idx];
for (i = 0; i < cmd->nr_mapped; i++)
kunmap(sg_page(&sg[i]));
}
static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
{
struct kvec *iov = cmd->iov;
struct scatterlist *sg;
u32 length, offset, sg_offset;
length = cmd->pdu_len;
cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
offset = cmd->rbytes_done;
cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
sg_offset = offset % PAGE_SIZE;
sg = &cmd->req.sg[cmd->sg_idx];
while (length) {
u32 iov_len = min_t(u32, length, sg->length - sg_offset);
iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
iov->iov_len = iov_len;
length -= iov_len;
sg = sg_next(sg);
iov++;
}
iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
cmd->nr_mapped, cmd->pdu_len);
}
static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
{
queue->rcv_state = NVMET_TCP_RECV_ERR;
if (queue->nvme_sq.ctrl)
nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
else
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
}
static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
{
if (status == -EPIPE || status == -ECONNRESET)
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
else
nvmet_tcp_fatal_error(queue);
}
static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
{
struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
u32 len = le32_to_cpu(sgl->length);
if (!len)
return 0;
if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
NVME_SGL_FMT_OFFSET)) {
if (!nvme_is_write(cmd->req.cmd))
return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
if (len > cmd->req.port->inline_data_size)
return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
cmd->pdu_len = len;
}
cmd->req.transfer_len += len;
cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
if (!cmd->req.sg)
return NVME_SC_INTERNAL;
cmd->cur_sg = cmd->req.sg;
if (nvmet_tcp_has_data_in(cmd)) {
cmd->iov = kmalloc_array(cmd->req.sg_cnt,
sizeof(*cmd->iov), GFP_KERNEL);
if (!cmd->iov)
goto err;
}
return 0;
err:
sgl_free(cmd->req.sg);
return NVME_SC_INTERNAL;
}
static void nvmet_tcp_ddgst(struct ahash_request *hash,
struct nvmet_tcp_cmd *cmd)
{
ahash_request_set_crypt(hash, cmd->req.sg,
(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
crypto_ahash_digest(hash);
}
static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
{
struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
struct nvmet_tcp_queue *queue = cmd->queue;
u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
cmd->offset = 0;
cmd->state = NVMET_TCP_SEND_DATA_PDU;
pdu->hdr.type = nvme_tcp_c2h_data;
pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
NVME_TCP_F_DATA_SUCCESS : 0);
pdu->hdr.hlen = sizeof(*pdu);
pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
pdu->hdr.plen =
cpu_to_le32(pdu->hdr.hlen + hdgst +
cmd->req.transfer_len + ddgst);
pdu->command_id = cmd->req.cqe->command_id;
pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
if (queue->data_digest) {
pdu->hdr.flags |= NVME_TCP_F_DDGST;
nvmet_tcp_ddgst(queue->snd_hash, cmd);
}
if (cmd->queue->hdr_digest) {
pdu->hdr.flags |= NVME_TCP_F_HDGST;
nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
}
}
static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
{
struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
struct nvmet_tcp_queue *queue = cmd->queue;
u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
cmd->offset = 0;
cmd->state = NVMET_TCP_SEND_R2T;
pdu->hdr.type = nvme_tcp_r2t;
pdu->hdr.flags = 0;
pdu->hdr.hlen = sizeof(*pdu);
pdu->hdr.pdo = 0;
pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
pdu->command_id = cmd->req.cmd->common.command_id;
pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
if (cmd->queue->hdr_digest) {
pdu->hdr.flags |= NVME_TCP_F_HDGST;
nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
}
}
static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
{
struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
struct nvmet_tcp_queue *queue = cmd->queue;
u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
cmd->offset = 0;
cmd->state = NVMET_TCP_SEND_RESPONSE;
pdu->hdr.type = nvme_tcp_rsp;
pdu->hdr.flags = 0;
pdu->hdr.hlen = sizeof(*pdu);
pdu->hdr.pdo = 0;
pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
if (cmd->queue->hdr_digest) {
pdu->hdr.flags |= NVME_TCP_F_HDGST;
nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
}
}
static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
{
struct llist_node *node;
node = llist_del_all(&queue->resp_list);
if (!node)
return;
while (node) {
struct nvmet_tcp_cmd *cmd = llist_entry(node,
struct nvmet_tcp_cmd, lentry);
list_add(&cmd->entry, &queue->resp_send_list);
node = node->next;
queue->send_list_len++;
}
}
static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
{
queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
struct nvmet_tcp_cmd, entry);
if (!queue->snd_cmd) {
nvmet_tcp_process_resp_list(queue);
queue->snd_cmd =
list_first_entry_or_null(&queue->resp_send_list,
struct nvmet_tcp_cmd, entry);
if (unlikely(!queue->snd_cmd))
return NULL;
}
list_del_init(&queue->snd_cmd->entry);
queue->send_list_len--;
if (nvmet_tcp_need_data_out(queue->snd_cmd))
nvmet_setup_c2h_data_pdu(queue->snd_cmd);
else if (nvmet_tcp_need_data_in(queue->snd_cmd))
nvmet_setup_r2t_pdu(queue->snd_cmd);
else
nvmet_setup_response_pdu(queue->snd_cmd);
return queue->snd_cmd;
}
static void nvmet_tcp_queue_response(struct nvmet_req *req)
{
struct nvmet_tcp_cmd *cmd =
container_of(req, struct nvmet_tcp_cmd, req);
struct nvmet_tcp_queue *queue = cmd->queue;
llist_add(&cmd->lentry, &queue->resp_list);
queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work);
}
static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
{
u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
int ret;
ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
offset_in_page(cmd->data_pdu) + cmd->offset,
left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
if (ret <= 0)
return ret;
cmd->offset += ret;
left -= ret;
if (left)
return -EAGAIN;
cmd->state = NVMET_TCP_SEND_DATA;
cmd->offset = 0;
return 1;
}
static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
{
struct nvmet_tcp_queue *queue = cmd->queue;
int ret;
while (cmd->cur_sg) {
struct page *page = sg_page(cmd->cur_sg);
u32 left = cmd->cur_sg->length - cmd->offset;
int flags = MSG_DONTWAIT;
if ((!last_in_batch && cmd->queue->send_list_len) ||
cmd->wbytes_done + left < cmd->req.transfer_len ||
queue->data_digest || !queue->nvme_sq.sqhd_disabled)
flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
left, flags);
if (ret <= 0)
return ret;
cmd->offset += ret;
cmd->wbytes_done += ret;
/* Done with sg?*/
if (cmd->offset == cmd->cur_sg->length) {
cmd->cur_sg = sg_next(cmd->cur_sg);
cmd->offset = 0;
}
}
if (queue->data_digest) {
cmd->state = NVMET_TCP_SEND_DDGST;
cmd->offset = 0;
} else {
if (queue->nvme_sq.sqhd_disabled) {
cmd->queue->snd_cmd = NULL;
nvmet_tcp_put_cmd(cmd);
} else {
nvmet_setup_response_pdu(cmd);
}
}
if (queue->nvme_sq.sqhd_disabled) {
kfree(cmd->iov);
sgl_free(cmd->req.sg);
}
return 1;
}
static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
bool last_in_batch)
{
u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
int flags = MSG_DONTWAIT;
int ret;
if (!last_in_batch && cmd->queue->send_list_len)
flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
else
flags |= MSG_EOR;
ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
if (ret <= 0)
return ret;
cmd->offset += ret;
left -= ret;
if (left)
return -EAGAIN;
kfree(cmd->iov);
sgl_free(cmd->req.sg);
cmd->queue->snd_cmd = NULL;
nvmet_tcp_put_cmd(cmd);
return 1;
}
static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
{
u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
int flags = MSG_DONTWAIT;
int ret;
if (!last_in_batch && cmd->queue->send_list_len)
flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
else
flags |= MSG_EOR;
ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
if (ret <= 0)
return ret;
cmd->offset += ret;
left -= ret;
if (left)
return -EAGAIN;
cmd->queue->snd_cmd = NULL;
return 1;
}
static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
{
struct nvmet_tcp_queue *queue = cmd->queue;
struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
struct kvec iov = {
.iov_base = &cmd->exp_ddgst + cmd->offset,
.iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
};
int ret;
if (!last_in_batch && cmd->queue->send_list_len)
msg.msg_flags |= MSG_MORE;
else
msg.msg_flags |= MSG_EOR;
ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
if (unlikely(ret <= 0))
return ret;
cmd->offset += ret;
if (queue->nvme_sq.sqhd_disabled) {
cmd->queue->snd_cmd = NULL;
nvmet_tcp_put_cmd(cmd);
} else {
nvmet_setup_response_pdu(cmd);
}
return 1;
}
static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
bool last_in_batch)
{
struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
int ret = 0;
if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
cmd = nvmet_tcp_fetch_cmd(queue);
if (unlikely(!cmd))
return 0;
}
if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
ret = nvmet_try_send_data_pdu(cmd);
if (ret <= 0)
goto done_send;
}
if (cmd->state == NVMET_TCP_SEND_DATA) {
ret = nvmet_try_send_data(cmd, last_in_batch);
if (ret <= 0)
goto done_send;
}
if (cmd->state == NVMET_TCP_SEND_DDGST) {
ret = nvmet_try_send_ddgst(cmd, last_in_batch);
if (ret <= 0)
goto done_send;
}
if (cmd->state == NVMET_TCP_SEND_R2T) {
ret = nvmet_try_send_r2t(cmd, last_in_batch);
if (ret <= 0)
goto done_send;
}
if (cmd->state == NVMET_TCP_SEND_RESPONSE)
ret = nvmet_try_send_response(cmd, last_in_batch);
done_send:
if (ret < 0) {
if (ret == -EAGAIN)
return 0;
return ret;
}
return 1;
}
static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
int budget, int *sends)
{
int i, ret = 0;
for (i = 0; i < budget; i++) {
ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
if (unlikely(ret < 0)) {
nvmet_tcp_socket_error(queue, ret);
goto done;
} else if (ret == 0) {
break;
}
(*sends)++;
}
done:
return ret;
}
static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
{
queue->offset = 0;
queue->left = sizeof(struct nvme_tcp_hdr);
queue->cmd = NULL;
queue->rcv_state = NVMET_TCP_RECV_PDU;
}
static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
ahash_request_free(queue->rcv_hash);
ahash_request_free(queue->snd_hash);
crypto_free_ahash(tfm);
}
static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
{
struct crypto_ahash *tfm;
tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
if (!queue->snd_hash)
goto free_tfm;
ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
if (!queue->rcv_hash)
goto free_snd_hash;
ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
return 0;
free_snd_hash:
ahash_request_free(queue->snd_hash);
free_tfm:
crypto_free_ahash(tfm);
return -ENOMEM;
}
static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
{
struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
struct msghdr msg = {};
struct kvec iov;
int ret;
if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
pr_err("bad nvme-tcp pdu length (%d)\n",
le32_to_cpu(icreq->hdr.plen));
nvmet_tcp_fatal_error(queue);
}
if (icreq->pfv != NVME_TCP_PFV_1_0) {
pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
return -EPROTO;
}
if (icreq->hpda != 0) {
pr_err("queue %d: unsupported hpda %d\n", queue->idx,
icreq->hpda);
return -EPROTO;
}
queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
if (queue->hdr_digest || queue->data_digest) {
ret = nvmet_tcp_alloc_crypto(queue);
if (ret)
return ret;
}
memset(icresp, 0, sizeof(*icresp));
icresp->hdr.type = nvme_tcp_icresp;
icresp->hdr.hlen = sizeof(*icresp);
icresp->hdr.pdo = 0;
icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
icresp->cpda = 0;
if (queue->hdr_digest)
icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
if (queue->data_digest)
icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
iov.iov_base = icresp;
iov.iov_len = sizeof(*icresp);
ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
if (ret < 0)
goto free_crypto;
queue->state = NVMET_TCP_Q_LIVE;
nvmet_prepare_receive_pdu(queue);
return 0;
free_crypto:
if (queue->hdr_digest || queue->data_digest)
nvmet_tcp_free_crypto(queue);
return ret;
}
static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
{
size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
int ret;
if (!nvme_is_write(cmd->req.cmd) ||
data_len > cmd->req.port->inline_data_size) {
nvmet_prepare_receive_pdu(queue);
return;
}
ret = nvmet_tcp_map_data(cmd);
if (unlikely(ret)) {
pr_err("queue %d: failed to map data\n", queue->idx);
nvmet_tcp_fatal_error(queue);
return;
}
queue->rcv_state = NVMET_TCP_RECV_DATA;
nvmet_tcp_map_pdu_iovec(cmd);
cmd->flags |= NVMET_TCP_F_INIT_FAILED;
}
static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
{
struct nvme_tcp_data_pdu *data = &queue->pdu.data;
struct nvmet_tcp_cmd *cmd;
cmd = &queue->cmds[data->ttag];
if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
pr_err("ttag %u unexpected data offset %u (expected %u)\n",
data->ttag, le32_to_cpu(data->data_offset),
cmd->rbytes_done);
/* FIXME: use path and transport errors */
nvmet_req_complete(&cmd->req,
NVME_SC_INVALID_FIELD | NVME_SC_DNR);
return -EPROTO;
}
cmd->pdu_len = le32_to_cpu(data->data_length);
cmd->pdu_recv = 0;
nvmet_tcp_map_pdu_iovec(cmd);
queue->cmd = cmd;
queue->rcv_state = NVMET_TCP_RECV_DATA;
return 0;
}
static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
{
struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
struct nvmet_req *req;
int ret;
if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
if (hdr->type != nvme_tcp_icreq) {
pr_err("unexpected pdu type (%d) before icreq\n",
hdr->type);
nvmet_tcp_fatal_error(queue);
return -EPROTO;
}
return nvmet_tcp_handle_icreq(queue);
}
if (hdr->type == nvme_tcp_h2c_data) {
ret = nvmet_tcp_handle_h2c_data_pdu(queue);
if (unlikely(ret))
return ret;
return 0;
}
queue->cmd = nvmet_tcp_get_cmd(queue);
if (unlikely(!queue->cmd)) {
/* This should never happen */
pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
queue->idx, queue->nr_cmds, queue->send_list_len,
nvme_cmd->common.opcode);
nvmet_tcp_fatal_error(queue);
return -ENOMEM;
}
req = &queue->cmd->req;
memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
&queue->nvme_sq, &nvmet_tcp_ops))) {
pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
req->cmd, req->cmd->common.command_id,
req->cmd->common.opcode,
le32_to_cpu(req->cmd->common.dptr.sgl.length));
nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
return -EAGAIN;
}
ret = nvmet_tcp_map_data(queue->cmd);
if (unlikely(ret)) {
pr_err("queue %d: failed to map data\n", queue->idx);
if (nvmet_tcp_has_inline_data(queue->cmd))
nvmet_tcp_fatal_error(queue);
else
nvmet_req_complete(req, ret);
ret = -EAGAIN;
goto out;
}
if (nvmet_tcp_need_data_in(queue->cmd)) {
if (nvmet_tcp_has_inline_data(queue->cmd)) {
queue->rcv_state = NVMET_TCP_RECV_DATA;
nvmet_tcp_map_pdu_iovec(queue->cmd);
return 0;
}
/* send back R2T */
nvmet_tcp_queue_response(&queue->cmd->req);
goto out;
}
queue->cmd->req.execute(&queue->cmd->req);
out:
nvmet_prepare_receive_pdu(queue);
return ret;
}
static const u8 nvme_tcp_pdu_sizes[] = {
[nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
[nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
[nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
};
static inline u8 nvmet_tcp_pdu_size(u8 type)
{
size_t idx = type;
return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
nvme_tcp_pdu_sizes[idx]) ?
nvme_tcp_pdu_sizes[idx] : 0;
}
static inline bool nvmet_tcp_pdu_valid(u8 type)
{
switch (type) {
case nvme_tcp_icreq:
case nvme_tcp_cmd:
case nvme_tcp_h2c_data:
/* fallthru */
return true;
}
return false;
}
static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
{
struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
int len;
struct kvec iov;
struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
recv:
iov.iov_base = (void *)&queue->pdu + queue->offset;
iov.iov_len = queue->left;
len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
iov.iov_len, msg.msg_flags);
if (unlikely(len < 0))
return len;
queue->offset += len;
queue->left -= len;
if (queue->left)
return -EAGAIN;
if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
u8 hdgst = nvmet_tcp_hdgst_len(queue);
if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
pr_err("unexpected pdu type %d\n", hdr->type);
nvmet_tcp_fatal_error(queue);
return -EIO;
}
if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
return -EIO;
}
queue->left = hdr->hlen - queue->offset + hdgst;
goto recv;
}
if (queue->hdr_digest &&
nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
nvmet_tcp_fatal_error(queue); /* fatal */
return -EPROTO;
}
if (queue->data_digest &&
nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
nvmet_tcp_fatal_error(queue); /* fatal */
return -EPROTO;
}
return nvmet_tcp_done_recv_pdu(queue);
}
static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
{
struct nvmet_tcp_queue *queue = cmd->queue;
nvmet_tcp_ddgst(queue->rcv_hash, cmd);
queue->offset = 0;
queue->left = NVME_TCP_DIGEST_LENGTH;
queue->rcv_state = NVMET_TCP_RECV_DDGST;
}
static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
{
struct nvmet_tcp_cmd *cmd = queue->cmd;
int ret;
while (msg_data_left(&cmd->recv_msg)) {
ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
cmd->recv_msg.msg_flags);
if (ret <= 0)
return ret;
cmd->pdu_recv += ret;
cmd->rbytes_done += ret;
}
nvmet_tcp_unmap_pdu_iovec(cmd);
if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
cmd->rbytes_done == cmd->req.transfer_len) {
if (queue->data_digest) {
nvmet_tcp_prep_recv_ddgst(cmd);
return 0;
}
cmd->req.execute(&cmd->req);
}
nvmet_prepare_receive_pdu(queue);
return 0;
}
static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
{
struct nvmet_tcp_cmd *cmd = queue->cmd;
int ret;
struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
struct kvec iov = {
.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
.iov_len = queue->left
};
ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
iov.iov_len, msg.msg_flags);
if (unlikely(ret < 0))
return ret;
queue->offset += ret;
queue->left -= ret;
if (queue->left)
return -EAGAIN;
if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
queue->idx, cmd->req.cmd->common.command_id,
queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
le32_to_cpu(cmd->exp_ddgst));
nvmet_tcp_finish_cmd(cmd);
nvmet_tcp_fatal_error(queue);
ret = -EPROTO;
goto out;
}
if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
cmd->rbytes_done == cmd->req.transfer_len)
cmd->req.execute(&cmd->req);
ret = 0;
out:
nvmet_prepare_receive_pdu(queue);
return ret;
}
static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
{
int result = 0;
if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
return 0;
if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
result = nvmet_tcp_try_recv_pdu(queue);
if (result != 0)
goto done_recv;
}
if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
result = nvmet_tcp_try_recv_data(queue);
if (result != 0)
goto done_recv;
}
if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
result = nvmet_tcp_try_recv_ddgst(queue);
if (result != 0)
goto done_recv;
}
done_recv:
if (result < 0) {
if (result == -EAGAIN)
return 0;
return result;
}
return 1;
}
static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
int budget, int *recvs)
{
int i, ret = 0;
for (i = 0; i < budget; i++) {
ret = nvmet_tcp_try_recv_one(queue);
if (unlikely(ret < 0)) {
nvmet_tcp_socket_error(queue, ret);
goto done;
} else if (ret == 0) {
break;
}
(*recvs)++;
}
done:
return ret;
}
static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
{
spin_lock(&queue->state_lock);
if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
queue->state = NVMET_TCP_Q_DISCONNECTING;
schedule_work(&queue->release_work);
}
spin_unlock(&queue->state_lock);
}
static void nvmet_tcp_io_work(struct work_struct *w)
{
struct nvmet_tcp_queue *queue =
container_of(w, struct nvmet_tcp_queue, io_work);
bool pending;
int ret, ops = 0;
do {
pending = false;
ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
if (ret > 0)
pending = true;
else if (ret < 0)
return;
ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
if (ret > 0)
pending = true;
else if (ret < 0)
return;
} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
/*
* We exahusted our budget, requeue our selves
*/
if (pending)
queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
}
static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
struct nvmet_tcp_cmd *c)
{
u8 hdgst = nvmet_tcp_hdgst_len(queue);
c->queue = queue;
c->req.port = queue->port->nport;
c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
if (!c->cmd_pdu)
return -ENOMEM;
c->req.cmd = &c->cmd_pdu->cmd;
c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
if (!c->rsp_pdu)
goto out_free_cmd;
c->req.cqe = &c->rsp_pdu->cqe;
c->data_pdu = page_frag_alloc(&queue->pf_cache,
sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
if (!c->data_pdu)
goto out_free_rsp;
c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
if (!c->r2t_pdu)
goto out_free_data;
c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
list_add_tail(&c->entry, &queue->free_list);
return 0;
out_free_data:
page_frag_free(c->data_pdu);
out_free_rsp:
page_frag_free(c->rsp_pdu);
out_free_cmd:
page_frag_free(c->cmd_pdu);
return -ENOMEM;
}
static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
{
page_frag_free(c->r2t_pdu);
page_frag_free(c->data_pdu);
page_frag_free(c->rsp_pdu);
page_frag_free(c->cmd_pdu);
}
static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
{
struct nvmet_tcp_cmd *cmds;
int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
if (!cmds)
goto out;
for (i = 0; i < nr_cmds; i++) {
ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
if (ret)
goto out_free;
}
queue->cmds = cmds;
return 0;
out_free:
while (--i >= 0)
nvmet_tcp_free_cmd(cmds + i);
kfree(cmds);
out:
return ret;
}
static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
{
struct nvmet_tcp_cmd *cmds = queue->cmds;
int i;
for (i = 0; i < queue->nr_cmds; i++)
nvmet_tcp_free_cmd(cmds + i);
nvmet_tcp_free_cmd(&queue->connect);
kfree(cmds);
}
static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
{
struct socket *sock = queue->sock;
write_lock_bh(&sock->sk->sk_callback_lock);
sock->sk->sk_data_ready = queue->data_ready;
sock->sk->sk_state_change = queue->state_change;
sock->sk->sk_write_space = queue->write_space;
sock->sk->sk_user_data = NULL;
write_unlock_bh(&sock->sk->sk_callback_lock);
}
static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
{
nvmet_req_uninit(&cmd->req);
nvmet_tcp_unmap_pdu_iovec(cmd);
kfree(cmd->iov);
sgl_free(cmd->req.sg);
}
static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
{
struct nvmet_tcp_cmd *cmd = queue->cmds;
int i;
for (i = 0; i < queue->nr_cmds; i++, cmd++) {
if (nvmet_tcp_need_data_in(cmd))
nvmet_tcp_finish_cmd(cmd);
}
if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
/* failed in connect */
nvmet_tcp_finish_cmd(&queue->connect);
}
}
static void nvmet_tcp_release_queue_work(struct work_struct *w)
{
struct nvmet_tcp_queue *queue =
container_of(w, struct nvmet_tcp_queue, release_work);
mutex_lock(&nvmet_tcp_queue_mutex);
list_del_init(&queue->queue_list);
mutex_unlock(&nvmet_tcp_queue_mutex);
nvmet_tcp_restore_socket_callbacks(queue);
flush_work(&queue->io_work);
nvmet_tcp_uninit_data_in_cmds(queue);
nvmet_sq_destroy(&queue->nvme_sq);
cancel_work_sync(&queue->io_work);
sock_release(queue->sock);
nvmet_tcp_free_cmds(queue);
if (queue->hdr_digest || queue->data_digest)
nvmet_tcp_free_crypto(queue);
ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
kfree(queue);
}
static void nvmet_tcp_data_ready(struct sock *sk)
{
struct nvmet_tcp_queue *queue;
read_lock_bh(&sk->sk_callback_lock);
queue = sk->sk_user_data;
if (likely(queue))
queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
read_unlock_bh(&sk->sk_callback_lock);
}
static void nvmet_tcp_write_space(struct sock *sk)
{
struct nvmet_tcp_queue *queue;
read_lock_bh(&sk->sk_callback_lock);
queue = sk->sk_user_data;
if (unlikely(!queue))
goto out;
if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
queue->write_space(sk);
goto out;
}
if (sk_stream_is_writeable(sk)) {
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
}
out:
read_unlock_bh(&sk->sk_callback_lock);
}
static void nvmet_tcp_state_change(struct sock *sk)
{
struct nvmet_tcp_queue *queue;
write_lock_bh(&sk->sk_callback_lock);
queue = sk->sk_user_data;
if (!queue)
goto done;
switch (sk->sk_state) {
case TCP_FIN_WAIT1:
case TCP_CLOSE_WAIT:
case TCP_CLOSE:
/* FALLTHRU */
sk->sk_user_data = NULL;
nvmet_tcp_schedule_release_queue(queue);
break;
default:
pr_warn("queue %d unhandled state %d\n",
queue->idx, sk->sk_state);
}
done:
write_unlock_bh(&sk->sk_callback_lock);
}
static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
{
struct socket *sock = queue->sock;
struct inet_sock *inet = inet_sk(sock->sk);
int ret;
ret = kernel_getsockname(sock,
(struct sockaddr *)&queue->sockaddr);
if (ret < 0)
return ret;
ret = kernel_getpeername(sock,
(struct sockaddr *)&queue->sockaddr_peer);
if (ret < 0)
return ret;
/*
* Cleanup whatever is sitting in the TCP transmit queue on socket
* close. This is done to prevent stale data from being sent should
* the network connection be restored before TCP times out.
*/
sock_no_linger(sock->sk);
if (so_priority > 0)
sock_set_priority(sock->sk, so_priority);
/* Set socket type of service */
if (inet->rcv_tos > 0)
ip_sock_set_tos(sock->sk, inet->rcv_tos);
write_lock_bh(&sock->sk->sk_callback_lock);
sock->sk->sk_user_data = queue;
queue->data_ready = sock->sk->sk_data_ready;
sock->sk->sk_data_ready = nvmet_tcp_data_ready;
queue->state_change = sock->sk->sk_state_change;
sock->sk->sk_state_change = nvmet_tcp_state_change;
queue->write_space = sock->sk->sk_write_space;
sock->sk->sk_write_space = nvmet_tcp_write_space;
write_unlock_bh(&sock->sk->sk_callback_lock);
return 0;
}
static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
struct socket *newsock)
{
struct nvmet_tcp_queue *queue;
int ret;
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
if (!queue)
return -ENOMEM;
INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
queue->sock = newsock;
queue->port = port;
queue->nr_cmds = 0;
spin_lock_init(&queue->state_lock);
queue->state = NVMET_TCP_Q_CONNECTING;
INIT_LIST_HEAD(&queue->free_list);
init_llist_head(&queue->resp_list);
INIT_LIST_HEAD(&queue->resp_send_list);
queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
if (queue->idx < 0) {
ret = queue->idx;
goto out_free_queue;
}
ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
if (ret)
goto out_ida_remove;
ret = nvmet_sq_init(&queue->nvme_sq);
if (ret)
goto out_free_connect;
port->last_cpu = cpumask_next_wrap(port->last_cpu,
cpu_online_mask, -1, false);
queue->cpu = port->last_cpu;
nvmet_prepare_receive_pdu(queue);
mutex_lock(&nvmet_tcp_queue_mutex);
list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
mutex_unlock(&nvmet_tcp_queue_mutex);
ret = nvmet_tcp_set_queue_sock(queue);
if (ret)
goto out_destroy_sq;
queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
return 0;
out_destroy_sq:
mutex_lock(&nvmet_tcp_queue_mutex);
list_del_init(&queue->queue_list);
mutex_unlock(&nvmet_tcp_queue_mutex);
nvmet_sq_destroy(&queue->nvme_sq);
out_free_connect:
nvmet_tcp_free_cmd(&queue->connect);
out_ida_remove:
ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
out_free_queue:
kfree(queue);
return ret;
}
static void nvmet_tcp_accept_work(struct work_struct *w)
{
struct nvmet_tcp_port *port =
container_of(w, struct nvmet_tcp_port, accept_work);
struct socket *newsock;
int ret;
while (true) {
ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
if (ret < 0) {
if (ret != -EAGAIN)
pr_warn("failed to accept err=%d\n", ret);
return;
}
ret = nvmet_tcp_alloc_queue(port, newsock);
if (ret) {
pr_err("failed to allocate queue\n");
sock_release(newsock);
}
}
}
static void nvmet_tcp_listen_data_ready(struct sock *sk)
{
struct nvmet_tcp_port *port;
read_lock_bh(&sk->sk_callback_lock);
port = sk->sk_user_data;
if (!port)
goto out;
if (sk->sk_state == TCP_LISTEN)
schedule_work(&port->accept_work);
out:
read_unlock_bh(&sk->sk_callback_lock);
}
static int nvmet_tcp_add_port(struct nvmet_port *nport)
{
struct nvmet_tcp_port *port;
__kernel_sa_family_t af;
int ret;
port = kzalloc(sizeof(*port), GFP_KERNEL);
if (!port)
return -ENOMEM;
switch (nport->disc_addr.adrfam) {
case NVMF_ADDR_FAMILY_IP4:
af = AF_INET;
break;
case NVMF_ADDR_FAMILY_IP6:
af = AF_INET6;
break;
default:
pr_err("address family %d not supported\n",
nport->disc_addr.adrfam);
ret = -EINVAL;
goto err_port;
}
ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
nport->disc_addr.trsvcid, &port->addr);
if (ret) {
pr_err("malformed ip/port passed: %s:%s\n",
nport->disc_addr.traddr, nport->disc_addr.trsvcid);
goto err_port;
}
port->nport = nport;
port->last_cpu = -1;
INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
if (port->nport->inline_data_size < 0)
port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
ret = sock_create(port->addr.ss_family, SOCK_STREAM,
IPPROTO_TCP, &port->sock);
if (ret) {
pr_err("failed to create a socket\n");
goto err_port;
}
port->sock->sk->sk_user_data = port;
port->data_ready = port->sock->sk->sk_data_ready;
port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
sock_set_reuseaddr(port->sock->sk);
tcp_sock_set_nodelay(port->sock->sk);
if (so_priority > 0)
sock_set_priority(port->sock->sk, so_priority);
ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
sizeof(port->addr));
if (ret) {
pr_err("failed to bind port socket %d\n", ret);
goto err_sock;
}
ret = kernel_listen(port->sock, 128);
if (ret) {
pr_err("failed to listen %d on port sock\n", ret);
goto err_sock;
}
nport->priv = port;
pr_info("enabling port %d (%pISpc)\n",
le16_to_cpu(nport->disc_addr.portid), &port->addr);
return 0;
err_sock:
sock_release(port->sock);
err_port:
kfree(port);
return ret;
}
static void nvmet_tcp_remove_port(struct nvmet_port *nport)
{
struct nvmet_tcp_port *port = nport->priv;
write_lock_bh(&port->sock->sk->sk_callback_lock);
port->sock->sk->sk_data_ready = port->data_ready;
port->sock->sk->sk_user_data = NULL;
write_unlock_bh(&port->sock->sk->sk_callback_lock);
cancel_work_sync(&port->accept_work);
sock_release(port->sock);
kfree(port);
}
static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
{
struct nvmet_tcp_queue *queue;
mutex_lock(&nvmet_tcp_queue_mutex);
list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
if (queue->nvme_sq.ctrl == ctrl)
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
mutex_unlock(&nvmet_tcp_queue_mutex);
}
static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
{
struct nvmet_tcp_queue *queue =
container_of(sq, struct nvmet_tcp_queue, nvme_sq);
if (sq->qid == 0) {
/* Let inflight controller teardown complete */
flush_scheduled_work();
}
queue->nr_cmds = sq->size * 2;
if (nvmet_tcp_alloc_cmds(queue))
return NVME_SC_INTERNAL;
return 0;
}
static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
struct nvmet_port *nport, char *traddr)
{
struct nvmet_tcp_port *port = nport->priv;
if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
struct nvmet_tcp_cmd *cmd =
container_of(req, struct nvmet_tcp_cmd, req);
struct nvmet_tcp_queue *queue = cmd->queue;
sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
} else {
memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
}
}
static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
.owner = THIS_MODULE,
.type = NVMF_TRTYPE_TCP,
.msdbd = 1,
.has_keyed_sgls = 0,
.add_port = nvmet_tcp_add_port,
.remove_port = nvmet_tcp_remove_port,
.queue_response = nvmet_tcp_queue_response,
.delete_ctrl = nvmet_tcp_delete_ctrl,
.install_queue = nvmet_tcp_install_queue,
.disc_traddr = nvmet_tcp_disc_port_addr,
};
static int __init nvmet_tcp_init(void)
{
int ret;
nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
if (!nvmet_tcp_wq)
return -ENOMEM;
ret = nvmet_register_transport(&nvmet_tcp_ops);
if (ret)
goto err;
return 0;
err:
destroy_workqueue(nvmet_tcp_wq);
return ret;
}
static void __exit nvmet_tcp_exit(void)
{
struct nvmet_tcp_queue *queue;
nvmet_unregister_transport(&nvmet_tcp_ops);
flush_scheduled_work();
mutex_lock(&nvmet_tcp_queue_mutex);
list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
mutex_unlock(&nvmet_tcp_queue_mutex);
flush_scheduled_work();
destroy_workqueue(nvmet_tcp_wq);
}
module_init(nvmet_tcp_init);
module_exit(nvmet_tcp_exit);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */