OpenCloudOS-Kernel/sound/firewire/fireface/ff-transaction.c

256 lines
7.3 KiB
C
Raw Normal View History

ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
/*
* ff-transaction.c - a part of driver for RME Fireface series
*
* Copyright (c) 2015-2017 Takashi Sakamoto
*
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include "ff.h"
static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
int rcode)
{
struct snd_rawmidi_substream *substream =
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:29 +08:00
READ_ONCE(ff->rx_midi_substreams[port]);
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
if (rcode_is_permanent_error(rcode)) {
ff->rx_midi_error[port] = true;
return;
}
if (rcode != RCODE_COMPLETE) {
/* Transfer the message again, immediately. */
ff->next_ktime[port] = 0;
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
schedule_work(&ff->rx_midi_work[port]);
return;
}
snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
ff->rx_bytes[port] = 0;
if (!snd_rawmidi_transmit_empty(substream))
schedule_work(&ff->rx_midi_work[port]);
}
static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
void *data, size_t length,
void *callback_data)
{
struct snd_ff *ff =
container_of(callback_data, struct snd_ff, transactions[0]);
finish_transmit_midi_msg(ff, 0, rcode);
}
static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
void *data, size_t length,
void *callback_data)
{
struct snd_ff *ff =
container_of(callback_data, struct snd_ff, transactions[1]);
finish_transmit_midi_msg(ff, 1, rcode);
}
static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
{
struct snd_rawmidi_substream *substream =
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 05:07:29 +08:00
READ_ONCE(ff->rx_midi_substreams[port]);
int quad_count;
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
struct fw_device *fw_dev = fw_parent_device(ff->unit);
unsigned long long addr;
int generation;
fw_transaction_callback_t callback;
int tcode;
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
if (substream == NULL || snd_rawmidi_transmit_empty(substream))
return;
if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
return;
/* Do it in next chance. */
if (ktime_after(ff->next_ktime[port], ktime_get())) {
schedule_work(&ff->rx_midi_work[port]);
return;
}
quad_count = ff->spec->protocol->fill_midi_msg(ff, substream, port);
if (quad_count <= 0)
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
return;
if (port == 0) {
addr = ff->spec->midi_rx_addrs[0];
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
callback = finish_transmit_midi0_msg;
} else {
addr = ff->spec->midi_rx_addrs[1];
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
callback = finish_transmit_midi1_msg;
}
/* Set interval to next transaction. */
ff->next_ktime[port] = ktime_add_ns(ktime_get(),
ff->rx_bytes[port] * 8 * NSEC_PER_SEC / 31250);
if (quad_count == 1)
tcode = TCODE_WRITE_QUADLET_REQUEST;
else
tcode = TCODE_WRITE_BLOCK_REQUEST;
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
/*
* In Linux FireWire core, when generation is updated with memory
* barrier, node id has already been updated. In this module, After
* this smp_rmb(), load/store instructions to memory are completed.
* Thus, both of generation and node id are available with recent
* values. This is a light-serialization solution to handle bus reset
* events on IEEE 1394 bus.
*/
generation = fw_dev->generation;
smp_rmb();
fw_send_request(fw_dev->card, &ff->transactions[port], tcode,
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
fw_dev->node_id, generation, fw_dev->max_speed,
addr, &ff->msg_buf[port], quad_count * 4,
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
callback, &ff->transactions[port]);
}
static void transmit_midi0_msg(struct work_struct *work)
{
struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
transmit_midi_msg(ff, 0);
}
static void transmit_midi1_msg(struct work_struct *work)
{
struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
transmit_midi_msg(ff, 1);
}
static void handle_midi_msg(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, unsigned long long offset,
void *data, size_t length, void *callback_data)
{
struct snd_ff *ff = callback_data;
__le32 *buf = data;
fw_send_response(card, request, RCODE_COMPLETE);
offset -= ff->async_handler.offset;
ff->spec->protocol->handle_midi_msg(ff, (unsigned int)offset, buf,
length);
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
}
static int allocate_own_address(struct snd_ff *ff, int i)
{
struct fw_address_region midi_msg_region;
int err;
ff->async_handler.length = ff->spec->midi_addr_range;
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
ff->async_handler.address_callback = handle_midi_msg;
ff->async_handler.callback_data = ff;
midi_msg_region.start = 0x000100000000ull * i;
midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
if (err >= 0) {
/* Controllers are allowed to register this region. */
if (ff->async_handler.offset & 0x0000ffffffff) {
fw_core_remove_address_handler(&ff->async_handler);
err = -EAGAIN;
}
}
return err;
}
/*
* Controllers are allowed to register higher 4 bytes of address to receive
* the transactions. Different models have different registers for this purpose;
* e.g. 0x'0000'8010'03f4 for Fireface 400.
* The controllers are not allowed to register lower 4 bytes of the address.
* They are forced to select one of 4 options for the part of address by writing
* corresponding bits to 0x'0000'8010'051f.
*
* The 3rd-6th bits of this register are flags to indicate lower 4 bytes of
* address to which the device transferrs the transactions. In short:
* - 0x20: 0x'....'....'0000'0180
* - 0x10: 0x'....'....'0000'0100
* - 0x08: 0x'....'....'0000'0080
* - 0x04: 0x'....'....'0000'0000
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
*
* This driver configure 0x'....'....'0000'0000 to receive MIDI messages from
* units. The 3rd bit of the register should be configured, however this driver
* deligates this task to userspace applications due to a restriction that this
* register is write-only and the other bits have own effects.
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
*
* Unlike Fireface 800, Fireface 400 cancels transferring asynchronous
* transactions when the 1st and 2nd of the register stand. These two bits have
* the same effect.
* - 0x02, 0x01: cancel transferring
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
*
* On the other hand, the bits have no effect on Fireface 800. This model
* cancels asynchronous transactions when the higher 4 bytes of address is
* overwritten with zero.
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
*/
int snd_ff_transaction_reregister(struct snd_ff *ff)
{
struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
u32 addr;
__le32 reg;
/*
* Controllers are allowed to register its node ID and upper 2 byte of
* local address to listen asynchronous transactions.
*/
addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
reg = cpu_to_le32(addr);
return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
ff->spec->midi_high_addr,
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
&reg, sizeof(reg), 0);
}
int snd_ff_transaction_register(struct snd_ff *ff)
{
int i, err;
/*
* Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
* be zero due to device specification.
*/
for (i = 0; i < 0xffff; i++) {
err = allocate_own_address(ff, i);
if (err != -EBUSY && err != -EAGAIN)
break;
}
if (err < 0)
return err;
err = snd_ff_transaction_reregister(ff);
if (err < 0)
return err;
INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
return 0;
}
void snd_ff_transaction_unregister(struct snd_ff *ff)
{
__le32 reg;
if (ff->async_handler.callback_data == NULL)
return;
ff->async_handler.callback_data = NULL;
/* Release higher 4 bytes of address. */
reg = cpu_to_le32(0x00000000);
snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
ff->spec->midi_high_addr,
ALSA: fireface: add transaction support As long as investigating Fireface 400, MIDI messages are transferred by asynchronous communication over IEEE 1394 bus. Fireface 400 receives MIDI messages by write transactions to two addresses; 0x'0000'0801'8000 and 0x'0000'0801'9000. Each of two seems to correspond to MIDI port 1 and 2. Fireface 400 transfers MIDI messages by write transactions to certain addresses which configured by drivers. The drivers can decide upper 4 byte of the addresses by write transactions to 0x'0000'0801'03f4. For the rest part of the address, drivers can select from below options: * 0x'0000'0000 * 0x'0000'0080 * 0x'0000'0100 * 0x'0000'0180 Selected options are represented in register 0x'0000'0801'051c as bit flags. Due to this mechanism, drivers are restricted to use addresses on 'Memory space' of IEEE 1222, even if transactions to the address have some side effects. This commit adds transaction support for MIDI messaging, based on my assumption that the similar mechanism is used on the other protocols. To receive asynchronous transactions, the driver allocates a range of address in 'Memory space'. I apply a strategy to use 0x'0000'0000 as lower 4 byte of the address. When getting failure from Linux FireWire subsystem, this driver retries to allocate addresses. Unfortunately, read transaction to address 0x'0000'0801'051c returns zero always, however write transactions have effects to the other features such as status of sampling clock. For this reason, this commit delegates a task to configure this register to user space applications. The applications should set 3rd bit in LSB in little endian order. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-31 21:06:03 +08:00
&reg, sizeof(reg), 0);
fw_core_remove_address_handler(&ff->async_handler);
}