OpenCloudOS-Kernel/include/linux/tee_drv.h

511 lines
15 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
* Copyright (c) 2015-2022 Linaro Limited
*/
#ifndef __TEE_DRV_H
#define __TEE_DRV_H
#include <linux/device.h>
#include <linux/idr.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/mod_devicetable.h>
#include <linux/tee.h>
#include <linux/types.h>
#include <linux/uuid.h>
/*
* The file describes the API provided by the generic TEE driver to the
* specific TEE driver.
*/
#define TEE_SHM_DYNAMIC BIT(0) /* Dynamic shared memory registered */
/* in secure world */
#define TEE_SHM_USER_MAPPED BIT(1) /* Memory mapped in user space */
#define TEE_SHM_POOL BIT(2) /* Memory allocated from pool */
#define TEE_SHM_PRIV BIT(3) /* Memory private to TEE driver */
struct device;
struct tee_device;
struct tee_shm;
struct tee_shm_pool;
/**
* struct tee_context - driver specific context on file pointer data
* @teedev: pointer to this drivers struct tee_device
* @list_shm: List of shared memory object owned by this context
* @data: driver specific context data, managed by the driver
* @refcount: reference counter for this structure
* @releasing: flag that indicates if context is being released right now.
* It is needed to break circular dependency on context during
* shared memory release.
* @supp_nowait: flag that indicates that requests in this context should not
* wait for tee-supplicant daemon to be started if not present
* and just return with an error code. It is needed for requests
* that arises from TEE based kernel drivers that should be
* non-blocking in nature.
* @cap_memref_null: flag indicating if the TEE Client support shared
* memory buffer with a NULL pointer.
*/
struct tee_context {
struct tee_device *teedev;
void *data;
struct kref refcount;
bool releasing;
bool supp_nowait;
bool cap_memref_null;
};
struct tee_param_memref {
size_t shm_offs;
size_t size;
struct tee_shm *shm;
};
struct tee_param_value {
u64 a;
u64 b;
u64 c;
};
struct tee_param {
u64 attr;
union {
struct tee_param_memref memref;
struct tee_param_value value;
} u;
};
/**
* struct tee_driver_ops - driver operations vtable
* @get_version: returns version of driver
* @open: called when the device file is opened
* @release: release this open file
* @open_session: open a new session
* @close_session: close a session
* @invoke_func: invoke a trusted function
* @cancel_req: request cancel of an ongoing invoke or open
* @supp_recv: called for supplicant to get a command
* @supp_send: called for supplicant to send a response
* @shm_register: register shared memory buffer in TEE
* @shm_unregister: unregister shared memory buffer in TEE
*/
struct tee_driver_ops {
void (*get_version)(struct tee_device *teedev,
struct tee_ioctl_version_data *vers);
int (*open)(struct tee_context *ctx);
void (*release)(struct tee_context *ctx);
int (*open_session)(struct tee_context *ctx,
struct tee_ioctl_open_session_arg *arg,
struct tee_param *param);
int (*close_session)(struct tee_context *ctx, u32 session);
int (*invoke_func)(struct tee_context *ctx,
struct tee_ioctl_invoke_arg *arg,
struct tee_param *param);
int (*cancel_req)(struct tee_context *ctx, u32 cancel_id, u32 session);
int (*supp_recv)(struct tee_context *ctx, u32 *func, u32 *num_params,
struct tee_param *param);
int (*supp_send)(struct tee_context *ctx, u32 ret, u32 num_params,
struct tee_param *param);
int (*shm_register)(struct tee_context *ctx, struct tee_shm *shm,
struct page **pages, size_t num_pages,
unsigned long start);
int (*shm_unregister)(struct tee_context *ctx, struct tee_shm *shm);
};
/**
* struct tee_desc - Describes the TEE driver to the subsystem
* @name: name of driver
* @ops: driver operations vtable
* @owner: module providing the driver
* @flags: Extra properties of driver, defined by TEE_DESC_* below
*/
#define TEE_DESC_PRIVILEGED 0x1
struct tee_desc {
const char *name;
const struct tee_driver_ops *ops;
struct module *owner;
u32 flags;
};
/**
* tee_device_alloc() - Allocate a new struct tee_device instance
* @teedesc: Descriptor for this driver
* @dev: Parent device for this device
* @pool: Shared memory pool, NULL if not used
* @driver_data: Private driver data for this device
*
* Allocates a new struct tee_device instance. The device is
* removed by tee_device_unregister().
*
* @returns a pointer to a 'struct tee_device' or an ERR_PTR on failure
*/
struct tee_device *tee_device_alloc(const struct tee_desc *teedesc,
struct device *dev,
struct tee_shm_pool *pool,
void *driver_data);
/**
* tee_device_register() - Registers a TEE device
* @teedev: Device to register
*
* tee_device_unregister() need to be called to remove the @teedev if
* this function fails.
*
* @returns < 0 on failure
*/
int tee_device_register(struct tee_device *teedev);
/**
* tee_device_unregister() - Removes a TEE device
* @teedev: Device to unregister
*
* This function should be called to remove the @teedev even if
* tee_device_register() hasn't been called yet. Does nothing if
* @teedev is NULL.
*/
void tee_device_unregister(struct tee_device *teedev);
/**
* tee_session_calc_client_uuid() - Calculates client UUID for session
* @uuid: Resulting UUID
* @connection_method: Connection method for session (TEE_IOCTL_LOGIN_*)
* @connectuon_data: Connection data for opening session
*
* Based on connection method calculates UUIDv5 based client UUID.
*
* For group based logins verifies that calling process has specified
* credentials.
*
* @return < 0 on failure
*/
int tee_session_calc_client_uuid(uuid_t *uuid, u32 connection_method,
const u8 connection_data[TEE_IOCTL_UUID_LEN]);
/**
* struct tee_shm - shared memory object
* @ctx: context using the object
* @paddr: physical address of the shared memory
* @kaddr: virtual address of the shared memory
* @size: size of shared memory
* @offset: offset of buffer in user space
* @pages: locked pages from userspace
* @num_pages: number of locked pages
* @refcount: reference counter
* @flags: defined by TEE_SHM_* in tee_drv.h
* @id: unique id of a shared memory object on this device, shared
* with user space
* @sec_world_id:
* secure world assigned id of this shared memory object, not
* used by all drivers
*
* This pool is only supposed to be accessed directly from the TEE
* subsystem and from drivers that implements their own shm pool manager.
*/
struct tee_shm {
struct tee_context *ctx;
phys_addr_t paddr;
void *kaddr;
size_t size;
unsigned int offset;
struct page **pages;
size_t num_pages;
refcount_t refcount;
u32 flags;
int id;
u64 sec_world_id;
};
/**
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
* struct tee_shm_pool - shared memory pool
* @ops: operations
* @private_data: private data for the shared memory manager
*/
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
struct tee_shm_pool {
const struct tee_shm_pool_ops *ops;
void *private_data;
};
/**
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
* struct tee_shm_pool_ops - shared memory pool operations
* @alloc: called when allocating shared memory
* @free: called when freeing shared memory
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
* @destroy_pool: called when destroying the pool
*/
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
struct tee_shm_pool_ops {
int (*alloc)(struct tee_shm_pool *pool, struct tee_shm *shm,
size_t size, size_t align);
void (*free)(struct tee_shm_pool *pool, struct tee_shm *shm);
void (*destroy_pool)(struct tee_shm_pool *pool);
};
/*
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
* tee_shm_pool_alloc_res_mem() - Create a shm manager for reserved memory
* @vaddr: Virtual address of start of pool
* @paddr: Physical address of start of pool
* @size: Size in bytes of the pool
*
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
* @returns pointer to a 'struct tee_shm_pool' or an ERR_PTR on failure.
*/
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
struct tee_shm_pool *tee_shm_pool_alloc_res_mem(unsigned long vaddr,
phys_addr_t paddr, size_t size,
int min_alloc_order);
/**
* tee_shm_pool_free() - Free a shared memory pool
* @pool: The shared memory pool to free
*
* The must be no remaining shared memory allocated from this pool when
* this function is called.
*/
tee: simplify shm pool handling Replaces the shared memory pool based on two pools with a single pool. The alloc() function pointer in struct tee_shm_pool_ops gets another parameter, align. This makes it possible to make less than page aligned allocations from the optional reserved shared memory pool while still making user space allocations page aligned. With in practice unchanged behaviour using only a single pool for bookkeeping. The allocation algorithm in the static OP-TEE shared memory pool is changed from best-fit to first-fit since only the latter supports an alignment parameter. The best-fit algorithm was previously the default choice and not a conscious one. The optee and amdtee drivers are updated as needed to work with this changed pool handling. This also removes OPTEE_SHM_NUM_PRIV_PAGES which becomes obsolete with this change as the private pages can be mixed with the payload pages. The OP-TEE driver changes minimum alignment for argument struct from 8 bytes to 512 bytes. A typical OP-TEE private shm allocation is 224 bytes (argument struct with 6 parameters, needed for open session). So with an alignment of 512 well waste a bit more than 50%. Before this we had a single page reserved for this so worst case usage compared to that would be 3 pages instead of 1 page. However, this worst case only occurs if there is a high pressure from multiple threads on secure world. All in all this should scale up and down better than fixed boundaries. Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
2022-02-04 17:33:53 +08:00
static inline void tee_shm_pool_free(struct tee_shm_pool *pool)
{
pool->ops->destroy_pool(pool);
}
/**
* tee_get_drvdata() - Return driver_data pointer
* @returns the driver_data pointer supplied to tee_register().
*/
void *tee_get_drvdata(struct tee_device *teedev);
struct tee_shm *tee_shm_alloc_priv_buf(struct tee_context *ctx, size_t size);
struct tee_shm *tee_shm_alloc_kernel_buf(struct tee_context *ctx, size_t size);
struct tee_shm *tee_shm_register_kernel_buf(struct tee_context *ctx,
void *addr, size_t length);
/**
* tee_shm_is_dynamic() - Check if shared memory object is of the dynamic kind
* @shm: Shared memory handle
* @returns true if object is dynamic shared memory
*/
static inline bool tee_shm_is_dynamic(struct tee_shm *shm)
{
return shm && (shm->flags & TEE_SHM_DYNAMIC);
}
/**
* tee_shm_free() - Free shared memory
* @shm: Handle to shared memory to free
*/
void tee_shm_free(struct tee_shm *shm);
/**
* tee_shm_put() - Decrease reference count on a shared memory handle
* @shm: Shared memory handle
*/
void tee_shm_put(struct tee_shm *shm);
/**
* tee_shm_get_va() - Get virtual address of a shared memory plus an offset
* @shm: Shared memory handle
* @offs: Offset from start of this shared memory
* @returns virtual address of the shared memory + offs if offs is within
* the bounds of this shared memory, else an ERR_PTR
*/
void *tee_shm_get_va(struct tee_shm *shm, size_t offs);
/**
* tee_shm_get_pa() - Get physical address of a shared memory plus an offset
* @shm: Shared memory handle
* @offs: Offset from start of this shared memory
* @pa: Physical address to return
* @returns 0 if offs is within the bounds of this shared memory, else an
* error code.
*/
int tee_shm_get_pa(struct tee_shm *shm, size_t offs, phys_addr_t *pa);
/**
* tee_shm_get_size() - Get size of shared memory buffer
* @shm: Shared memory handle
* @returns size of shared memory
*/
static inline size_t tee_shm_get_size(struct tee_shm *shm)
{
return shm->size;
}
/**
* tee_shm_get_pages() - Get list of pages that hold shared buffer
* @shm: Shared memory handle
* @num_pages: Number of pages will be stored there
* @returns pointer to pages array
*/
static inline struct page **tee_shm_get_pages(struct tee_shm *shm,
size_t *num_pages)
{
*num_pages = shm->num_pages;
return shm->pages;
}
/**
* tee_shm_get_page_offset() - Get shared buffer offset from page start
* @shm: Shared memory handle
* @returns page offset of shared buffer
*/
static inline size_t tee_shm_get_page_offset(struct tee_shm *shm)
{
return shm->offset;
}
/**
* tee_shm_get_id() - Get id of a shared memory object
* @shm: Shared memory handle
* @returns id
*/
static inline int tee_shm_get_id(struct tee_shm *shm)
{
return shm->id;
}
/**
* tee_shm_get_from_id() - Find shared memory object and increase reference
* count
* @ctx: Context owning the shared memory
* @id: Id of shared memory object
* @returns a pointer to 'struct tee_shm' on success or an ERR_PTR on failure
*/
struct tee_shm *tee_shm_get_from_id(struct tee_context *ctx, int id);
/**
* tee_client_open_context() - Open a TEE context
* @start: if not NULL, continue search after this context
* @match: function to check TEE device
* @data: data for match function
* @vers: if not NULL, version data of TEE device of the context returned
*
* This function does an operation similar to open("/dev/teeX") in user space.
* A returned context must be released with tee_client_close_context().
*
* Returns a TEE context of the first TEE device matched by the match()
* callback or an ERR_PTR.
*/
struct tee_context *
tee_client_open_context(struct tee_context *start,
int (*match)(struct tee_ioctl_version_data *,
const void *),
const void *data, struct tee_ioctl_version_data *vers);
/**
* tee_client_close_context() - Close a TEE context
* @ctx: TEE context to close
*
* Note that all sessions previously opened with this context will be
* closed when this function is called.
*/
void tee_client_close_context(struct tee_context *ctx);
/**
* tee_client_get_version() - Query version of TEE
* @ctx: TEE context to TEE to query
* @vers: Pointer to version data
*/
void tee_client_get_version(struct tee_context *ctx,
struct tee_ioctl_version_data *vers);
/**
* tee_client_open_session() - Open a session to a Trusted Application
* @ctx: TEE context
* @arg: Open session arguments, see description of
* struct tee_ioctl_open_session_arg
* @param: Parameters passed to the Trusted Application
*
* Returns < 0 on error else see @arg->ret for result. If @arg->ret
* is TEEC_SUCCESS the session identifier is available in @arg->session.
*/
int tee_client_open_session(struct tee_context *ctx,
struct tee_ioctl_open_session_arg *arg,
struct tee_param *param);
/**
* tee_client_close_session() - Close a session to a Trusted Application
* @ctx: TEE Context
* @session: Session id
*
* Return < 0 on error else 0, regardless the session will not be
* valid after this function has returned.
*/
int tee_client_close_session(struct tee_context *ctx, u32 session);
/**
* tee_client_invoke_func() - Invoke a function in a Trusted Application
* @ctx: TEE Context
* @arg: Invoke arguments, see description of
* struct tee_ioctl_invoke_arg
* @param: Parameters passed to the Trusted Application
*
* Returns < 0 on error else see @arg->ret for result.
*/
int tee_client_invoke_func(struct tee_context *ctx,
struct tee_ioctl_invoke_arg *arg,
struct tee_param *param);
/**
* tee_client_cancel_req() - Request cancellation of the previous open-session
* or invoke-command operations in a Trusted Application
* @ctx: TEE Context
* @arg: Cancellation arguments, see description of
* struct tee_ioctl_cancel_arg
*
* Returns < 0 on error else 0 if the cancellation was successfully requested.
*/
int tee_client_cancel_req(struct tee_context *ctx,
struct tee_ioctl_cancel_arg *arg);
static inline bool tee_param_is_memref(struct tee_param *param)
{
switch (param->attr & TEE_IOCTL_PARAM_ATTR_TYPE_MASK) {
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
return true;
default:
return false;
}
}
extern struct bus_type tee_bus_type;
/**
* struct tee_client_device - tee based device
* @id: device identifier
* @dev: device structure
*/
struct tee_client_device {
struct tee_client_device_id id;
struct device dev;
};
#define to_tee_client_device(d) container_of(d, struct tee_client_device, dev)
/**
* struct tee_client_driver - tee client driver
* @id_table: device id table supported by this driver
* @driver: driver structure
*/
struct tee_client_driver {
const struct tee_client_device_id *id_table;
struct device_driver driver;
};
#define to_tee_client_driver(d) \
container_of(d, struct tee_client_driver, driver)
/**
* teedev_open() - Open a struct tee_device
* @teedev: Device to open
*
* @return a pointer to struct tee_context on success or an ERR_PTR on failure.
*/
struct tee_context *teedev_open(struct tee_device *teedev);
/**
* teedev_close_context() - closes a struct tee_context
* @ctx: The struct tee_context to close
*/
void teedev_close_context(struct tee_context *ctx);
#endif /*__TEE_DRV_H*/