OpenCloudOS-Kernel/drivers/gpu/drm/i915/i915_gem_object.h

486 lines
14 KiB
C
Raw Normal View History

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#ifndef __I915_GEM_OBJECT_H__
#define __I915_GEM_OBJECT_H__
#include <linux/reservation.h>
#include <drm/drm_vma_manager.h>
#include <drm/drm_gem.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_request.h"
#include "i915_selftest.h"
drm/i915: Split obj->cache_coherent to track r/w Another month, another story in the cache coherency saga. This time, we come to the realisation that i915_gem_object_is_coherent() has been reporting whether we can read from the target without requiring a cache invalidate; but we were using it in places for testing whether we could write into the object without requiring a cache flush. So split the tracking into two, one to decide before reads, one after writes. See commit e27ab73d17ef ("drm/i915: Mark CPU cache as dirty on every transition for CPU writes") for the previous entry in this saga. v2: Be verbose v3: Remove unused function (i915_gem_object_is_coherent) v4: Fix inverted coherency check prior to execbuf (from v2) v5: Add comment for nasty code where we are optimising on gcc's behalf. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=101109 Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=101555 Testcase: igt/kms_mmap_write_crc Testcase: igt/kms_pwrite_crc Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Dongwon Kim <dongwon.kim@intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Tested-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Acked-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170811111116.10373-1-chris@chris-wilson.co.uk Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2017-08-11 19:11:16 +08:00
struct drm_i915_gem_object;
/*
* struct i915_lut_handle tracks the fast lookups from handle to vma used
* for execbuf. Although we use a radixtree for that mapping, in order to
* remove them as the object or context is closed, we need a secondary list
* and a translation entry (i915_lut_handle).
*/
struct i915_lut_handle {
struct list_head obj_link;
struct list_head ctx_link;
struct i915_gem_context *ctx;
u32 handle;
};
struct drm_i915_gem_object_ops {
unsigned int flags;
drm/i915: Introduce GEM proxy GEM proxy is a kind of GEM, whose backing physical memory is pinned and produced by guest VM and is used by host as read only. With GEM proxy, host is able to access guest physical memory through GEM object interface. As GEM proxy is such a special kind of GEM, a new flag I915_GEM_OBJECT_IS_PROXY is introduced to ban host from changing the backing storage of GEM proxy. v3: - update "Reviewed-by". (Joonas) v2: - return -ENXIO when pin and map pages of GEM proxy to kernel space. (Chris) Here are the histories of this patch in "Dma-buf support for Gvt-g" patch-set: v14: - return -ENXIO when gem proxy object is banned by ioctl. (Chris) (Daniel) v13: - add comments to GEM proxy. (Chris) - don't ban GEM proxy in i915_gem_sw_finish_ioctl. (Chris) - check GEM proxy bar after finishing i915_gem_object_wait. (Chris) - remove GEM proxy bar in i915_gem_madvise_ioctl. v6: - add gem proxy barrier in the following ioctls. (Chris) i915_gem_set_caching_ioctl i915_gem_set_domain_ioctl i915_gem_sw_finish_ioctl i915_gem_set_tiling_ioctl i915_gem_madvise_ioctl Signed-off-by: Tina Zhang <tina.zhang@intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> #v1 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1510555798-21079-2-git-send-email-tina.zhang@intel.com Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20171114102513.22269-2-chris@chris-wilson.co.uk
2017-11-14 18:25:13 +08:00
#define I915_GEM_OBJECT_HAS_STRUCT_PAGE BIT(0)
#define I915_GEM_OBJECT_IS_SHRINKABLE BIT(1)
#define I915_GEM_OBJECT_IS_PROXY BIT(2)
/* Interface between the GEM object and its backing storage.
* get_pages() is called once prior to the use of the associated set
* of pages before to binding them into the GTT, and put_pages() is
* called after we no longer need them. As we expect there to be
* associated cost with migrating pages between the backing storage
* and making them available for the GPU (e.g. clflush), we may hold
* onto the pages after they are no longer referenced by the GPU
* in case they may be used again shortly (for example migrating the
* pages to a different memory domain within the GTT). put_pages()
* will therefore most likely be called when the object itself is
* being released or under memory pressure (where we attempt to
* reap pages for the shrinker).
*/
int (*get_pages)(struct drm_i915_gem_object *);
void (*put_pages)(struct drm_i915_gem_object *, struct sg_table *);
int (*pwrite)(struct drm_i915_gem_object *,
const struct drm_i915_gem_pwrite *);
int (*dmabuf_export)(struct drm_i915_gem_object *);
void (*release)(struct drm_i915_gem_object *);
};
struct drm_i915_gem_object {
struct drm_gem_object base;
const struct drm_i915_gem_object_ops *ops;
/**
* @vma_list: List of VMAs backed by this object
*
* The VMA on this list are ordered by type, all GGTT vma are placed
* at the head and all ppGTT vma are placed at the tail. The different
* types of GGTT vma are unordered between themselves, use the
* @vma_tree (which has a defined order between all VMA) to find an
* exact match.
*/
struct list_head vma_list;
/**
* @vma_tree: Ordered tree of VMAs backed by this object
*
* All VMA created for this object are placed in the @vma_tree for
* fast retrieval via a binary search in i915_vma_instance().
* They are also added to @vma_list for easy iteration.
*/
struct rb_root vma_tree;
/**
* @lut_list: List of vma lookup entries in use for this object.
*
* If this object is closed, we need to remove all of its VMA from
* the fast lookup index in associated contexts; @lut_list provides
* this translation from object to context->handles_vma.
*/
struct list_head lut_list;
/** Stolen memory for this object, instead of being backed by shmem. */
struct drm_mm_node *stolen;
union {
struct rcu_head rcu;
struct llist_node freed;
};
/**
* Whether the object is currently in the GGTT mmap.
*/
unsigned int userfault_count;
struct list_head userfault_link;
struct list_head batch_pool_link;
I915_SELFTEST_DECLARE(struct list_head st_link);
unsigned long flags;
/**
* Have we taken a reference for the object for incomplete GPU
* activity?
*/
#define I915_BO_ACTIVE_REF 0
/*
* Is the object to be mapped as read-only to the GPU
* Only honoured if hardware has relevant pte bit
*/
unsigned long gt_ro:1;
unsigned int cache_level:3;
drm/i915: Split obj->cache_coherent to track r/w Another month, another story in the cache coherency saga. This time, we come to the realisation that i915_gem_object_is_coherent() has been reporting whether we can read from the target without requiring a cache invalidate; but we were using it in places for testing whether we could write into the object without requiring a cache flush. So split the tracking into two, one to decide before reads, one after writes. See commit e27ab73d17ef ("drm/i915: Mark CPU cache as dirty on every transition for CPU writes") for the previous entry in this saga. v2: Be verbose v3: Remove unused function (i915_gem_object_is_coherent) v4: Fix inverted coherency check prior to execbuf (from v2) v5: Add comment for nasty code where we are optimising on gcc's behalf. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=101109 Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=101555 Testcase: igt/kms_mmap_write_crc Testcase: igt/kms_pwrite_crc Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Dongwon Kim <dongwon.kim@intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Tested-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Acked-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170811111116.10373-1-chris@chris-wilson.co.uk Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2017-08-11 19:11:16 +08:00
unsigned int cache_coherent:2;
#define I915_BO_CACHE_COHERENT_FOR_READ BIT(0)
#define I915_BO_CACHE_COHERENT_FOR_WRITE BIT(1)
unsigned int cache_dirty:1;
/**
* @read_domains: Read memory domains.
*
* These monitor which caches contain read/write data related to the
* object. When transitioning from one set of domains to another,
* the driver is called to ensure that caches are suitably flushed and
* invalidated.
*/
u16 read_domains;
/**
* @write_domain: Corresponding unique write memory domain.
*/
u16 write_domain;
atomic_t frontbuffer_bits;
unsigned int frontbuffer_ggtt_origin; /* write once */
struct i915_gem_active frontbuffer_write;
/** Current tiling stride for the object, if it's tiled. */
unsigned int tiling_and_stride;
#define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
#define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
#define STRIDE_MASK (~TILING_MASK)
/** Count of VMA actually bound by this object */
unsigned int bind_count;
unsigned int active_count;
/** Count of how many global VMA are currently pinned for use by HW */
unsigned int pin_global;
struct {
struct mutex lock; /* protects the pages and their use */
atomic_t pages_pin_count;
struct sg_table *pages;
void *mapping;
/* TODO: whack some of this into the error state */
struct i915_page_sizes {
/**
* The sg mask of the pages sg_table. i.e the mask of
* of the lengths for each sg entry.
*/
unsigned int phys;
/**
* The gtt page sizes we are allowed to use given the
* sg mask and the supported page sizes. This will
* express the smallest unit we can use for the whole
* object, as well as the larger sizes we may be able
* to use opportunistically.
*/
unsigned int sg;
/**
* The actual gtt page size usage. Since we can have
* multiple vma associated with this object we need to
* prevent any trampling of state, hence a copy of this
* struct also lives in each vma, therefore the gtt
* value here should only be read/write through the vma.
*/
unsigned int gtt;
} page_sizes;
I915_SELFTEST_DECLARE(unsigned int page_mask);
struct i915_gem_object_page_iter {
struct scatterlist *sg_pos;
unsigned int sg_idx; /* in pages, but 32bit eek! */
struct radix_tree_root radix;
struct mutex lock; /* protects this cache */
} get_page;
/**
* Element within i915->mm.unbound_list or i915->mm.bound_list,
* locked by i915->mm.obj_lock.
*/
struct list_head link;
/**
* Advice: are the backing pages purgeable?
*/
unsigned int madv:2;
/**
* This is set if the object has been written to since the
* pages were last acquired.
*/
bool dirty:1;
/**
* This is set if the object has been pinned due to unknown
* swizzling.
*/
bool quirked:1;
} mm;
/** Breadcrumb of last rendering to the buffer.
* There can only be one writer, but we allow for multiple readers.
* If there is a writer that necessarily implies that all other
* read requests are complete - but we may only be lazily clearing
* the read requests. A read request is naturally the most recent
* request on a ring, so we may have two different write and read
* requests on one ring where the write request is older than the
* read request. This allows for the CPU to read from an active
* buffer by only waiting for the write to complete.
*/
struct reservation_object *resv;
/** References from framebuffers, locks out tiling changes. */
unsigned int framebuffer_references;
/** Record of address bit 17 of each page at last unbind. */
unsigned long *bit_17;
union {
struct i915_gem_userptr {
uintptr_t ptr;
unsigned read_only :1;
struct i915_mm_struct *mm;
struct i915_mmu_object *mmu_object;
struct work_struct *work;
} userptr;
unsigned long scratch;
drm/i915/gvt: Dmabuf support for GVT-g This patch introduces a guest's framebuffer sharing mechanism based on dma-buf subsystem. With this sharing mechanism, guest's framebuffer can be shared between guest VM and host. v17: - modify VFIO_DEVICE_GET_GFX_DMABUF interface. (Alex) v16: - add x_hot and y_hot. (Gerd) - add flag validation for VFIO_DEVICE_GET_GFX_DMABUF. (Alex) - rebase 4.14.0-rc6. v15: - add VFIO_DEVICE_GET_GFX_DMABUF ABI. (Gerd) - add intel_vgpu_dmabuf_cleanup() to clean up the vGPU's dmabuf. (Gerd) v14: - add PROBE, DMABUF and REGION flags. (Alex) v12: - refine the lifecycle of dmabuf. v9: - remove dma-buf management. (Alex) - track the dma-buf create and release in kernel mode. (Gerd) (Daniel) v8: - refine the dma-buf ioctl definition.(Alex) - add a lock to protect the dmabuf list. (Alex) v7: - release dma-buf related allocations in dma-buf's associated release function. (Alex) - refine ioctl interface for querying plane info or create dma-buf. (Alex) v6: - align the dma-buf life cycle with the vfio device. (Alex) - add the dma-buf related operations in a separate patch. (Gerd) - i915 related changes. (Chris) v5: - fix bug while checking whether the gem obj is gvt's dma-buf when user change caching mode or domains. Add a helper function to do it. (Xiaoguang) - add definition for the query plane and create dma-buf. (Xiaoguang) v4: - fix bug while checking whether the gem obj is gvt's dma-buf when set caching mode or doamins. (Xiaoguang) v3: - declare a new flag I915_GEM_OBJECT_IS_GVT_DMABUF in drm_i915_gem_object to represent the gem obj for gvt's dma-buf. The tiling mode, caching mode and domains can not be changed for this kind of gem object. (Alex) - change dma-buf related information to be more generic. So other vendor can use the same interface. (Alex) v2: - create a management fd for dma-buf operations. (Alex) - alloc gem object's backing storage in gem obj's get_pages() callback. (Chris) Signed-off-by: Tina Zhang <tina.zhang@intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Gerd Hoffmann <kraxel@redhat.com> Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
2017-11-23 16:26:36 +08:00
void *gvt_info;
};
/** for phys allocated objects */
struct drm_dma_handle *phys_handle;
struct reservation_object __builtin_resv;
};
static inline struct drm_i915_gem_object *
to_intel_bo(struct drm_gem_object *gem)
{
/* Assert that to_intel_bo(NULL) == NULL */
BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
return container_of(gem, struct drm_i915_gem_object, base);
}
/**
* i915_gem_object_lookup_rcu - look up a temporary GEM object from its handle
* @filp: DRM file private date
* @handle: userspace handle
*
* Returns:
*
* A pointer to the object named by the handle if such exists on @filp, NULL
* otherwise. This object is only valid whilst under the RCU read lock, and
* note carefully the object may be in the process of being destroyed.
*/
static inline struct drm_i915_gem_object *
i915_gem_object_lookup_rcu(struct drm_file *file, u32 handle)
{
#ifdef CONFIG_LOCKDEP
WARN_ON(debug_locks && !lock_is_held(&rcu_lock_map));
#endif
return idr_find(&file->object_idr, handle);
}
static inline struct drm_i915_gem_object *
i915_gem_object_lookup(struct drm_file *file, u32 handle)
{
struct drm_i915_gem_object *obj;
rcu_read_lock();
obj = i915_gem_object_lookup_rcu(file, handle);
if (obj && !kref_get_unless_zero(&obj->base.refcount))
obj = NULL;
rcu_read_unlock();
return obj;
}
__deprecated
extern struct drm_gem_object *
drm_gem_object_lookup(struct drm_file *file, u32 handle);
__attribute__((nonnull))
static inline struct drm_i915_gem_object *
i915_gem_object_get(struct drm_i915_gem_object *obj)
{
drm_gem_object_reference(&obj->base);
return obj;
}
__deprecated
extern void drm_gem_object_reference(struct drm_gem_object *);
__attribute__((nonnull))
static inline void
i915_gem_object_put(struct drm_i915_gem_object *obj)
{
__drm_gem_object_unreference(&obj->base);
}
__deprecated
extern void drm_gem_object_unreference(struct drm_gem_object *);
__deprecated
extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
static inline void i915_gem_object_lock(struct drm_i915_gem_object *obj)
{
reservation_object_lock(obj->resv, NULL);
}
static inline void i915_gem_object_unlock(struct drm_i915_gem_object *obj)
{
reservation_object_unlock(obj->resv);
}
static inline bool
i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
{
return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
}
static inline bool
i915_gem_object_is_shrinkable(const struct drm_i915_gem_object *obj)
{
return obj->ops->flags & I915_GEM_OBJECT_IS_SHRINKABLE;
}
drm/i915: Introduce GEM proxy GEM proxy is a kind of GEM, whose backing physical memory is pinned and produced by guest VM and is used by host as read only. With GEM proxy, host is able to access guest physical memory through GEM object interface. As GEM proxy is such a special kind of GEM, a new flag I915_GEM_OBJECT_IS_PROXY is introduced to ban host from changing the backing storage of GEM proxy. v3: - update "Reviewed-by". (Joonas) v2: - return -ENXIO when pin and map pages of GEM proxy to kernel space. (Chris) Here are the histories of this patch in "Dma-buf support for Gvt-g" patch-set: v14: - return -ENXIO when gem proxy object is banned by ioctl. (Chris) (Daniel) v13: - add comments to GEM proxy. (Chris) - don't ban GEM proxy in i915_gem_sw_finish_ioctl. (Chris) - check GEM proxy bar after finishing i915_gem_object_wait. (Chris) - remove GEM proxy bar in i915_gem_madvise_ioctl. v6: - add gem proxy barrier in the following ioctls. (Chris) i915_gem_set_caching_ioctl i915_gem_set_domain_ioctl i915_gem_sw_finish_ioctl i915_gem_set_tiling_ioctl i915_gem_madvise_ioctl Signed-off-by: Tina Zhang <tina.zhang@intel.com> Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> #v1 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1510555798-21079-2-git-send-email-tina.zhang@intel.com Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20171114102513.22269-2-chris@chris-wilson.co.uk
2017-11-14 18:25:13 +08:00
static inline bool
i915_gem_object_is_proxy(const struct drm_i915_gem_object *obj)
{
return obj->ops->flags & I915_GEM_OBJECT_IS_PROXY;
}
static inline bool
i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
{
return obj->active_count;
}
static inline bool
i915_gem_object_has_active_reference(const struct drm_i915_gem_object *obj)
{
return test_bit(I915_BO_ACTIVE_REF, &obj->flags);
}
static inline void
i915_gem_object_set_active_reference(struct drm_i915_gem_object *obj)
{
lockdep_assert_held(&obj->base.dev->struct_mutex);
__set_bit(I915_BO_ACTIVE_REF, &obj->flags);
}
static inline void
i915_gem_object_clear_active_reference(struct drm_i915_gem_object *obj)
{
lockdep_assert_held(&obj->base.dev->struct_mutex);
__clear_bit(I915_BO_ACTIVE_REF, &obj->flags);
}
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj);
static inline bool
i915_gem_object_is_framebuffer(const struct drm_i915_gem_object *obj)
{
return READ_ONCE(obj->framebuffer_references);
}
static inline unsigned int
i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
{
return obj->tiling_and_stride & TILING_MASK;
}
static inline bool
i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
{
return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
}
static inline unsigned int
i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
{
return obj->tiling_and_stride & STRIDE_MASK;
}
static inline unsigned int
i915_gem_tile_height(unsigned int tiling)
{
GEM_BUG_ON(!tiling);
return tiling == I915_TILING_Y ? 32 : 8;
}
static inline unsigned int
i915_gem_object_get_tile_height(struct drm_i915_gem_object *obj)
{
return i915_gem_tile_height(i915_gem_object_get_tiling(obj));
}
static inline unsigned int
i915_gem_object_get_tile_row_size(struct drm_i915_gem_object *obj)
{
return (i915_gem_object_get_stride(obj) *
i915_gem_object_get_tile_height(obj));
}
int i915_gem_object_set_tiling(struct drm_i915_gem_object *obj,
unsigned int tiling, unsigned int stride);
static inline struct intel_engine_cs *
i915_gem_object_last_write_engine(struct drm_i915_gem_object *obj)
{
struct intel_engine_cs *engine = NULL;
struct dma_fence *fence;
rcu_read_lock();
fence = reservation_object_get_excl_rcu(obj->resv);
rcu_read_unlock();
if (fence && dma_fence_is_i915(fence) && !dma_fence_is_signaled(fence))
engine = to_request(fence)->engine;
dma_fence_put(fence);
return engine;
}
drm/i915: Split obj->cache_coherent to track r/w Another month, another story in the cache coherency saga. This time, we come to the realisation that i915_gem_object_is_coherent() has been reporting whether we can read from the target without requiring a cache invalidate; but we were using it in places for testing whether we could write into the object without requiring a cache flush. So split the tracking into two, one to decide before reads, one after writes. See commit e27ab73d17ef ("drm/i915: Mark CPU cache as dirty on every transition for CPU writes") for the previous entry in this saga. v2: Be verbose v3: Remove unused function (i915_gem_object_is_coherent) v4: Fix inverted coherency check prior to execbuf (from v2) v5: Add comment for nasty code where we are optimising on gcc's behalf. Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=101109 Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=101555 Testcase: igt/kms_mmap_write_crc Testcase: igt/kms_pwrite_crc Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Dongwon Kim <dongwon.kim@intel.com> Cc: Matt Roper <matthew.d.roper@intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Tested-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Acked-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20170811111116.10373-1-chris@chris-wilson.co.uk Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2017-08-11 19:11:16 +08:00
void i915_gem_object_set_cache_coherency(struct drm_i915_gem_object *obj,
unsigned int cache_level);
void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj);
#endif