OpenCloudOS-Kernel/kernel/trace/ftrace.c

3402 lines
70 KiB
C
Raw Normal View History

/*
* Infrastructure for profiling code inserted by 'gcc -pg'.
*
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
* Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
*
* Originally ported from the -rt patch by:
* Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Based on code in the latency_tracer, that is:
*
* Copyright (C) 2004-2006 Ingo Molnar
* Copyright (C) 2004 William Lee Irwin III
*/
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <linux/stop_machine.h>
#include <linux/clocksource.h>
#include <linux/kallsyms.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
#include <linux/seq_file.h>
#include <linux/suspend.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
#include <linux/debugfs.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <linux/hardirq.h>
#include <linux/kthread.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
#include <linux/uaccess.h>
#include <linux/kprobes.h>
#include <linux/ftrace.h>
#include <linux/sysctl.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
#include <linux/ctype.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <linux/list.h>
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
#include <linux/hash.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#include <trace/events/sched.h>
#include <asm/ftrace.h>
#include <asm/setup.h>
#include "trace_output.h"
#include "trace_stat.h"
#define FTRACE_WARN_ON(cond) \
do { \
if (WARN_ON(cond)) \
ftrace_kill(); \
} while (0)
#define FTRACE_WARN_ON_ONCE(cond) \
do { \
if (WARN_ON_ONCE(cond)) \
ftrace_kill(); \
} while (0)
/* hash bits for specific function selection */
#define FTRACE_HASH_BITS 7
#define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS)
/* ftrace_enabled is a method to turn ftrace on or off */
int ftrace_enabled __read_mostly;
static int last_ftrace_enabled;
/* Quick disabling of function tracer. */
int function_trace_stop;
/* List for set_ftrace_pid's pids. */
LIST_HEAD(ftrace_pids);
struct ftrace_pid {
struct list_head list;
struct pid *pid;
};
/*
* ftrace_disabled is set when an anomaly is discovered.
* ftrace_disabled is much stronger than ftrace_enabled.
*/
static int ftrace_disabled __read_mostly;
static DEFINE_MUTEX(ftrace_lock);
static struct ftrace_ops ftrace_list_end __read_mostly =
{
.func = ftrace_stub,
};
static struct ftrace_ops *ftrace_list __read_mostly = &ftrace_list_end;
ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
ftrace_func_t __ftrace_trace_function __read_mostly = ftrace_stub;
ftrace_func_t ftrace_pid_function __read_mostly = ftrace_stub;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static int ftrace_set_func(unsigned long *array, int *idx, char *buffer);
#endif
static void ftrace_list_func(unsigned long ip, unsigned long parent_ip)
{
struct ftrace_ops *op = ftrace_list;
/* in case someone actually ports this to alpha! */
read_barrier_depends();
while (op != &ftrace_list_end) {
/* silly alpha */
read_barrier_depends();
op->func(ip, parent_ip);
op = op->next;
};
}
static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip)
{
if (!test_tsk_trace_trace(current))
return;
ftrace_pid_function(ip, parent_ip);
}
static void set_ftrace_pid_function(ftrace_func_t func)
{
/* do not set ftrace_pid_function to itself! */
if (func != ftrace_pid_func)
ftrace_pid_function = func;
}
/**
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
* clear_ftrace_function - reset the ftrace function
*
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
* This NULLs the ftrace function and in essence stops
* tracing. There may be lag
*/
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
void clear_ftrace_function(void)
{
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ftrace_trace_function = ftrace_stub;
__ftrace_trace_function = ftrace_stub;
ftrace_pid_function = ftrace_stub;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
#ifndef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST
/*
* For those archs that do not test ftrace_trace_stop in their
* mcount call site, we need to do it from C.
*/
static void ftrace_test_stop_func(unsigned long ip, unsigned long parent_ip)
{
if (function_trace_stop)
return;
__ftrace_trace_function(ip, parent_ip);
}
#endif
static int __register_ftrace_function(struct ftrace_ops *ops)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
ops->next = ftrace_list;
/*
* We are entering ops into the ftrace_list but another
* CPU might be walking that list. We need to make sure
* the ops->next pointer is valid before another CPU sees
* the ops pointer included into the ftrace_list.
*/
smp_wmb();
ftrace_list = ops;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
if (ftrace_enabled) {
ftrace_func_t func;
if (ops->next == &ftrace_list_end)
func = ops->func;
else
func = ftrace_list_func;
if (!list_empty(&ftrace_pids)) {
set_ftrace_pid_function(func);
func = ftrace_pid_func;
}
/*
* For one func, simply call it directly.
* For more than one func, call the chain.
*/
#ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST
ftrace_trace_function = func;
#else
__ftrace_trace_function = func;
ftrace_trace_function = ftrace_test_stop_func;
#endif
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
return 0;
}
static int __unregister_ftrace_function(struct ftrace_ops *ops)
{
struct ftrace_ops **p;
/*
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
* If we are removing the last function, then simply point
* to the ftrace_stub.
*/
if (ftrace_list == ops && ops->next == &ftrace_list_end) {
ftrace_trace_function = ftrace_stub;
ftrace_list = &ftrace_list_end;
return 0;
}
for (p = &ftrace_list; *p != &ftrace_list_end; p = &(*p)->next)
if (*p == ops)
break;
if (*p != ops)
return -1;
*p = (*p)->next;
if (ftrace_enabled) {
/* If we only have one func left, then call that directly */
if (ftrace_list->next == &ftrace_list_end) {
ftrace_func_t func = ftrace_list->func;
if (!list_empty(&ftrace_pids)) {
set_ftrace_pid_function(func);
func = ftrace_pid_func;
}
#ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST
ftrace_trace_function = func;
#else
__ftrace_trace_function = func;
#endif
}
}
return 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
static void ftrace_update_pid_func(void)
{
ftrace_func_t func;
if (ftrace_trace_function == ftrace_stub)
return;
#ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST
func = ftrace_trace_function;
#else
func = __ftrace_trace_function;
#endif
if (!list_empty(&ftrace_pids)) {
set_ftrace_pid_function(func);
func = ftrace_pid_func;
} else {
if (func == ftrace_pid_func)
func = ftrace_pid_function;
}
#ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST
ftrace_trace_function = func;
#else
__ftrace_trace_function = func;
#endif
}
#ifdef CONFIG_FUNCTION_PROFILER
struct ftrace_profile {
struct hlist_node node;
unsigned long ip;
unsigned long counter;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
unsigned long long time;
#endif
};
struct ftrace_profile_page {
struct ftrace_profile_page *next;
unsigned long index;
struct ftrace_profile records[];
};
struct ftrace_profile_stat {
atomic_t disabled;
struct hlist_head *hash;
struct ftrace_profile_page *pages;
struct ftrace_profile_page *start;
struct tracer_stat stat;
};
#define PROFILE_RECORDS_SIZE \
(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
#define PROFILES_PER_PAGE \
(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
static int ftrace_profile_bits __read_mostly;
static int ftrace_profile_enabled __read_mostly;
/* ftrace_profile_lock - synchronize the enable and disable of the profiler */
static DEFINE_MUTEX(ftrace_profile_lock);
static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
#define FTRACE_PROFILE_HASH_SIZE 1024 /* must be power of 2 */
static void *
function_stat_next(void *v, int idx)
{
struct ftrace_profile *rec = v;
struct ftrace_profile_page *pg;
pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
again:
if (idx != 0)
rec++;
if ((void *)rec >= (void *)&pg->records[pg->index]) {
pg = pg->next;
if (!pg)
return NULL;
rec = &pg->records[0];
if (!rec->counter)
goto again;
}
return rec;
}
static void *function_stat_start(struct tracer_stat *trace)
{
struct ftrace_profile_stat *stat =
container_of(trace, struct ftrace_profile_stat, stat);
if (!stat || !stat->start)
return NULL;
return function_stat_next(&stat->start->records[0], 0);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* function graph compares on total time */
static int function_stat_cmp(void *p1, void *p2)
{
struct ftrace_profile *a = p1;
struct ftrace_profile *b = p2;
if (a->time < b->time)
return -1;
if (a->time > b->time)
return 1;
else
return 0;
}
#else
/* not function graph compares against hits */
static int function_stat_cmp(void *p1, void *p2)
{
struct ftrace_profile *a = p1;
struct ftrace_profile *b = p2;
if (a->counter < b->counter)
return -1;
if (a->counter > b->counter)
return 1;
else
return 0;
}
#endif
static int function_stat_headers(struct seq_file *m)
{
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
seq_printf(m, " Function "
"Hit Time Avg\n"
" -------- "
"--- ---- ---\n");
#else
seq_printf(m, " Function Hit\n"
" -------- ---\n");
#endif
return 0;
}
static int function_stat_show(struct seq_file *m, void *v)
{
struct ftrace_profile *rec = v;
char str[KSYM_SYMBOL_LEN];
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static DEFINE_MUTEX(mutex);
static struct trace_seq s;
unsigned long long avg;
#endif
kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
seq_printf(m, " %-30.30s %10lu", str, rec->counter);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
seq_printf(m, " ");
avg = rec->time;
do_div(avg, rec->counter);
mutex_lock(&mutex);
trace_seq_init(&s);
trace_print_graph_duration(rec->time, &s);
trace_seq_puts(&s, " ");
trace_print_graph_duration(avg, &s);
trace_print_seq(m, &s);
mutex_unlock(&mutex);
#endif
seq_putc(m, '\n');
return 0;
}
static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
{
struct ftrace_profile_page *pg;
pg = stat->pages = stat->start;
while (pg) {
memset(pg->records, 0, PROFILE_RECORDS_SIZE);
pg->index = 0;
pg = pg->next;
}
memset(stat->hash, 0,
FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
}
int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
{
struct ftrace_profile_page *pg;
int functions;
int pages;
int i;
/* If we already allocated, do nothing */
if (stat->pages)
return 0;
stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
if (!stat->pages)
return -ENOMEM;
#ifdef CONFIG_DYNAMIC_FTRACE
functions = ftrace_update_tot_cnt;
#else
/*
* We do not know the number of functions that exist because
* dynamic tracing is what counts them. With past experience
* we have around 20K functions. That should be more than enough.
* It is highly unlikely we will execute every function in
* the kernel.
*/
functions = 20000;
#endif
pg = stat->start = stat->pages;
pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
for (i = 0; i < pages; i++) {
pg->next = (void *)get_zeroed_page(GFP_KERNEL);
if (!pg->next)
goto out_free;
pg = pg->next;
}
return 0;
out_free:
pg = stat->start;
while (pg) {
unsigned long tmp = (unsigned long)pg;
pg = pg->next;
free_page(tmp);
}
free_page((unsigned long)stat->pages);
stat->pages = NULL;
stat->start = NULL;
return -ENOMEM;
}
static int ftrace_profile_init_cpu(int cpu)
{
struct ftrace_profile_stat *stat;
int size;
stat = &per_cpu(ftrace_profile_stats, cpu);
if (stat->hash) {
/* If the profile is already created, simply reset it */
ftrace_profile_reset(stat);
return 0;
}
/*
* We are profiling all functions, but usually only a few thousand
* functions are hit. We'll make a hash of 1024 items.
*/
size = FTRACE_PROFILE_HASH_SIZE;
stat->hash = kzalloc(sizeof(struct hlist_head) * size, GFP_KERNEL);
if (!stat->hash)
return -ENOMEM;
if (!ftrace_profile_bits) {
size--;
for (; size; size >>= 1)
ftrace_profile_bits++;
}
/* Preallocate the function profiling pages */
if (ftrace_profile_pages_init(stat) < 0) {
kfree(stat->hash);
stat->hash = NULL;
return -ENOMEM;
}
return 0;
}
static int ftrace_profile_init(void)
{
int cpu;
int ret = 0;
for_each_online_cpu(cpu) {
ret = ftrace_profile_init_cpu(cpu);
if (ret)
break;
}
return ret;
}
/* interrupts must be disabled */
static struct ftrace_profile *
ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
{
struct ftrace_profile *rec;
struct hlist_head *hhd;
struct hlist_node *n;
unsigned long key;
key = hash_long(ip, ftrace_profile_bits);
hhd = &stat->hash[key];
if (hlist_empty(hhd))
return NULL;
hlist_for_each_entry_rcu(rec, n, hhd, node) {
if (rec->ip == ip)
return rec;
}
return NULL;
}
static void ftrace_add_profile(struct ftrace_profile_stat *stat,
struct ftrace_profile *rec)
{
unsigned long key;
key = hash_long(rec->ip, ftrace_profile_bits);
hlist_add_head_rcu(&rec->node, &stat->hash[key]);
}
/*
* The memory is already allocated, this simply finds a new record to use.
*/
static struct ftrace_profile *
ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
{
struct ftrace_profile *rec = NULL;
/* prevent recursion (from NMIs) */
if (atomic_inc_return(&stat->disabled) != 1)
goto out;
/*
* Try to find the function again since an NMI
* could have added it
*/
rec = ftrace_find_profiled_func(stat, ip);
if (rec)
goto out;
if (stat->pages->index == PROFILES_PER_PAGE) {
if (!stat->pages->next)
goto out;
stat->pages = stat->pages->next;
}
rec = &stat->pages->records[stat->pages->index++];
rec->ip = ip;
ftrace_add_profile(stat, rec);
out:
atomic_dec(&stat->disabled);
return rec;
}
static void
function_profile_call(unsigned long ip, unsigned long parent_ip)
{
struct ftrace_profile_stat *stat;
struct ftrace_profile *rec;
unsigned long flags;
if (!ftrace_profile_enabled)
return;
local_irq_save(flags);
stat = &__get_cpu_var(ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
rec = ftrace_find_profiled_func(stat, ip);
if (!rec) {
rec = ftrace_profile_alloc(stat, ip);
if (!rec)
goto out;
}
rec->counter++;
out:
local_irq_restore(flags);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static int profile_graph_entry(struct ftrace_graph_ent *trace)
{
function_profile_call(trace->func, 0);
return 1;
}
static void profile_graph_return(struct ftrace_graph_ret *trace)
{
struct ftrace_profile_stat *stat;
unsigned long long calltime;
struct ftrace_profile *rec;
unsigned long flags;
local_irq_save(flags);
stat = &__get_cpu_var(ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
calltime = trace->rettime - trace->calltime;
if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) {
int index;
index = trace->depth;
/* Append this call time to the parent time to subtract */
if (index)
current->ret_stack[index - 1].subtime += calltime;
if (current->ret_stack[index].subtime < calltime)
calltime -= current->ret_stack[index].subtime;
else
calltime = 0;
}
rec = ftrace_find_profiled_func(stat, trace->func);
if (rec)
rec->time += calltime;
out:
local_irq_restore(flags);
}
static int register_ftrace_profiler(void)
{
return register_ftrace_graph(&profile_graph_return,
&profile_graph_entry);
}
static void unregister_ftrace_profiler(void)
{
unregister_ftrace_graph();
}
#else
static struct ftrace_ops ftrace_profile_ops __read_mostly =
{
.func = function_profile_call,
};
static int register_ftrace_profiler(void)
{
return register_ftrace_function(&ftrace_profile_ops);
}
static void unregister_ftrace_profiler(void)
{
unregister_ftrace_function(&ftrace_profile_ops);
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
static ssize_t
ftrace_profile_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
unsigned long val;
char buf[64]; /* big enough to hold a number */
int ret;
if (cnt >= sizeof(buf))
return -EINVAL;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
ret = strict_strtoul(buf, 10, &val);
if (ret < 0)
return ret;
val = !!val;
mutex_lock(&ftrace_profile_lock);
if (ftrace_profile_enabled ^ val) {
if (val) {
ret = ftrace_profile_init();
if (ret < 0) {
cnt = ret;
goto out;
}
ret = register_ftrace_profiler();
if (ret < 0) {
cnt = ret;
goto out;
}
ftrace_profile_enabled = 1;
} else {
ftrace_profile_enabled = 0;
/*
* unregister_ftrace_profiler calls stop_machine
* so this acts like an synchronize_sched.
*/
unregister_ftrace_profiler();
}
}
out:
mutex_unlock(&ftrace_profile_lock);
*ppos += cnt;
return cnt;
}
static ssize_t
ftrace_profile_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64]; /* big enough to hold a number */
int r;
r = sprintf(buf, "%u\n", ftrace_profile_enabled);
return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
}
static const struct file_operations ftrace_profile_fops = {
.open = tracing_open_generic,
.read = ftrace_profile_read,
.write = ftrace_profile_write,
};
/* used to initialize the real stat files */
static struct tracer_stat function_stats __initdata = {
.name = "functions",
.stat_start = function_stat_start,
.stat_next = function_stat_next,
.stat_cmp = function_stat_cmp,
.stat_headers = function_stat_headers,
.stat_show = function_stat_show
};
static __init void ftrace_profile_debugfs(struct dentry *d_tracer)
{
struct ftrace_profile_stat *stat;
struct dentry *entry;
char *name;
int ret;
int cpu;
for_each_possible_cpu(cpu) {
stat = &per_cpu(ftrace_profile_stats, cpu);
/* allocate enough for function name + cpu number */
name = kmalloc(32, GFP_KERNEL);
if (!name) {
/*
* The files created are permanent, if something happens
* we still do not free memory.
*/
WARN(1,
"Could not allocate stat file for cpu %d\n",
cpu);
return;
}
stat->stat = function_stats;
snprintf(name, 32, "function%d", cpu);
stat->stat.name = name;
ret = register_stat_tracer(&stat->stat);
if (ret) {
WARN(1,
"Could not register function stat for cpu %d\n",
cpu);
kfree(name);
return;
}
}
entry = debugfs_create_file("function_profile_enabled", 0644,
d_tracer, NULL, &ftrace_profile_fops);
if (!entry)
pr_warning("Could not create debugfs "
"'function_profile_enabled' entry\n");
}
#else /* CONFIG_FUNCTION_PROFILER */
static __init void ftrace_profile_debugfs(struct dentry *d_tracer)
{
}
#endif /* CONFIG_FUNCTION_PROFILER */
static struct pid * const ftrace_swapper_pid = &init_struct_pid;
#ifdef CONFIG_DYNAMIC_FTRACE
#ifndef CONFIG_FTRACE_MCOUNT_RECORD
# error Dynamic ftrace depends on MCOUNT_RECORD
#endif
static struct hlist_head ftrace_func_hash[FTRACE_FUNC_HASHSIZE] __read_mostly;
struct ftrace_func_probe {
struct hlist_node node;
struct ftrace_probe_ops *ops;
unsigned long flags;
unsigned long ip;
void *data;
struct rcu_head rcu;
};
enum {
FTRACE_ENABLE_CALLS = (1 << 0),
FTRACE_DISABLE_CALLS = (1 << 1),
FTRACE_UPDATE_TRACE_FUNC = (1 << 2),
FTRACE_ENABLE_MCOUNT = (1 << 3),
FTRACE_DISABLE_MCOUNT = (1 << 4),
FTRACE_START_FUNC_RET = (1 << 5),
FTRACE_STOP_FUNC_RET = (1 << 6),
};
static int ftrace_filtered;
static struct dyn_ftrace *ftrace_new_addrs;
static DEFINE_MUTEX(ftrace_regex_lock);
struct ftrace_page {
struct ftrace_page *next;
int index;
struct dyn_ftrace records[];
};
#define ENTRIES_PER_PAGE \
((PAGE_SIZE - sizeof(struct ftrace_page)) / sizeof(struct dyn_ftrace))
/* estimate from running different kernels */
#define NR_TO_INIT 10000
static struct ftrace_page *ftrace_pages_start;
static struct ftrace_page *ftrace_pages;
static struct dyn_ftrace *ftrace_free_records;
/*
* This is a double for. Do not use 'break' to break out of the loop,
* you must use a goto.
*/
#define do_for_each_ftrace_rec(pg, rec) \
for (pg = ftrace_pages_start; pg; pg = pg->next) { \
int _____i; \
for (_____i = 0; _____i < pg->index; _____i++) { \
rec = &pg->records[_____i];
#define while_for_each_ftrace_rec() \
} \
}
#ifdef CONFIG_KPROBES
static int frozen_record_count;
static inline void freeze_record(struct dyn_ftrace *rec)
{
if (!(rec->flags & FTRACE_FL_FROZEN)) {
rec->flags |= FTRACE_FL_FROZEN;
frozen_record_count++;
}
}
static inline void unfreeze_record(struct dyn_ftrace *rec)
{
if (rec->flags & FTRACE_FL_FROZEN) {
rec->flags &= ~FTRACE_FL_FROZEN;
frozen_record_count--;
}
}
static inline int record_frozen(struct dyn_ftrace *rec)
{
return rec->flags & FTRACE_FL_FROZEN;
}
#else
# define freeze_record(rec) ({ 0; })
# define unfreeze_record(rec) ({ 0; })
# define record_frozen(rec) ({ 0; })
#endif /* CONFIG_KPROBES */
static void ftrace_free_rec(struct dyn_ftrace *rec)
{
rec->freelist = ftrace_free_records;
ftrace_free_records = rec;
rec->flags |= FTRACE_FL_FREE;
}
static struct dyn_ftrace *ftrace_alloc_dyn_node(unsigned long ip)
{
struct dyn_ftrace *rec;
/* First check for freed records */
if (ftrace_free_records) {
rec = ftrace_free_records;
if (unlikely(!(rec->flags & FTRACE_FL_FREE))) {
FTRACE_WARN_ON_ONCE(1);
ftrace_free_records = NULL;
return NULL;
}
ftrace_free_records = rec->freelist;
memset(rec, 0, sizeof(*rec));
return rec;
}
if (ftrace_pages->index == ENTRIES_PER_PAGE) {
if (!ftrace_pages->next) {
/* allocate another page */
ftrace_pages->next =
(void *)get_zeroed_page(GFP_KERNEL);
if (!ftrace_pages->next)
return NULL;
}
ftrace_pages = ftrace_pages->next;
}
return &ftrace_pages->records[ftrace_pages->index++];
}
static struct dyn_ftrace *
ftrace_record_ip(unsigned long ip)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
struct dyn_ftrace *rec;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
if (ftrace_disabled)
return NULL;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
rec = ftrace_alloc_dyn_node(ip);
if (!rec)
return NULL;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
rec->ip = ip;
rec->newlist = ftrace_new_addrs;
ftrace_new_addrs = rec;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
return rec;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
static void print_ip_ins(const char *fmt, unsigned char *p)
{
int i;
printk(KERN_CONT "%s", fmt);
for (i = 0; i < MCOUNT_INSN_SIZE; i++)
printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
}
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
static void ftrace_bug(int failed, unsigned long ip)
{
switch (failed) {
case -EFAULT:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace faulted on modifying ");
print_ip_sym(ip);
break;
case -EINVAL:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace failed to modify ");
print_ip_sym(ip);
print_ip_ins(" actual: ", (unsigned char *)ip);
printk(KERN_CONT "\n");
break;
case -EPERM:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace faulted on writing ");
print_ip_sym(ip);
break;
default:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace faulted on unknown error ");
print_ip_sym(ip);
}
}
static int
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
__ftrace_replace_code(struct dyn_ftrace *rec, int enable)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
unsigned long ftrace_addr;
unsigned long flag = 0UL;
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
ftrace_addr = (unsigned long)FTRACE_ADDR;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
/*
* If this record is not to be traced or we want to disable it,
* then disable it.
*
* If we want to enable it and filtering is off, then enable it.
*
* If we want to enable it and filtering is on, enable it only if
* it's filtered
*/
if (enable && !(rec->flags & FTRACE_FL_NOTRACE)) {
if (!ftrace_filtered || (rec->flags & FTRACE_FL_FILTER))
flag = FTRACE_FL_ENABLED;
}
/* If the state of this record hasn't changed, then do nothing */
if ((rec->flags & FTRACE_FL_ENABLED) == flag)
return 0;
if (flag) {
rec->flags |= FTRACE_FL_ENABLED;
return ftrace_make_call(rec, ftrace_addr);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
}
rec->flags &= ~FTRACE_FL_ENABLED;
return ftrace_make_nop(NULL, rec, ftrace_addr);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
}
static void ftrace_replace_code(int enable)
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
int failed;
do_for_each_ftrace_rec(pg, rec) {
/*
* Skip over free records, records that have
* failed and not converted.
*/
if (rec->flags & FTRACE_FL_FREE ||
rec->flags & FTRACE_FL_FAILED ||
!(rec->flags & FTRACE_FL_CONVERTED))
continue;
/* ignore updates to this record's mcount site */
if (get_kprobe((void *)rec->ip)) {
freeze_record(rec);
continue;
} else {
unfreeze_record(rec);
}
failed = __ftrace_replace_code(rec, enable);
if (failed) {
rec->flags |= FTRACE_FL_FAILED;
ftrace_bug(failed, rec->ip);
/* Stop processing */
return;
}
} while_for_each_ftrace_rec();
}
static int
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
{
unsigned long ip;
int ret;
ip = rec->ip;
ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
if (ret) {
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
ftrace_bug(ret, ip);
rec->flags |= FTRACE_FL_FAILED;
return 0;
}
return 1;
}
/*
* archs can override this function if they must do something
* before the modifying code is performed.
*/
int __weak ftrace_arch_code_modify_prepare(void)
{
return 0;
}
/*
* archs can override this function if they must do something
* after the modifying code is performed.
*/
int __weak ftrace_arch_code_modify_post_process(void)
{
return 0;
}
static int __ftrace_modify_code(void *data)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
int *command = data;
ring-buffer: buffer record on/off switch Impact: enable/disable ring buffer recording API added Several kernel developers have requested that there be a way to stop recording into the ring buffers with a simple switch that can also be enabled from userspace. This patch addes a new kernel API to the ring buffers called: tracing_on() tracing_off() When tracing_off() is called, all ring buffers will not be able to record into their buffers. tracing_on() will enable the ring buffers again. These two act like an on/off switch. That is, there is no counting of the number of times tracing_off or tracing_on has been called. A new file is added to the debugfs/tracing directory called tracing_on This allows for userspace applications to also flip the switch. echo 0 > debugfs/tracing/tracing_on disables the tracing. echo 1 > /debugfs/tracing/tracing_on enables it. Note, this does not disable or enable any tracers. It only sets or clears a flag that needs to be set in order for the ring buffers to write to their buffers. It is a global flag, and affects all ring buffers. The buffers start out with tracing_on enabled. There are now three flags that control recording into the buffers: tracing_on: which affects all ring buffer tracers. buffer->record_disabled: which affects an allocated buffer, which may be set if an anomaly is detected, and tracing is disabled. cpu_buffer->record_disabled: which is set by tracing_stop() or if an anomaly is detected. tracing_start can not reenable this if an anomaly occurred. The userspace debugfs/tracing/tracing_enabled is implemented with tracing_stop() but the user space code can not enable it if the kernel called tracing_stop(). Userspace can enable the tracing_on even if the kernel disabled it. It is just a switch used to stop tracing if a condition was hit. tracing_on is not for protecting critical areas in the kernel nor is it for stopping tracing if an anomaly occurred. This is because userspace can reenable it at any time. Side effect: With this patch, I discovered a dead variable in ftrace.c called tracing_on. This patch removes it. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2008-11-12 04:01:42 +08:00
if (*command & FTRACE_ENABLE_CALLS)
ftrace_replace_code(1);
ring-buffer: buffer record on/off switch Impact: enable/disable ring buffer recording API added Several kernel developers have requested that there be a way to stop recording into the ring buffers with a simple switch that can also be enabled from userspace. This patch addes a new kernel API to the ring buffers called: tracing_on() tracing_off() When tracing_off() is called, all ring buffers will not be able to record into their buffers. tracing_on() will enable the ring buffers again. These two act like an on/off switch. That is, there is no counting of the number of times tracing_off or tracing_on has been called. A new file is added to the debugfs/tracing directory called tracing_on This allows for userspace applications to also flip the switch. echo 0 > debugfs/tracing/tracing_on disables the tracing. echo 1 > /debugfs/tracing/tracing_on enables it. Note, this does not disable or enable any tracers. It only sets or clears a flag that needs to be set in order for the ring buffers to write to their buffers. It is a global flag, and affects all ring buffers. The buffers start out with tracing_on enabled. There are now three flags that control recording into the buffers: tracing_on: which affects all ring buffer tracers. buffer->record_disabled: which affects an allocated buffer, which may be set if an anomaly is detected, and tracing is disabled. cpu_buffer->record_disabled: which is set by tracing_stop() or if an anomaly is detected. tracing_start can not reenable this if an anomaly occurred. The userspace debugfs/tracing/tracing_enabled is implemented with tracing_stop() but the user space code can not enable it if the kernel called tracing_stop(). Userspace can enable the tracing_on even if the kernel disabled it. It is just a switch used to stop tracing if a condition was hit. tracing_on is not for protecting critical areas in the kernel nor is it for stopping tracing if an anomaly occurred. This is because userspace can reenable it at any time. Side effect: With this patch, I discovered a dead variable in ftrace.c called tracing_on. This patch removes it. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2008-11-12 04:01:42 +08:00
else if (*command & FTRACE_DISABLE_CALLS)
ftrace_replace_code(0);
if (*command & FTRACE_UPDATE_TRACE_FUNC)
ftrace_update_ftrace_func(ftrace_trace_function);
if (*command & FTRACE_START_FUNC_RET)
ftrace_enable_ftrace_graph_caller();
else if (*command & FTRACE_STOP_FUNC_RET)
ftrace_disable_ftrace_graph_caller();
return 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
static void ftrace_run_update_code(int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
int ret;
ret = ftrace_arch_code_modify_prepare();
FTRACE_WARN_ON(ret);
if (ret)
return;
stop_machine(__ftrace_modify_code, &command, NULL);
ret = ftrace_arch_code_modify_post_process();
FTRACE_WARN_ON(ret);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
static ftrace_func_t saved_ftrace_func;
static int ftrace_start_up;
static void ftrace_startup_enable(int command)
{
if (saved_ftrace_func != ftrace_trace_function) {
saved_ftrace_func = ftrace_trace_function;
command |= FTRACE_UPDATE_TRACE_FUNC;
}
if (!command || !ftrace_enabled)
return;
ftrace_run_update_code(command);
}
static void ftrace_startup(int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
if (unlikely(ftrace_disabled))
return;
ftrace_start_up++;
command |= FTRACE_ENABLE_CALLS;
ftrace_startup_enable(command);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
static void ftrace_shutdown(int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
if (unlikely(ftrace_disabled))
return;
ftrace_start_up--;
/*
* Just warn in case of unbalance, no need to kill ftrace, it's not
* critical but the ftrace_call callers may be never nopped again after
* further ftrace uses.
*/
WARN_ON_ONCE(ftrace_start_up < 0);
if (!ftrace_start_up)
command |= FTRACE_DISABLE_CALLS;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
if (saved_ftrace_func != ftrace_trace_function) {
saved_ftrace_func = ftrace_trace_function;
command |= FTRACE_UPDATE_TRACE_FUNC;
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
if (!command || !ftrace_enabled)
return;
ftrace_run_update_code(command);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
static void ftrace_startup_sysctl(void)
{
int command = FTRACE_ENABLE_MCOUNT;
if (unlikely(ftrace_disabled))
return;
/* Force update next time */
saved_ftrace_func = NULL;
/* ftrace_start_up is true if we want ftrace running */
if (ftrace_start_up)
command |= FTRACE_ENABLE_CALLS;
ftrace_run_update_code(command);
}
static void ftrace_shutdown_sysctl(void)
{
int command = FTRACE_DISABLE_MCOUNT;
if (unlikely(ftrace_disabled))
return;
/* ftrace_start_up is true if ftrace is running */
if (ftrace_start_up)
command |= FTRACE_DISABLE_CALLS;
ftrace_run_update_code(command);
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
static cycle_t ftrace_update_time;
static unsigned long ftrace_update_cnt;
unsigned long ftrace_update_tot_cnt;
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
static int ftrace_update_code(struct module *mod)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
{
struct dyn_ftrace *p;
cycle_t start, stop;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
start = ftrace_now(raw_smp_processor_id());
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ftrace_update_cnt = 0;
while (ftrace_new_addrs) {
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
/* If something went wrong, bail without enabling anything */
if (unlikely(ftrace_disabled))
return -1;
p = ftrace_new_addrs;
ftrace_new_addrs = p->newlist;
p->flags = 0L;
/*
* Do the initial record convertion from mcount jump
* to the NOP instructions.
*/
if (!ftrace_code_disable(mod, p)) {
ftrace_free_rec(p);
continue;
}
p->flags |= FTRACE_FL_CONVERTED;
ftrace_update_cnt++;
/*
* If the tracing is enabled, go ahead and enable the record.
*
* The reason not to enable the record immediatelly is the
* inherent check of ftrace_make_nop/ftrace_make_call for
* correct previous instructions. Making first the NOP
* conversion puts the module to the correct state, thus
* passing the ftrace_make_call check.
*/
if (ftrace_start_up) {
int failed = __ftrace_replace_code(p, 1);
if (failed) {
ftrace_bug(failed, p->ip);
ftrace_free_rec(p);
}
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
stop = ftrace_now(raw_smp_processor_id());
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ftrace_update_time = stop - start;
ftrace_update_tot_cnt += ftrace_update_cnt;
return 0;
}
static int __init ftrace_dyn_table_alloc(unsigned long num_to_init)
{
struct ftrace_page *pg;
int cnt;
int i;
/* allocate a few pages */
ftrace_pages_start = (void *)get_zeroed_page(GFP_KERNEL);
if (!ftrace_pages_start)
return -1;
/*
* Allocate a few more pages.
*
* TODO: have some parser search vmlinux before
* final linking to find all calls to ftrace.
* Then we can:
* a) know how many pages to allocate.
* and/or
* b) set up the table then.
*
* The dynamic code is still necessary for
* modules.
*/
pg = ftrace_pages = ftrace_pages_start;
cnt = num_to_init / ENTRIES_PER_PAGE;
pr_info("ftrace: allocating %ld entries in %d pages\n",
num_to_init, cnt + 1);
for (i = 0; i < cnt; i++) {
pg->next = (void *)get_zeroed_page(GFP_KERNEL);
/* If we fail, we'll try later anyway */
if (!pg->next)
break;
pg = pg->next;
}
return 0;
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
enum {
FTRACE_ITER_FILTER = (1 << 0),
FTRACE_ITER_NOTRACE = (1 << 1),
FTRACE_ITER_FAILURES = (1 << 2),
FTRACE_ITER_PRINTALL = (1 << 3),
FTRACE_ITER_HASH = (1 << 4),
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
};
#define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
struct ftrace_iterator {
struct ftrace_page *pg;
int hidx;
int idx;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
unsigned flags;
struct trace_parser parser;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
};
static void *
t_hash_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct hlist_node *hnd = v;
struct hlist_head *hhd;
WARN_ON(!(iter->flags & FTRACE_ITER_HASH));
(*pos)++;
retry:
if (iter->hidx >= FTRACE_FUNC_HASHSIZE)
return NULL;
hhd = &ftrace_func_hash[iter->hidx];
if (hlist_empty(hhd)) {
iter->hidx++;
hnd = NULL;
goto retry;
}
if (!hnd)
hnd = hhd->first;
else {
hnd = hnd->next;
if (!hnd) {
iter->hidx++;
goto retry;
}
}
return hnd;
}
static void *t_hash_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
void *p = NULL;
loff_t l;
if (!(iter->flags & FTRACE_ITER_HASH))
*pos = 0;
iter->flags |= FTRACE_ITER_HASH;
iter->hidx = 0;
for (l = 0; l <= *pos; ) {
p = t_hash_next(m, p, &l);
if (!p)
break;
}
return p;
}
static int t_hash_show(struct seq_file *m, void *v)
{
struct ftrace_func_probe *rec;
struct hlist_node *hnd = v;
rec = hlist_entry(hnd, struct ftrace_func_probe, node);
if (rec->ops->print)
return rec->ops->print(m, rec->ip, rec->ops, rec->data);
seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func);
if (rec->data)
seq_printf(m, ":%p", rec->data);
seq_putc(m, '\n');
return 0;
}
static void *
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
t_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct dyn_ftrace *rec = NULL;
if (iter->flags & FTRACE_ITER_HASH)
return t_hash_next(m, v, pos);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
(*pos)++;
if (iter->flags & FTRACE_ITER_PRINTALL)
return NULL;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
retry:
if (iter->idx >= iter->pg->index) {
if (iter->pg->next) {
iter->pg = iter->pg->next;
iter->idx = 0;
goto retry;
}
} else {
rec = &iter->pg->records[iter->idx++];
if ((rec->flags & FTRACE_FL_FREE) ||
(!(iter->flags & FTRACE_ITER_FAILURES) &&
(rec->flags & FTRACE_FL_FAILED)) ||
((iter->flags & FTRACE_ITER_FAILURES) &&
!(rec->flags & FTRACE_FL_FAILED)) ||
((iter->flags & FTRACE_ITER_FILTER) &&
!(rec->flags & FTRACE_FL_FILTER)) ||
((iter->flags & FTRACE_ITER_NOTRACE) &&
!(rec->flags & FTRACE_FL_NOTRACE))) {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
rec = NULL;
goto retry;
}
}
return rec;
}
static void *t_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
void *p = NULL;
loff_t l;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
mutex_lock(&ftrace_lock);
/*
* For set_ftrace_filter reading, if we have the filter
* off, we can short cut and just print out that all
* functions are enabled.
*/
if (iter->flags & FTRACE_ITER_FILTER && !ftrace_filtered) {
if (*pos > 0)
return t_hash_start(m, pos);
iter->flags |= FTRACE_ITER_PRINTALL;
return iter;
}
if (iter->flags & FTRACE_ITER_HASH)
return t_hash_start(m, pos);
iter->pg = ftrace_pages_start;
iter->idx = 0;
for (l = 0; l <= *pos; ) {
p = t_next(m, p, &l);
if (!p)
break;
}
if (!p && iter->flags & FTRACE_ITER_FILTER)
return t_hash_start(m, pos);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return p;
}
static void t_stop(struct seq_file *m, void *p)
{
mutex_unlock(&ftrace_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
}
static int t_show(struct seq_file *m, void *v)
{
struct ftrace_iterator *iter = m->private;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
struct dyn_ftrace *rec = v;
if (iter->flags & FTRACE_ITER_HASH)
return t_hash_show(m, v);
if (iter->flags & FTRACE_ITER_PRINTALL) {
seq_printf(m, "#### all functions enabled ####\n");
return 0;
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (!rec)
return 0;
seq_printf(m, "%ps\n", (void *)rec->ip);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return 0;
}
static const struct seq_operations show_ftrace_seq_ops = {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
.start = t_start,
.next = t_next,
.stop = t_stop,
.show = t_show,
};
static int
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
ftrace_avail_open(struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return -ENOMEM;
iter->pg = ftrace_pages_start;
ret = seq_open(file, &show_ftrace_seq_ops);
if (!ret) {
struct seq_file *m = file->private_data;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
m->private = iter;
} else {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
kfree(iter);
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return ret;
}
static int
ftrace_failures_open(struct inode *inode, struct file *file)
{
int ret;
struct seq_file *m;
struct ftrace_iterator *iter;
ret = ftrace_avail_open(inode, file);
if (!ret) {
m = (struct seq_file *)file->private_data;
iter = (struct ftrace_iterator *)m->private;
iter->flags = FTRACE_ITER_FAILURES;
}
return ret;
}
static void ftrace_filter_reset(int enable)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
struct ftrace_page *pg;
struct dyn_ftrace *rec;
unsigned long type = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
mutex_lock(&ftrace_lock);
if (enable)
ftrace_filtered = 0;
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_FAILED)
continue;
rec->flags &= ~type;
} while_for_each_ftrace_rec();
mutex_unlock(&ftrace_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
}
static int
ftrace_regex_open(struct inode *inode, struct file *file, int enable)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
struct ftrace_iterator *iter;
int ret = 0;
if (unlikely(ftrace_disabled))
return -ENODEV;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return -ENOMEM;
if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) {
kfree(iter);
return -ENOMEM;
}
mutex_lock(&ftrace_regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC))
ftrace_filter_reset(enable);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (file->f_mode & FMODE_READ) {
iter->pg = ftrace_pages_start;
iter->flags = enable ? FTRACE_ITER_FILTER :
FTRACE_ITER_NOTRACE;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
ret = seq_open(file, &show_ftrace_seq_ops);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = iter;
} else {
trace_parser_put(&iter->parser);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
kfree(iter);
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
} else
file->private_data = iter;
mutex_unlock(&ftrace_regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return ret;
}
static int
ftrace_filter_open(struct inode *inode, struct file *file)
{
return ftrace_regex_open(inode, file, 1);
}
static int
ftrace_notrace_open(struct inode *inode, struct file *file)
{
return ftrace_regex_open(inode, file, 0);
}
static loff_t
ftrace_regex_lseek(struct file *file, loff_t offset, int origin)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
loff_t ret;
if (file->f_mode & FMODE_READ)
ret = seq_lseek(file, offset, origin);
else
file->f_pos = ret = 1;
return ret;
}
static int ftrace_match(char *str, char *regex, int len, int type)
{
int matched = 0;
char *ptr;
switch (type) {
case MATCH_FULL:
if (strcmp(str, regex) == 0)
matched = 1;
break;
case MATCH_FRONT_ONLY:
if (strncmp(str, regex, len) == 0)
matched = 1;
break;
case MATCH_MIDDLE_ONLY:
if (strstr(str, regex))
matched = 1;
break;
case MATCH_END_ONLY:
ptr = strstr(str, regex);
if (ptr && (ptr[len] == 0))
matched = 1;
break;
}
return matched;
}
static int
ftrace_match_record(struct dyn_ftrace *rec, char *regex, int len, int type)
{
char str[KSYM_SYMBOL_LEN];
kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
return ftrace_match(str, regex, len, type);
}
static int ftrace_match_records(char *buff, int len, int enable)
{
unsigned int search_len;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
unsigned long flag;
char *search;
int type;
int not;
int found = 0;
flag = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE;
type = filter_parse_regex(buff, len, &search, &not);
search_len = strlen(search);
mutex_lock(&ftrace_lock);
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_FAILED)
continue;
if (ftrace_match_record(rec, search, search_len, type)) {
if (not)
rec->flags &= ~flag;
else
rec->flags |= flag;
found = 1;
}
/*
* Only enable filtering if we have a function that
* is filtered on.
*/
if (enable && (rec->flags & FTRACE_FL_FILTER))
ftrace_filtered = 1;
} while_for_each_ftrace_rec();
mutex_unlock(&ftrace_lock);
return found;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
}
static int
ftrace_match_module_record(struct dyn_ftrace *rec, char *mod,
char *regex, int len, int type)
{
char str[KSYM_SYMBOL_LEN];
char *modname;
kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
if (!modname || strcmp(modname, mod))
return 0;
/* blank search means to match all funcs in the mod */
if (len)
return ftrace_match(str, regex, len, type);
else
return 1;
}
static int ftrace_match_module_records(char *buff, char *mod, int enable)
{
unsigned search_len = 0;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
int type = MATCH_FULL;
char *search = buff;
unsigned long flag;
int not = 0;
int found = 0;
flag = enable ? FTRACE_FL_FILTER : FTRACE_FL_NOTRACE;
/* blank or '*' mean the same */
if (strcmp(buff, "*") == 0)
buff[0] = 0;
/* handle the case of 'dont filter this module' */
if (strcmp(buff, "!") == 0 || strcmp(buff, "!*") == 0) {
buff[0] = 0;
not = 1;
}
if (strlen(buff)) {
type = filter_parse_regex(buff, strlen(buff), &search, &not);
search_len = strlen(search);
}
mutex_lock(&ftrace_lock);
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_FAILED)
continue;
if (ftrace_match_module_record(rec, mod,
search, search_len, type)) {
if (not)
rec->flags &= ~flag;
else
rec->flags |= flag;
found = 1;
}
if (enable && (rec->flags & FTRACE_FL_FILTER))
ftrace_filtered = 1;
} while_for_each_ftrace_rec();
mutex_unlock(&ftrace_lock);
return found;
}
/*
* We register the module command as a template to show others how
* to register the a command as well.
*/
static int
ftrace_mod_callback(char *func, char *cmd, char *param, int enable)
{
char *mod;
/*
* cmd == 'mod' because we only registered this func
* for the 'mod' ftrace_func_command.
* But if you register one func with multiple commands,
* you can tell which command was used by the cmd
* parameter.
*/
/* we must have a module name */
if (!param)
return -EINVAL;
mod = strsep(&param, ":");
if (!strlen(mod))
return -EINVAL;
if (ftrace_match_module_records(func, mod, enable))
return 0;
return -EINVAL;
}
static struct ftrace_func_command ftrace_mod_cmd = {
.name = "mod",
.func = ftrace_mod_callback,
};
static int __init ftrace_mod_cmd_init(void)
{
return register_ftrace_command(&ftrace_mod_cmd);
}
device_initcall(ftrace_mod_cmd_init);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
static void
function_trace_probe_call(unsigned long ip, unsigned long parent_ip)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
{
struct ftrace_func_probe *entry;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
struct hlist_head *hhd;
struct hlist_node *n;
unsigned long key;
int resched;
key = hash_long(ip, FTRACE_HASH_BITS);
hhd = &ftrace_func_hash[key];
if (hlist_empty(hhd))
return;
/*
* Disable preemption for these calls to prevent a RCU grace
* period. This syncs the hash iteration and freeing of items
* on the hash. rcu_read_lock is too dangerous here.
*/
resched = ftrace_preempt_disable();
hlist_for_each_entry_rcu(entry, n, hhd, node) {
if (entry->ip == ip)
entry->ops->func(ip, parent_ip, &entry->data);
}
ftrace_preempt_enable(resched);
}
static struct ftrace_ops trace_probe_ops __read_mostly =
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
{
.func = function_trace_probe_call,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
};
static int ftrace_probe_registered;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
static void __enable_ftrace_function_probe(void)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
{
int i;
if (ftrace_probe_registered)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
return;
for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
struct hlist_head *hhd = &ftrace_func_hash[i];
if (hhd->first)
break;
}
/* Nothing registered? */
if (i == FTRACE_FUNC_HASHSIZE)
return;
__register_ftrace_function(&trace_probe_ops);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
ftrace_startup(0);
ftrace_probe_registered = 1;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
}
static void __disable_ftrace_function_probe(void)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
{
int i;
if (!ftrace_probe_registered)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
return;
for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
struct hlist_head *hhd = &ftrace_func_hash[i];
if (hhd->first)
return;
}
/* no more funcs left */
__unregister_ftrace_function(&trace_probe_ops);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
ftrace_shutdown(0);
ftrace_probe_registered = 0;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
}
static void ftrace_free_entry_rcu(struct rcu_head *rhp)
{
struct ftrace_func_probe *entry =
container_of(rhp, struct ftrace_func_probe, rcu);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
if (entry->ops->free)
entry->ops->free(&entry->data);
kfree(entry);
}
int
register_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
void *data)
{
struct ftrace_func_probe *entry;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
struct ftrace_page *pg;
struct dyn_ftrace *rec;
int type, len, not;
unsigned long key;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
int count = 0;
char *search;
type = filter_parse_regex(glob, strlen(glob), &search, &not);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
len = strlen(search);
/* we do not support '!' for function probes */
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
if (WARN_ON(not))
return -EINVAL;
mutex_lock(&ftrace_lock);
do_for_each_ftrace_rec(pg, rec) {
if (rec->flags & FTRACE_FL_FAILED)
continue;
if (!ftrace_match_record(rec, search, len, type))
continue;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
/* If we did not process any, then return error */
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
if (!count)
count = -ENOMEM;
goto out_unlock;
}
count++;
entry->data = data;
/*
* The caller might want to do something special
* for each function we find. We call the callback
* to give the caller an opportunity to do so.
*/
if (ops->callback) {
if (ops->callback(rec->ip, &entry->data) < 0) {
/* caller does not like this func */
kfree(entry);
continue;
}
}
entry->ops = ops;
entry->ip = rec->ip;
key = hash_long(entry->ip, FTRACE_HASH_BITS);
hlist_add_head_rcu(&entry->node, &ftrace_func_hash[key]);
} while_for_each_ftrace_rec();
__enable_ftrace_function_probe();
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
out_unlock:
mutex_unlock(&ftrace_lock);
return count;
}
enum {
PROBE_TEST_FUNC = 1,
PROBE_TEST_DATA = 2
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
};
static void
__unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
void *data, int flags)
{
struct ftrace_func_probe *entry;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
struct hlist_node *n, *tmp;
char str[KSYM_SYMBOL_LEN];
int type = MATCH_FULL;
int i, len = 0;
char *search;
if (glob && (strcmp(glob, "*") == 0 || !strlen(glob)))
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
glob = NULL;
else if (glob) {
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
int not;
type = filter_parse_regex(glob, strlen(glob), &search, &not);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
len = strlen(search);
/* we do not support '!' for function probes */
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
if (WARN_ON(not))
return;
}
mutex_lock(&ftrace_lock);
for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
struct hlist_head *hhd = &ftrace_func_hash[i];
hlist_for_each_entry_safe(entry, n, tmp, hhd, node) {
/* break up if statements for readability */
if ((flags & PROBE_TEST_FUNC) && entry->ops != ops)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
continue;
if ((flags & PROBE_TEST_DATA) && entry->data != data)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
continue;
/* do this last, since it is the most expensive */
if (glob) {
kallsyms_lookup(entry->ip, NULL, NULL,
NULL, str);
if (!ftrace_match(str, glob, len, type))
continue;
}
hlist_del(&entry->node);
call_rcu(&entry->rcu, ftrace_free_entry_rcu);
}
}
__disable_ftrace_function_probe();
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
mutex_unlock(&ftrace_lock);
}
void
unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
void *data)
{
__unregister_ftrace_function_probe(glob, ops, data,
PROBE_TEST_FUNC | PROBE_TEST_DATA);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
}
void
unregister_ftrace_function_probe_func(char *glob, struct ftrace_probe_ops *ops)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
{
__unregister_ftrace_function_probe(glob, ops, NULL, PROBE_TEST_FUNC);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
}
void unregister_ftrace_function_probe_all(char *glob)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
{
__unregister_ftrace_function_probe(glob, NULL, NULL, 0);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 04:29:06 +08:00
}
static LIST_HEAD(ftrace_commands);
static DEFINE_MUTEX(ftrace_cmd_mutex);
int register_ftrace_command(struct ftrace_func_command *cmd)
{
struct ftrace_func_command *p;
int ret = 0;
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry(p, &ftrace_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = -EBUSY;
goto out_unlock;
}
}
list_add(&cmd->list, &ftrace_commands);
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
int unregister_ftrace_command(struct ftrace_func_command *cmd)
{
struct ftrace_func_command *p, *n;
int ret = -ENODEV;
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry_safe(p, n, &ftrace_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = 0;
list_del_init(&p->list);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
static int ftrace_process_regex(char *buff, int len, int enable)
{
char *func, *command, *next = buff;
struct ftrace_func_command *p;
int ret = -EINVAL;
func = strsep(&next, ":");
if (!next) {
if (ftrace_match_records(func, len, enable))
return 0;
return ret;
}
/* command found */
command = strsep(&next, ":");
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry(p, &ftrace_commands, list) {
if (strcmp(p->name, command) == 0) {
ret = p->func(func, command, next, enable);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
static ssize_t
ftrace_regex_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos, int enable)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
struct ftrace_iterator *iter;
struct trace_parser *parser;
ssize_t ret, read;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (!cnt)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return 0;
mutex_lock(&ftrace_regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (file->f_mode & FMODE_READ) {
struct seq_file *m = file->private_data;
iter = m->private;
} else
iter = file->private_data;
parser = &iter->parser;
read = trace_get_user(parser, ubuf, cnt, ppos);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (read >= 0 && trace_parser_loaded(parser) &&
!trace_parser_cont(parser)) {
ret = ftrace_process_regex(parser->buffer,
parser->idx, enable);
trace_parser_clear(parser);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (ret)
goto out_unlock;
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
ret = read;
out_unlock:
mutex_unlock(&ftrace_regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return ret;
}
static ssize_t
ftrace_filter_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
}
static ssize_t
ftrace_notrace_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
}
static void
ftrace_set_regex(unsigned char *buf, int len, int reset, int enable)
{
if (unlikely(ftrace_disabled))
return;
mutex_lock(&ftrace_regex_lock);
if (reset)
ftrace_filter_reset(enable);
if (buf)
ftrace_match_records(buf, len, enable);
mutex_unlock(&ftrace_regex_lock);
}
/**
* ftrace_set_filter - set a function to filter on in ftrace
* @buf - the string that holds the function filter text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled.
* If @buf is NULL and reset is set, all functions will be enabled for tracing.
*/
void ftrace_set_filter(unsigned char *buf, int len, int reset)
{
ftrace_set_regex(buf, len, reset, 1);
}
/**
* ftrace_set_notrace - set a function to not trace in ftrace
* @buf - the string that holds the function notrace text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Notrace Filters denote which functions should not be enabled when tracing
* is enabled. If @buf is NULL and reset is set, all functions will be enabled
* for tracing.
*/
void ftrace_set_notrace(unsigned char *buf, int len, int reset)
{
ftrace_set_regex(buf, len, reset, 0);
}
/*
* command line interface to allow users to set filters on boot up.
*/
#define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
static int __init set_ftrace_notrace(char *str)
{
strncpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_notrace=", set_ftrace_notrace);
static int __init set_ftrace_filter(char *str)
{
strncpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_filter=", set_ftrace_filter);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
static int __init set_graph_function(char *str)
{
strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_graph_filter=", set_graph_function);
static void __init set_ftrace_early_graph(char *buf)
{
int ret;
char *func;
while (buf) {
func = strsep(&buf, ",");
/* we allow only one expression at a time */
ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count,
func);
if (ret)
printk(KERN_DEBUG "ftrace: function %s not "
"traceable\n", func);
}
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
static void __init set_ftrace_early_filter(char *buf, int enable)
{
char *func;
while (buf) {
func = strsep(&buf, ",");
ftrace_set_regex(func, strlen(func), 0, enable);
}
}
static void __init set_ftrace_early_filters(void)
{
if (ftrace_filter_buf[0])
set_ftrace_early_filter(ftrace_filter_buf, 1);
if (ftrace_notrace_buf[0])
set_ftrace_early_filter(ftrace_notrace_buf, 0);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if (ftrace_graph_buf[0])
set_ftrace_early_graph(ftrace_graph_buf);
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
}
static int
ftrace_regex_release(struct inode *inode, struct file *file, int enable)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
struct seq_file *m = (struct seq_file *)file->private_data;
struct ftrace_iterator *iter;
struct trace_parser *parser;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
mutex_lock(&ftrace_regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
if (file->f_mode & FMODE_READ) {
iter = m->private;
seq_release(inode, file);
} else
iter = file->private_data;
parser = &iter->parser;
if (trace_parser_loaded(parser)) {
parser->buffer[parser->idx] = 0;
ftrace_match_records(parser->buffer, parser->idx, enable);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
}
mutex_lock(&ftrace_lock);
if (ftrace_start_up && ftrace_enabled)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
ftrace_run_update_code(FTRACE_ENABLE_CALLS);
mutex_unlock(&ftrace_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
trace_parser_put(parser);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
kfree(iter);
mutex_unlock(&ftrace_regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return 0;
}
static int
ftrace_filter_release(struct inode *inode, struct file *file)
{
return ftrace_regex_release(inode, file, 1);
}
static int
ftrace_notrace_release(struct inode *inode, struct file *file)
{
return ftrace_regex_release(inode, file, 0);
}
static const struct file_operations ftrace_avail_fops = {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
.open = ftrace_avail_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
};
static const struct file_operations ftrace_failures_fops = {
.open = ftrace_failures_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static const struct file_operations ftrace_filter_fops = {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
.open = ftrace_filter_open,
.read = seq_read,
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
.write = ftrace_filter_write,
.llseek = ftrace_regex_lseek,
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
.release = ftrace_filter_release,
};
static const struct file_operations ftrace_notrace_fops = {
.open = ftrace_notrace_open,
.read = seq_read,
.write = ftrace_notrace_write,
.llseek = ftrace_regex_lseek,
.release = ftrace_notrace_release,
};
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static DEFINE_MUTEX(graph_lock);
int ftrace_graph_count;
unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly;
static void *
__g_next(struct seq_file *m, loff_t *pos)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
{
if (*pos >= ftrace_graph_count)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
return NULL;
return &ftrace_graph_funcs[*pos];
}
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
static void *
g_next(struct seq_file *m, void *v, loff_t *pos)
{
(*pos)++;
return __g_next(m, pos);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
}
static void *g_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&graph_lock);
/* Nothing, tell g_show to print all functions are enabled */
if (!ftrace_graph_count && !*pos)
return (void *)1;
return __g_next(m, pos);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
}
static void g_stop(struct seq_file *m, void *p)
{
mutex_unlock(&graph_lock);
}
static int g_show(struct seq_file *m, void *v)
{
unsigned long *ptr = v;
if (!ptr)
return 0;
if (ptr == (unsigned long *)1) {
seq_printf(m, "#### all functions enabled ####\n");
return 0;
}
seq_printf(m, "%ps\n", (void *)*ptr);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
return 0;
}
static const struct seq_operations ftrace_graph_seq_ops = {
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
.start = g_start,
.next = g_next,
.stop = g_stop,
.show = g_show,
};
static int
ftrace_graph_open(struct inode *inode, struct file *file)
{
int ret = 0;
if (unlikely(ftrace_disabled))
return -ENODEV;
mutex_lock(&graph_lock);
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC)) {
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
ftrace_graph_count = 0;
memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs));
}
mutex_unlock(&graph_lock);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
if (file->f_mode & FMODE_READ)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
ret = seq_open(file, &ftrace_graph_seq_ops);
return ret;
}
static int
ftrace_graph_release(struct inode *inode, struct file *file)
{
if (file->f_mode & FMODE_READ)
seq_release(inode, file);
return 0;
}
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
static int
ftrace_set_func(unsigned long *array, int *idx, char *buffer)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
int search_len;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
int found = 0;
int type, not;
char *search;
bool exists;
int i;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
if (ftrace_disabled)
return -ENODEV;
/* decode regex */
type = filter_parse_regex(buffer, strlen(buffer), &search, &not);
if (not)
return -EINVAL;
search_len = strlen(search);
mutex_lock(&ftrace_lock);
do_for_each_ftrace_rec(pg, rec) {
if (*idx >= FTRACE_GRAPH_MAX_FUNCS)
break;
if (rec->flags & (FTRACE_FL_FAILED | FTRACE_FL_FREE))
continue;
if (ftrace_match_record(rec, search, search_len, type)) {
/* ensure it is not already in the array */
exists = false;
for (i = 0; i < *idx; i++)
if (array[i] == rec->ip) {
exists = true;
break;
}
if (!exists)
array[(*idx)++] = rec->ip;
found = 1;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
}
} while_for_each_ftrace_rec();
mutex_unlock(&ftrace_lock);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
return found ? 0 : -EINVAL;
}
static ssize_t
ftrace_graph_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct trace_parser parser;
ssize_t read, ret;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
if (!cnt || cnt < 0)
return 0;
mutex_lock(&graph_lock);
if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) {
ret = -EBUSY;
goto out_unlock;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
}
if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) {
ret = -ENOMEM;
goto out_unlock;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
}
read = trace_get_user(&parser, ubuf, cnt, ppos);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
if (read >= 0 && trace_parser_loaded((&parser))) {
parser.buffer[parser.idx] = 0;
/* we allow only one expression at a time */
ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count,
parser.buffer);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
if (ret)
goto out_free;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
}
ret = read;
out_free:
trace_parser_put(&parser);
out_unlock:
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
mutex_unlock(&graph_lock);
return ret;
}
static const struct file_operations ftrace_graph_fops = {
.open = ftrace_graph_open,
.read = seq_read,
.write = ftrace_graph_write,
.release = ftrace_graph_release,
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
};
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
static __init int ftrace_init_dyn_debugfs(struct dentry *d_tracer)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
{
trace_create_file("available_filter_functions", 0444,
d_tracer, NULL, &ftrace_avail_fops);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
trace_create_file("failures", 0444,
d_tracer, NULL, &ftrace_failures_fops);
trace_create_file("set_ftrace_filter", 0644, d_tracer,
NULL, &ftrace_filter_fops);
trace_create_file("set_ftrace_notrace", 0644, d_tracer,
NULL, &ftrace_notrace_fops);
ftrace: user update and disable dynamic ftrace daemon In dynamic ftrace, the mcount function starts off pointing to a stub function that just returns. On start up, the call to the stub is modified to point to a "record_ip" function. The job of the record_ip function is to add the function to a pre-allocated hash list. If the function is already there, it simply is ignored, otherwise it is added to the list. Later, a ftraced daemon wakes up and calls kstop_machine if any functions have been recorded, and changes the calls to the recorded functions to a simple nop. If no functions were recorded, the daemon goes back to sleep. The daemon wakes up once a second to see if it needs to update any newly recorded functions into nops. Usually it does not, but if a lot of code has been executed for the first time in the kernel, the ftraced daemon will call kstop_machine to update those into nops. The problem currently is that there's no way to stop the daemon from doing this, and it can cause unneeded latencies (800us which for some is bothersome). This patch adds a new file /debugfs/tracing/ftraced_enabled. If the daemon is active, reading this will return "enabled\n" and "disabled\n" when the daemon is not running. To disable the daemon, the user can echo "0" or "disable" into this file, and "1" or "enable" to re-enable the daemon. Since the daemon is used to convert the functions into nops to increase the performance of the system, I also added that anytime something is written into the ftraced_enabled file, kstop_machine will run if there are new functions that have been detected that need to be converted. This way the user can disable the daemon but still be able to control the conversion of the mcount calls to nops by simply, "echo 0 > /debugfs/tracing/ftraced_enabled" when they need to do more conversions. To see the number of converted functions: "cat /debugfs/tracing/dyn_ftrace_total_info" Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-28 08:48:37 +08:00
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
trace_create_file("set_graph_function", 0444, d_tracer,
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 04:36:57 +08:00
NULL,
&ftrace_graph_fops);
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:43 +08:00
return 0;
}
static int ftrace_process_locs(struct module *mod,
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
unsigned long *start,
unsigned long *end)
{
unsigned long *p;
unsigned long addr;
unsigned long flags;
mutex_lock(&ftrace_lock);
p = start;
while (p < end) {
addr = ftrace_call_adjust(*p++);
/*
* Some architecture linkers will pad between
* the different mcount_loc sections of different
* object files to satisfy alignments.
* Skip any NULL pointers.
*/
if (!addr)
continue;
ftrace_record_ip(addr);
}
/* disable interrupts to prevent kstop machine */
local_irq_save(flags);
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
ftrace_update_code(mod);
local_irq_restore(flags);
mutex_unlock(&ftrace_lock);
return 0;
}
#ifdef CONFIG_MODULES
void ftrace_release_mod(struct module *mod)
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
if (ftrace_disabled)
return;
mutex_lock(&ftrace_lock);
do_for_each_ftrace_rec(pg, rec) {
if (within_module_core(rec->ip, mod)) {
/*
* rec->ip is changed in ftrace_free_rec()
* It should not between s and e if record was freed.
*/
FTRACE_WARN_ON(rec->flags & FTRACE_FL_FREE);
ftrace_free_rec(rec);
}
} while_for_each_ftrace_rec();
mutex_unlock(&ftrace_lock);
}
static void ftrace_init_module(struct module *mod,
unsigned long *start, unsigned long *end)
{
if (ftrace_disabled || start == end)
return;
ftrace_process_locs(mod, start, end);
}
static int ftrace_module_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct module *mod = data;
switch (val) {
case MODULE_STATE_COMING:
ftrace_init_module(mod, mod->ftrace_callsites,
mod->ftrace_callsites +
mod->num_ftrace_callsites);
break;
case MODULE_STATE_GOING:
ftrace_release_mod(mod);
break;
}
return 0;
}
#else
static int ftrace_module_notify(struct notifier_block *self,
unsigned long val, void *data)
{
return 0;
}
#endif /* CONFIG_MODULES */
struct notifier_block ftrace_module_nb = {
.notifier_call = ftrace_module_notify,
.priority = 0,
};
extern unsigned long __start_mcount_loc[];
extern unsigned long __stop_mcount_loc[];
void __init ftrace_init(void)
{
unsigned long count, addr, flags;
int ret;
/* Keep the ftrace pointer to the stub */
addr = (unsigned long)ftrace_stub;
local_irq_save(flags);
ftrace_dyn_arch_init(&addr);
local_irq_restore(flags);
/* ftrace_dyn_arch_init places the return code in addr */
if (addr)
goto failed;
count = __stop_mcount_loc - __start_mcount_loc;
ret = ftrace_dyn_table_alloc(count);
if (ret)
goto failed;
last_ftrace_enabled = ftrace_enabled = 1;
ret = ftrace_process_locs(NULL,
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 08:21:19 +08:00
__start_mcount_loc,
__stop_mcount_loc);
ret = register_module_notifier(&ftrace_module_nb);
if (ret)
pr_warning("Failed to register trace ftrace module notifier\n");
set_ftrace_early_filters();
return;
failed:
ftrace_disabled = 1;
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#else
static int __init ftrace_nodyn_init(void)
{
ftrace_enabled = 1;
return 0;
}
device_initcall(ftrace_nodyn_init);
static inline int ftrace_init_dyn_debugfs(struct dentry *d_tracer) { return 0; }
static inline void ftrace_startup_enable(int command) { }
/* Keep as macros so we do not need to define the commands */
# define ftrace_startup(command) do { } while (0)
# define ftrace_shutdown(command) do { } while (0)
# define ftrace_startup_sysctl() do { } while (0)
# define ftrace_shutdown_sysctl() do { } while (0)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
#endif /* CONFIG_DYNAMIC_FTRACE */
static void clear_ftrace_swapper(void)
{
struct task_struct *p;
int cpu;
get_online_cpus();
for_each_online_cpu(cpu) {
p = idle_task(cpu);
clear_tsk_trace_trace(p);
}
put_online_cpus();
}
static void set_ftrace_swapper(void)
{
struct task_struct *p;
int cpu;
get_online_cpus();
for_each_online_cpu(cpu) {
p = idle_task(cpu);
set_tsk_trace_trace(p);
}
put_online_cpus();
}
static void clear_ftrace_pid(struct pid *pid)
{
struct task_struct *p;
rcu_read_lock();
do_each_pid_task(pid, PIDTYPE_PID, p) {
clear_tsk_trace_trace(p);
} while_each_pid_task(pid, PIDTYPE_PID, p);
rcu_read_unlock();
put_pid(pid);
}
static void set_ftrace_pid(struct pid *pid)
{
struct task_struct *p;
rcu_read_lock();
do_each_pid_task(pid, PIDTYPE_PID, p) {
set_tsk_trace_trace(p);
} while_each_pid_task(pid, PIDTYPE_PID, p);
rcu_read_unlock();
}
static void clear_ftrace_pid_task(struct pid *pid)
{
if (pid == ftrace_swapper_pid)
clear_ftrace_swapper();
else
clear_ftrace_pid(pid);
}
static void set_ftrace_pid_task(struct pid *pid)
{
if (pid == ftrace_swapper_pid)
set_ftrace_swapper();
else
set_ftrace_pid(pid);
}
static int ftrace_pid_add(int p)
{
struct pid *pid;
struct ftrace_pid *fpid;
int ret = -EINVAL;
mutex_lock(&ftrace_lock);
if (!p)
pid = ftrace_swapper_pid;
else
pid = find_get_pid(p);
if (!pid)
goto out;
ret = 0;
list_for_each_entry(fpid, &ftrace_pids, list)
if (fpid->pid == pid)
goto out_put;
ret = -ENOMEM;
fpid = kmalloc(sizeof(*fpid), GFP_KERNEL);
if (!fpid)
goto out_put;
list_add(&fpid->list, &ftrace_pids);
fpid->pid = pid;
set_ftrace_pid_task(pid);
ftrace_update_pid_func();
ftrace_startup_enable(0);
mutex_unlock(&ftrace_lock);
return 0;
out_put:
if (pid != ftrace_swapper_pid)
put_pid(pid);
out:
mutex_unlock(&ftrace_lock);
return ret;
}
static void ftrace_pid_reset(void)
{
struct ftrace_pid *fpid, *safe;
mutex_lock(&ftrace_lock);
list_for_each_entry_safe(fpid, safe, &ftrace_pids, list) {
struct pid *pid = fpid->pid;
clear_ftrace_pid_task(pid);
list_del(&fpid->list);
kfree(fpid);
}
ftrace_update_pid_func();
ftrace_startup_enable(0);
mutex_unlock(&ftrace_lock);
}
static void *fpid_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&ftrace_lock);
if (list_empty(&ftrace_pids) && (!*pos))
return (void *) 1;
return seq_list_start(&ftrace_pids, *pos);
}
static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
{
if (v == (void *)1)
return NULL;
return seq_list_next(v, &ftrace_pids, pos);
}
static void fpid_stop(struct seq_file *m, void *p)
{
mutex_unlock(&ftrace_lock);
}
static int fpid_show(struct seq_file *m, void *v)
{
const struct ftrace_pid *fpid = list_entry(v, struct ftrace_pid, list);
if (v == (void *)1) {
seq_printf(m, "no pid\n");
return 0;
}
if (fpid->pid == ftrace_swapper_pid)
seq_printf(m, "swapper tasks\n");
else
seq_printf(m, "%u\n", pid_vnr(fpid->pid));
return 0;
}
static const struct seq_operations ftrace_pid_sops = {
.start = fpid_start,
.next = fpid_next,
.stop = fpid_stop,
.show = fpid_show,
};
static int
ftrace_pid_open(struct inode *inode, struct file *file)
{
int ret = 0;
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC))
ftrace_pid_reset();
if (file->f_mode & FMODE_READ)
ret = seq_open(file, &ftrace_pid_sops);
return ret;
}
static ssize_t
ftrace_pid_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64], *tmp;
long val;
int ret;
if (cnt >= sizeof(buf))
return -EINVAL;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
/*
* Allow "echo > set_ftrace_pid" or "echo -n '' > set_ftrace_pid"
* to clean the filter quietly.
*/
tmp = strstrip(buf);
if (strlen(tmp) == 0)
return 1;
ret = strict_strtol(tmp, 10, &val);
if (ret < 0)
return ret;
ret = ftrace_pid_add(val);
return ret ? ret : cnt;
}
static int
ftrace_pid_release(struct inode *inode, struct file *file)
{
if (file->f_mode & FMODE_READ)
seq_release(inode, file);
return 0;
}
static const struct file_operations ftrace_pid_fops = {
.open = ftrace_pid_open,
.write = ftrace_pid_write,
.read = seq_read,
.llseek = seq_lseek,
.release = ftrace_pid_release,
};
static __init int ftrace_init_debugfs(void)
{
struct dentry *d_tracer;
d_tracer = tracing_init_dentry();
if (!d_tracer)
return 0;
ftrace_init_dyn_debugfs(d_tracer);
trace_create_file("set_ftrace_pid", 0644, d_tracer,
NULL, &ftrace_pid_fops);
ftrace_profile_debugfs(d_tracer);
return 0;
}
fs_initcall(ftrace_init_debugfs);
/**
* ftrace_kill - kill ftrace
*
* This function should be used by panic code. It stops ftrace
* but in a not so nice way. If you need to simply kill ftrace
* from a non-atomic section, use ftrace_kill.
*/
void ftrace_kill(void)
{
ftrace_disabled = 1;
ftrace_enabled = 0;
clear_ftrace_function();
}
/**
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
* register_ftrace_function - register a function for profiling
* @ops - ops structure that holds the function for profiling.
*
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
* Register a function to be called by all functions in the
* kernel.
*
* Note: @ops->func and all the functions it calls must be labeled
* with "notrace", otherwise it will go into a
* recursive loop.
*/
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
int register_ftrace_function(struct ftrace_ops *ops)
{
int ret;
if (unlikely(ftrace_disabled))
return -1;
mutex_lock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
ret = __register_ftrace_function(ops);
ftrace_startup(0);
mutex_unlock(&ftrace_lock);
return ret;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
}
/**
* unregister_ftrace_function - unregister a function for profiling.
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
* @ops - ops structure that holds the function to unregister
*
* Unregister a function that was added to be called by ftrace profiling.
*/
int unregister_ftrace_function(struct ftrace_ops *ops)
{
int ret;
mutex_lock(&ftrace_lock);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
ret = __unregister_ftrace_function(ops);
ftrace_shutdown(0);
mutex_unlock(&ftrace_lock);
return ret;
}
int
ftrace_enable_sysctl(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
if (unlikely(ftrace_disabled))
return -ENODEV;
mutex_lock(&ftrace_lock);
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
goto out;
last_ftrace_enabled = !!ftrace_enabled;
if (ftrace_enabled) {
ftrace_startup_sysctl();
/* we are starting ftrace again */
if (ftrace_list != &ftrace_list_end) {
if (ftrace_list->next == &ftrace_list_end)
ftrace_trace_function = ftrace_list->func;
else
ftrace_trace_function = ftrace_list_func;
}
} else {
/* stopping ftrace calls (just send to ftrace_stub) */
ftrace_trace_function = ftrace_stub;
ftrace_shutdown_sysctl();
}
out:
mutex_unlock(&ftrace_lock);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 03:20:42 +08:00
return ret;
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
static int ftrace_graph_active;
static struct notifier_block ftrace_suspend_notifier;
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace)
{
return 0;
}
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 07:57:25 +08:00
/* The callbacks that hook a function */
trace_func_graph_ret_t ftrace_graph_return =
(trace_func_graph_ret_t)ftrace_stub;
trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub;
/* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */
static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list)
{
int i;
int ret = 0;
unsigned long flags;
int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
struct task_struct *g, *t;
for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
ret_stack_list[i] = kmalloc(FTRACE_RETFUNC_DEPTH
* sizeof(struct ftrace_ret_stack),
GFP_KERNEL);
if (!ret_stack_list[i]) {
start = 0;
end = i;
ret = -ENOMEM;
goto free;
}
}
read_lock_irqsave(&tasklist_lock, flags);
do_each_thread(g, t) {
if (start == end) {
ret = -EAGAIN;
goto unlock;
}
if (t->ret_stack == NULL) {
atomic_set(&t->tracing_graph_pause, 0);
atomic_set(&t->trace_overrun, 0);
t->curr_ret_stack = -1;
/* Make sure the tasks see the -1 first: */
smp_wmb();
t->ret_stack = ret_stack_list[start++];
}
} while_each_thread(g, t);
unlock:
read_unlock_irqrestore(&tasklist_lock, flags);
free:
for (i = start; i < end; i++)
kfree(ret_stack_list[i]);
return ret;
}
static void
ftrace_graph_probe_sched_switch(struct rq *__rq, struct task_struct *prev,
struct task_struct *next)
{
unsigned long long timestamp;
int index;
/*
* Does the user want to count the time a function was asleep.
* If so, do not update the time stamps.
*/
if (trace_flags & TRACE_ITER_SLEEP_TIME)
return;
timestamp = trace_clock_local();
prev->ftrace_timestamp = timestamp;
/* only process tasks that we timestamped */
if (!next->ftrace_timestamp)
return;
/*
* Update all the counters in next to make up for the
* time next was sleeping.
*/
timestamp -= next->ftrace_timestamp;
for (index = next->curr_ret_stack; index >= 0; index--)
next->ret_stack[index].calltime += timestamp;
}
/* Allocate a return stack for each task */
static int start_graph_tracing(void)
{
struct ftrace_ret_stack **ret_stack_list;
tracing/function-graph-tracer: trace the idle tasks When the function graph tracer is activated, it iterates over the task_list to allocate a stack to store the return addresses. But the per cpu idle tasks are not iterated by using do_each_thread / while_each_thread. So we have to iterate on them manually. This fixes somes weirdness in the traces and many losses of traces. Examples on two cpus: 0) Xorg-4287 | 2.906 us | } 0) Xorg-4287 | 3.965 us | } 0) Xorg-4287 | 5.302 us | } ------------------------------------------ 0) Xorg-4287 => <idle>-0 ------------------------------------------ 0) <idle>-0 | 2.861 us | } 0) <idle>-0 | 0.526 us | set_normalized_timespec(); 0) <idle>-0 | 7.201 us | } 0) <idle>-0 | 8.214 us | } 0) <idle>-0 | | clockevents_program_event() { 0) <idle>-0 | | lapic_next_event() { 0) <idle>-0 | 0.510 us | native_apic_mem_write(); 0) <idle>-0 | 1.546 us | } 0) <idle>-0 | 2.583 us | } 0) <idle>-0 | + 12.435 us | } 0) <idle>-0 | + 13.470 us | } 0) <idle>-0 | 0.608 us | _spin_unlock_irqrestore(); 0) <idle>-0 | + 23.270 us | } 0) <idle>-0 | + 24.336 us | } 0) <idle>-0 | + 25.417 us | } 0) <idle>-0 | 0.593 us | _spin_unlock(); 0) <idle>-0 | + 41.869 us | } 0) <idle>-0 | + 42.906 us | } 0) <idle>-0 | + 95.035 us | } 0) <idle>-0 | 0.540 us | menu_reflect(); 0) <idle>-0 | ! 100.404 us | } 0) <idle>-0 | 0.564 us | mce_idle_callback(); 0) <idle>-0 | | enter_idle() { 0) <idle>-0 | 0.526 us | mce_idle_callback(); 0) <idle>-0 | 1.757 us | } 0) <idle>-0 | | cpuidle_idle_call() { 0) <idle>-0 | | menu_select() { 0) <idle>-0 | 0.525 us | pm_qos_requirement(); 0) <idle>-0 | 0.518 us | tick_nohz_get_sleep_length(); 0) <idle>-0 | 2.621 us | } [...] 1) <idle>-0 | 0.518 us | touch_softlockup_watchdog(); 1) <idle>-0 | + 14.355 us | } 1) <idle>-0 | + 22.840 us | } 1) <idle>-0 | + 25.949 us | } 1) <idle>-0 | | handle_irq() { 1) <idle>-0 | 0.511 us | irq_to_desc(); 1) <idle>-0 | | handle_edge_irq() { 1) <idle>-0 | 0.638 us | _spin_lock(); 1) <idle>-0 | | ack_apic_edge() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | | move_native_irq() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | 1.532 us | } 1) <idle>-0 | 0.511 us | native_apic_mem_write(); ------------------------------------------ 1) <idle>-0 => cat-5073 ------------------------------------------ 1) cat-5073 | 3.731 us | } 1) cat-5073 | | run_local_timers() { 1) cat-5073 | 0.533 us | hrtimer_run_queues(); 1) cat-5073 | | raise_softirq() { 1) cat-5073 | | __raise_softirq_irqoff() { 1) cat-5073 | | /* nr: 1 */ 1) cat-5073 | 2.718 us | } 1) cat-5073 | 3.814 us | } Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-18 01:35:34 +08:00
int ret, cpu;
ret_stack_list = kmalloc(FTRACE_RETSTACK_ALLOC_SIZE *
sizeof(struct ftrace_ret_stack *),
GFP_KERNEL);
if (!ret_stack_list)
return -ENOMEM;
tracing/function-graph-tracer: trace the idle tasks When the function graph tracer is activated, it iterates over the task_list to allocate a stack to store the return addresses. But the per cpu idle tasks are not iterated by using do_each_thread / while_each_thread. So we have to iterate on them manually. This fixes somes weirdness in the traces and many losses of traces. Examples on two cpus: 0) Xorg-4287 | 2.906 us | } 0) Xorg-4287 | 3.965 us | } 0) Xorg-4287 | 5.302 us | } ------------------------------------------ 0) Xorg-4287 => <idle>-0 ------------------------------------------ 0) <idle>-0 | 2.861 us | } 0) <idle>-0 | 0.526 us | set_normalized_timespec(); 0) <idle>-0 | 7.201 us | } 0) <idle>-0 | 8.214 us | } 0) <idle>-0 | | clockevents_program_event() { 0) <idle>-0 | | lapic_next_event() { 0) <idle>-0 | 0.510 us | native_apic_mem_write(); 0) <idle>-0 | 1.546 us | } 0) <idle>-0 | 2.583 us | } 0) <idle>-0 | + 12.435 us | } 0) <idle>-0 | + 13.470 us | } 0) <idle>-0 | 0.608 us | _spin_unlock_irqrestore(); 0) <idle>-0 | + 23.270 us | } 0) <idle>-0 | + 24.336 us | } 0) <idle>-0 | + 25.417 us | } 0) <idle>-0 | 0.593 us | _spin_unlock(); 0) <idle>-0 | + 41.869 us | } 0) <idle>-0 | + 42.906 us | } 0) <idle>-0 | + 95.035 us | } 0) <idle>-0 | 0.540 us | menu_reflect(); 0) <idle>-0 | ! 100.404 us | } 0) <idle>-0 | 0.564 us | mce_idle_callback(); 0) <idle>-0 | | enter_idle() { 0) <idle>-0 | 0.526 us | mce_idle_callback(); 0) <idle>-0 | 1.757 us | } 0) <idle>-0 | | cpuidle_idle_call() { 0) <idle>-0 | | menu_select() { 0) <idle>-0 | 0.525 us | pm_qos_requirement(); 0) <idle>-0 | 0.518 us | tick_nohz_get_sleep_length(); 0) <idle>-0 | 2.621 us | } [...] 1) <idle>-0 | 0.518 us | touch_softlockup_watchdog(); 1) <idle>-0 | + 14.355 us | } 1) <idle>-0 | + 22.840 us | } 1) <idle>-0 | + 25.949 us | } 1) <idle>-0 | | handle_irq() { 1) <idle>-0 | 0.511 us | irq_to_desc(); 1) <idle>-0 | | handle_edge_irq() { 1) <idle>-0 | 0.638 us | _spin_lock(); 1) <idle>-0 | | ack_apic_edge() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | | move_native_irq() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | 1.532 us | } 1) <idle>-0 | 0.511 us | native_apic_mem_write(); ------------------------------------------ 1) <idle>-0 => cat-5073 ------------------------------------------ 1) cat-5073 | 3.731 us | } 1) cat-5073 | | run_local_timers() { 1) cat-5073 | 0.533 us | hrtimer_run_queues(); 1) cat-5073 | | raise_softirq() { 1) cat-5073 | | __raise_softirq_irqoff() { 1) cat-5073 | | /* nr: 1 */ 1) cat-5073 | 2.718 us | } 1) cat-5073 | 3.814 us | } Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-18 01:35:34 +08:00
/* The cpu_boot init_task->ret_stack will never be freed */
for_each_online_cpu(cpu) {
if (!idle_task(cpu)->ret_stack)
ftrace_graph_init_task(idle_task(cpu));
}
tracing/function-graph-tracer: trace the idle tasks When the function graph tracer is activated, it iterates over the task_list to allocate a stack to store the return addresses. But the per cpu idle tasks are not iterated by using do_each_thread / while_each_thread. So we have to iterate on them manually. This fixes somes weirdness in the traces and many losses of traces. Examples on two cpus: 0) Xorg-4287 | 2.906 us | } 0) Xorg-4287 | 3.965 us | } 0) Xorg-4287 | 5.302 us | } ------------------------------------------ 0) Xorg-4287 => <idle>-0 ------------------------------------------ 0) <idle>-0 | 2.861 us | } 0) <idle>-0 | 0.526 us | set_normalized_timespec(); 0) <idle>-0 | 7.201 us | } 0) <idle>-0 | 8.214 us | } 0) <idle>-0 | | clockevents_program_event() { 0) <idle>-0 | | lapic_next_event() { 0) <idle>-0 | 0.510 us | native_apic_mem_write(); 0) <idle>-0 | 1.546 us | } 0) <idle>-0 | 2.583 us | } 0) <idle>-0 | + 12.435 us | } 0) <idle>-0 | + 13.470 us | } 0) <idle>-0 | 0.608 us | _spin_unlock_irqrestore(); 0) <idle>-0 | + 23.270 us | } 0) <idle>-0 | + 24.336 us | } 0) <idle>-0 | + 25.417 us | } 0) <idle>-0 | 0.593 us | _spin_unlock(); 0) <idle>-0 | + 41.869 us | } 0) <idle>-0 | + 42.906 us | } 0) <idle>-0 | + 95.035 us | } 0) <idle>-0 | 0.540 us | menu_reflect(); 0) <idle>-0 | ! 100.404 us | } 0) <idle>-0 | 0.564 us | mce_idle_callback(); 0) <idle>-0 | | enter_idle() { 0) <idle>-0 | 0.526 us | mce_idle_callback(); 0) <idle>-0 | 1.757 us | } 0) <idle>-0 | | cpuidle_idle_call() { 0) <idle>-0 | | menu_select() { 0) <idle>-0 | 0.525 us | pm_qos_requirement(); 0) <idle>-0 | 0.518 us | tick_nohz_get_sleep_length(); 0) <idle>-0 | 2.621 us | } [...] 1) <idle>-0 | 0.518 us | touch_softlockup_watchdog(); 1) <idle>-0 | + 14.355 us | } 1) <idle>-0 | + 22.840 us | } 1) <idle>-0 | + 25.949 us | } 1) <idle>-0 | | handle_irq() { 1) <idle>-0 | 0.511 us | irq_to_desc(); 1) <idle>-0 | | handle_edge_irq() { 1) <idle>-0 | 0.638 us | _spin_lock(); 1) <idle>-0 | | ack_apic_edge() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | | move_native_irq() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | 1.532 us | } 1) <idle>-0 | 0.511 us | native_apic_mem_write(); ------------------------------------------ 1) <idle>-0 => cat-5073 ------------------------------------------ 1) cat-5073 | 3.731 us | } 1) cat-5073 | | run_local_timers() { 1) cat-5073 | 0.533 us | hrtimer_run_queues(); 1) cat-5073 | | raise_softirq() { 1) cat-5073 | | __raise_softirq_irqoff() { 1) cat-5073 | | /* nr: 1 */ 1) cat-5073 | 2.718 us | } 1) cat-5073 | 3.814 us | } Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-18 01:35:34 +08:00
do {
ret = alloc_retstack_tasklist(ret_stack_list);
} while (ret == -EAGAIN);
if (!ret) {
ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch);
if (ret)
pr_info("ftrace_graph: Couldn't activate tracepoint"
" probe to kernel_sched_switch\n");
}
kfree(ret_stack_list);
return ret;
}
/*
* Hibernation protection.
* The state of the current task is too much unstable during
* suspend/restore to disk. We want to protect against that.
*/
static int
ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state,
void *unused)
{
switch (state) {
case PM_HIBERNATION_PREPARE:
pause_graph_tracing();
break;
case PM_POST_HIBERNATION:
unpause_graph_tracing();
break;
}
return NOTIFY_DONE;
}
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 07:57:25 +08:00
int register_ftrace_graph(trace_func_graph_ret_t retfunc,
trace_func_graph_ent_t entryfunc)
{
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
int ret = 0;
mutex_lock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
/* we currently allow only one tracer registered at a time */
if (ftrace_graph_active) {
ret = -EBUSY;
goto out;
}
ftrace_suspend_notifier.notifier_call = ftrace_suspend_notifier_call;
register_pm_notifier(&ftrace_suspend_notifier);
ftrace_graph_active++;
ret = start_graph_tracing();
if (ret) {
ftrace_graph_active--;
goto out;
}
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 07:57:25 +08:00
ftrace_graph_return = retfunc;
ftrace_graph_entry = entryfunc;
ftrace_startup(FTRACE_START_FUNC_RET);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
out:
mutex_unlock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
return ret;
}
void unregister_ftrace_graph(void)
{
mutex_lock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
if (unlikely(!ftrace_graph_active))
goto out;
ftrace_graph_active--;
unregister_trace_sched_switch(ftrace_graph_probe_sched_switch);
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 07:57:25 +08:00
ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub;
ftrace_graph_entry = ftrace_graph_entry_stub;
ftrace_shutdown(FTRACE_STOP_FUNC_RET);
unregister_pm_notifier(&ftrace_suspend_notifier);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 13:02:06 +08:00
out:
mutex_unlock(&ftrace_lock);
}
/* Allocate a return stack for newly created task */
void ftrace_graph_init_task(struct task_struct *t)
{
/* Make sure we do not use the parent ret_stack */
t->ret_stack = NULL;
if (ftrace_graph_active) {
struct ftrace_ret_stack *ret_stack;
ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
* sizeof(struct ftrace_ret_stack),
GFP_KERNEL);
if (!ret_stack)
return;
t->curr_ret_stack = -1;
atomic_set(&t->tracing_graph_pause, 0);
atomic_set(&t->trace_overrun, 0);
t->ftrace_timestamp = 0;
/* make curr_ret_stack visable before we add the ret_stack */
smp_wmb();
t->ret_stack = ret_stack;
}
}
void ftrace_graph_exit_task(struct task_struct *t)
{
tracing/function-return-tracer: don't trace kfree while it frees the return stack Impact: fix a crash While I killed the cat process, I got sometimes the following (but rare) crash: [ 65.689027] Pid: 2969, comm: cat Not tainted (2.6.28-rc6-tip #83) AMILO Li 2727 [ 65.689027] EIP: 0060:[<00000000>] EFLAGS: 00010082 CPU: 1 [ 65.689027] EIP is at 0x0 [ 65.689027] EAX: 00000000 EBX: f66cd780 ECX: c019a64a EDX: f66cd780 [ 65.689027] ESI: 00000286 EDI: f66cd780 EBP: f630be2c ESP: f630be24 [ 65.689027] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 65.689027] Process cat (pid: 2969, ti=f630a000 task=f66cd780 task.ti=f630a000) [ 65.689027] Stack: [ 65.689027] 00000012 f630bd54 f630be7c c012c853 00000000 c0133cc9 f66cda54 f630be5c [ 65.689027] f630be68 f66cda54 f66cd88c f66cd878 f7070000 00000001 f630be90 c0135dbc [ 65.689027] f614a614 f630be68 f630be68 f65ba200 00000002 f630bf10 f630be90 c012cad6 [ 65.689027] Call Trace: [ 65.689027] [<c012c853>] ? do_exit+0x603/0x850 [ 65.689027] [<c0133cc9>] ? next_signal+0x9/0x40 [ 65.689027] [<c0135dbc>] ? dequeue_signal+0x8c/0x180 [ 65.689027] [<c012cad6>] ? do_group_exit+0x36/0x90 [ 65.689027] [<c013709c>] ? get_signal_to_deliver+0x20c/0x390 [ 65.689027] [<c0102b69>] ? do_notify_resume+0x99/0x8b0 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c014db9b>] ? trace_hardirqs_on+0xb/0x10 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c02e39b0>] ? n_tty_write+0x0/0x340 [ 65.689027] [<c02e1812>] ? redirected_tty_write+0x82/0x90 [ 65.689027] [<c019ee99>] ? vfs_write+0x99/0xd0 [ 65.689027] [<c02e1790>] ? redirected_tty_write+0x0/0x90 [ 65.689027] [<c019f342>] ? sys_write+0x42/0x70 [ 65.689027] [<c01035ca>] ? work_notifysig+0x13/0x19 [ 65.689027] Code: Bad EIP value. [ 65.689027] EIP: [<00000000>] 0x0 SS:ESP 0068:f630be24 This is because on do_exit(), kfree is called to free the return addresses stack but kfree is traced and stored its return address in this stack. This patch fixes it. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-24 00:33:12 +08:00
struct ftrace_ret_stack *ret_stack = t->ret_stack;
t->ret_stack = NULL;
tracing/function-return-tracer: don't trace kfree while it frees the return stack Impact: fix a crash While I killed the cat process, I got sometimes the following (but rare) crash: [ 65.689027] Pid: 2969, comm: cat Not tainted (2.6.28-rc6-tip #83) AMILO Li 2727 [ 65.689027] EIP: 0060:[<00000000>] EFLAGS: 00010082 CPU: 1 [ 65.689027] EIP is at 0x0 [ 65.689027] EAX: 00000000 EBX: f66cd780 ECX: c019a64a EDX: f66cd780 [ 65.689027] ESI: 00000286 EDI: f66cd780 EBP: f630be2c ESP: f630be24 [ 65.689027] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 65.689027] Process cat (pid: 2969, ti=f630a000 task=f66cd780 task.ti=f630a000) [ 65.689027] Stack: [ 65.689027] 00000012 f630bd54 f630be7c c012c853 00000000 c0133cc9 f66cda54 f630be5c [ 65.689027] f630be68 f66cda54 f66cd88c f66cd878 f7070000 00000001 f630be90 c0135dbc [ 65.689027] f614a614 f630be68 f630be68 f65ba200 00000002 f630bf10 f630be90 c012cad6 [ 65.689027] Call Trace: [ 65.689027] [<c012c853>] ? do_exit+0x603/0x850 [ 65.689027] [<c0133cc9>] ? next_signal+0x9/0x40 [ 65.689027] [<c0135dbc>] ? dequeue_signal+0x8c/0x180 [ 65.689027] [<c012cad6>] ? do_group_exit+0x36/0x90 [ 65.689027] [<c013709c>] ? get_signal_to_deliver+0x20c/0x390 [ 65.689027] [<c0102b69>] ? do_notify_resume+0x99/0x8b0 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c014db9b>] ? trace_hardirqs_on+0xb/0x10 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c02e39b0>] ? n_tty_write+0x0/0x340 [ 65.689027] [<c02e1812>] ? redirected_tty_write+0x82/0x90 [ 65.689027] [<c019ee99>] ? vfs_write+0x99/0xd0 [ 65.689027] [<c02e1790>] ? redirected_tty_write+0x0/0x90 [ 65.689027] [<c019f342>] ? sys_write+0x42/0x70 [ 65.689027] [<c01035ca>] ? work_notifysig+0x13/0x19 [ 65.689027] Code: Bad EIP value. [ 65.689027] EIP: [<00000000>] 0x0 SS:ESP 0068:f630be24 This is because on do_exit(), kfree is called to free the return addresses stack but kfree is traced and stored its return address in this stack. This patch fixes it. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-24 00:33:12 +08:00
/* NULL must become visible to IRQs before we free it: */
barrier();
kfree(ret_stack);
}
void ftrace_graph_stop(void)
{
ftrace_stop();
}
#endif