OpenCloudOS-Kernel/include/linux/random.h

141 lines
3.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_RANDOM_H
#define _LINUX_RANDOM_H
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/once.h>
#include <uapi/linux/random.h>
struct notifier_block;
void add_device_randomness(const void *buf, size_t len);
void __init add_bootloader_randomness(const void *buf, size_t len);
void add_input_randomness(unsigned int type, unsigned int code,
unsigned int value) __latent_entropy;
void add_interrupt_randomness(int irq) __latent_entropy;
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
gcc-plugins: Add latent_entropy plugin This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 02:41:19 +08:00
latent_entropy: avoid build error when plugin cflags are not set Some architectures set up CFLAGS for linux decompressor phase from scratch and do not include GCC_PLUGINS_CFLAGS. Since "latent_entropy" variable declaration is generated by the plugin code itself including linux/random.h in decompressor code then would cause a build error. E.g. on s390: In file included from ./include/linux/net.h:22, from ./include/linux/skbuff.h:29, from ./include/linux/if_ether.h:23, from ./arch/s390/include/asm/diag.h:12, from arch/s390/boot/startup.c:8: ./include/linux/random.h: In function 'add_latent_entropy': ./include/linux/random.h:26:39: error: 'latent_entropy' undeclared (first use in this function); did you mean 'add_latent_entropy'? 26 | add_device_randomness((const void *)&latent_entropy, | ^~~~~~~~~~~~~~ | add_latent_entropy ./include/linux/random.h:26:39: note: each undeclared identifier is reported only once for each function it appears in The build error is triggered by commit a80313ff91ab ("s390/kernel: introduce .dma sections") which made it into 5.2 merge window. To address that avoid using CONFIG_GCC_PLUGIN_LATENT_ENTROPY in favour of LATENT_ENTROPY_PLUGIN definition which is defined as a part of gcc plugins cflags and hence reflect more accurately when gcc plugin is active. Besides that it is also used for similar purpose in linux/compiler-gcc.h for latent_entropy attribute definition. Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2019-05-07 22:28:15 +08:00
#if defined(LATENT_ENTROPY_PLUGIN) && !defined(__CHECKER__)
gcc-plugins: Add latent_entropy plugin This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 02:41:19 +08:00
static inline void add_latent_entropy(void)
{
add_device_randomness((const void *)&latent_entropy, sizeof(latent_entropy));
gcc-plugins: Add latent_entropy plugin This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 02:41:19 +08:00
}
#else
static inline void add_latent_entropy(void) { }
gcc-plugins: Add latent_entropy plugin This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-21 02:41:19 +08:00
#endif
#if IS_ENABLED(CONFIG_VMGENID)
void add_vmfork_randomness(const void *unique_vm_id, size_t len);
int register_random_vmfork_notifier(struct notifier_block *nb);
int unregister_random_vmfork_notifier(struct notifier_block *nb);
#else
static inline int register_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
static inline int unregister_random_vmfork_notifier(struct notifier_block *nb) { return 0; }
#endif
void get_random_bytes(void *buf, size_t len);
u8 get_random_u8(void);
u16 get_random_u16(void);
u32 get_random_u32(void);
u64 get_random_u64(void);
static inline unsigned long get_random_long(void)
{
#if BITS_PER_LONG == 64
return get_random_u64();
#else
return get_random_u32();
#endif
}
random,stackprotect: introduce get_random_canary function Patch series "stackprotector: ascii armor the stack canary", v2. Zero out the first byte of the stack canary value on 64 bit systems, in order to mitigate unterminated C string overflows. The null byte both prevents C string functions from reading the canary, and from writing it if the canary value were guessed or obtained through some other means. Reducing the entropy by 8 bits is acceptable on 64-bit systems, which will still have 56 bits of entropy left, but not on 32 bit systems, so the "ascii armor" canary is only implemented on 64-bit systems. Inspired by the "ascii armor" code in execshield and Daniel Micay's linux-hardened tree. Also see https://github.com/thestinger/linux-hardened/ This patch (of 5): Introduce get_random_canary(), which provides a random unsigned long canary value with the first byte zeroed out on 64 bit architectures, in order to mitigate non-terminated C string overflows. The null byte both prevents C string functions from reading the canary, and from writing it if the canary value were guessed or obtained through some other means. Reducing the entropy by 8 bits is acceptable on 64-bit systems, which will still have 56 bits of entropy left, but not on 32 bit systems, so the "ascii armor" canary is only implemented on 64-bit systems. Inspired by the "ascii armor" code in the old execshield patches, and Daniel Micay's linux-hardened tree. Link: http://lkml.kernel.org/r/20170524155751.424-2-riel@redhat.com Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:36:17 +08:00
/*
* On 64-bit architectures, protect against non-terminated C string overflows
* by zeroing out the first byte of the canary; this leaves 56 bits of entropy.
*/
#ifdef CONFIG_64BIT
# ifdef __LITTLE_ENDIAN
# define CANARY_MASK 0xffffffffffffff00UL
# else /* big endian, 64 bits: */
# define CANARY_MASK 0x00ffffffffffffffUL
# endif
#else /* 32 bits: */
# define CANARY_MASK 0xffffffffUL
#endif
static inline unsigned long get_random_canary(void)
{
return get_random_long() & CANARY_MASK;
random,stackprotect: introduce get_random_canary function Patch series "stackprotector: ascii armor the stack canary", v2. Zero out the first byte of the stack canary value on 64 bit systems, in order to mitigate unterminated C string overflows. The null byte both prevents C string functions from reading the canary, and from writing it if the canary value were guessed or obtained through some other means. Reducing the entropy by 8 bits is acceptable on 64-bit systems, which will still have 56 bits of entropy left, but not on 32 bit systems, so the "ascii armor" canary is only implemented on 64-bit systems. Inspired by the "ascii armor" code in execshield and Daniel Micay's linux-hardened tree. Also see https://github.com/thestinger/linux-hardened/ This patch (of 5): Introduce get_random_canary(), which provides a random unsigned long canary value with the first byte zeroed out on 64 bit architectures, in order to mitigate non-terminated C string overflows. The null byte both prevents C string functions from reading the canary, and from writing it if the canary value were guessed or obtained through some other means. Reducing the entropy by 8 bits is acceptable on 64-bit systems, which will still have 56 bits of entropy left, but not on 32 bit systems, so the "ascii armor" canary is only implemented on 64-bit systems. Inspired by the "ascii armor" code in the old execshield patches, and Daniel Micay's linux-hardened tree. Link: http://lkml.kernel.org/r/20170524155751.424-2-riel@redhat.com Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 05:36:17 +08:00
}
random: split initialization into early step and later step The full RNG initialization relies on some timestamps, made possible with initialization functions like time_init() and timekeeping_init(). However, these are only available rather late in initialization. Meanwhile, other things, such as memory allocator functions, make use of the RNG much earlier. So split RNG initialization into two phases. We can provide arch randomness very early on, and then later, after timekeeping and such are available, initialize the rest. This ensures that, for example, slabs are properly randomized if RDRAND is available. Without this, CONFIG_SLAB_FREELIST_RANDOM=y loses a degree of its security, because its random seed is potentially deterministic, since it hasn't yet incorporated RDRAND. It also makes it possible to use a better seed in kfence, which currently relies on only the cycle counter. Another positive consequence is that on systems with RDRAND, running with CONFIG_WARN_ALL_UNSEEDED_RANDOM=y results in no warnings at all. One subtle side effect of this change is that on systems with no RDRAND, RDTSC is now only queried by random_init() once, committing the moment of the function call, instead of multiple times as before. This is intentional, as the multiple RDTSCs in a loop before weren't accomplishing very much, with jitter being better provided by try_to_generate_entropy(). Plus, filling blocks with RDTSC is still being done in extract_entropy(), which is necessarily called before random bytes are served anyway. Cc: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-09-26 23:43:14 +08:00
void __init random_init_early(const char *command_line);
void __init random_init(void);
bool rng_is_initialized(void);
int wait_for_random_bytes(void);
/* Calls wait_for_random_bytes() and then calls get_random_bytes(buf, nbytes).
* Returns the result of the call to wait_for_random_bytes. */
static inline int get_random_bytes_wait(void *buf, size_t nbytes)
{
int ret = wait_for_random_bytes();
get_random_bytes(buf, nbytes);
return ret;
}
#define declare_get_random_var_wait(name, ret_type) \
static inline int get_random_ ## name ## _wait(ret_type *out) { \
int ret = wait_for_random_bytes(); \
if (unlikely(ret)) \
return ret; \
*out = get_random_ ## name(); \
return 0; \
}
declare_get_random_var_wait(u8, u8)
declare_get_random_var_wait(u16, u16)
declare_get_random_var_wait(u32, u32)
declare_get_random_var_wait(u64, u32)
declare_get_random_var_wait(long, unsigned long)
#undef declare_get_random_var
/*
* This is designed to be standalone for just prandom
* users, but for now we include it from <linux/random.h>
* for legacy reasons.
*/
#include <linux/prandom.h>
random: remove CONFIG_ARCH_RANDOM When RDRAND was introduced, there was much discussion on whether it should be trusted and how the kernel should handle that. Initially, two mechanisms cropped up, CONFIG_ARCH_RANDOM, a compile time switch, and "nordrand", a boot-time switch. Later the thinking evolved. With a properly designed RNG, using RDRAND values alone won't harm anything, even if the outputs are malicious. Rather, the issue is whether those values are being *trusted* to be good or not. And so a new set of options were introduced as the real ones that people use -- CONFIG_RANDOM_TRUST_CPU and "random.trust_cpu". With these options, RDRAND is used, but it's not always credited. So in the worst case, it does nothing, and in the best case, maybe it helps. Along the way, CONFIG_ARCH_RANDOM's meaning got sort of pulled into the center and became something certain platforms force-select. The old options don't really help with much, and it's a bit odd to have special handling for these instructions when the kernel can deal fine with the existence or untrusted existence or broken existence or non-existence of that CPU capability. Simplify the situation by removing CONFIG_ARCH_RANDOM and using the ordinary asm-generic fallback pattern instead, keeping the two options that are actually used. For now it leaves "nordrand" for now, as the removal of that will take a different route. Acked-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Borislav Petkov <bp@suse.de> Acked-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-07-06 02:48:41 +08:00
#include <asm/archrandom.h>
/*
* Called from the boot CPU during startup; not valid to call once
* secondary CPUs are up and preemption is possible.
*/
#ifndef arch_get_random_seed_longs_early
static inline size_t __init arch_get_random_seed_longs_early(unsigned long *v, size_t max_longs)
{
WARN_ON(system_state != SYSTEM_BOOTING);
return arch_get_random_seed_longs(v, max_longs);
}
#endif
#ifndef arch_get_random_longs_early
static inline bool __init arch_get_random_longs_early(unsigned long *v, size_t max_longs)
{
WARN_ON(system_state != SYSTEM_BOOTING);
return arch_get_random_longs(v, max_longs);
}
#endif
#ifdef CONFIG_SMP
int random_prepare_cpu(unsigned int cpu);
int random_online_cpu(unsigned int cpu);
#endif
#ifndef MODULE
extern const struct file_operations random_fops, urandom_fops;
#endif
#endif /* _LINUX_RANDOM_H */