OpenCloudOS-Kernel/include/linux/page_cgroup.h

146 lines
3.4 KiB
C
Raw Normal View History

#ifndef __LINUX_PAGE_CGROUP_H
#define __LINUX_PAGE_CGROUP_H
enum {
/* flags for mem_cgroup */
PCG_LOCK, /* Lock for pc->mem_cgroup and following bits. */
PCG_USED, /* this object is in use. */
PCG_MIGRATION, /* under page migration */
__NR_PCG_FLAGS,
};
#ifndef __GENERATING_BOUNDS_H
#include <generated/bounds.h>
#ifdef CONFIG_MEMCG
#include <linux/bit_spinlock.h>
/*
* Page Cgroup can be considered as an extended mem_map.
* A page_cgroup page is associated with every page descriptor. The
* page_cgroup helps us identify information about the cgroup
* All page cgroups are allocated at boot or memory hotplug event,
* then the page cgroup for pfn always exists.
*/
struct page_cgroup {
unsigned long flags;
struct mem_cgroup *mem_cgroup;
};
void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat);
#ifdef CONFIG_SPARSEMEM
static inline void __init page_cgroup_init_flatmem(void)
{
}
extern void __init page_cgroup_init(void);
#else
void __init page_cgroup_init_flatmem(void);
static inline void __init page_cgroup_init(void)
{
}
#endif
struct page_cgroup *lookup_page_cgroup(struct page *page);
struct page *lookup_cgroup_page(struct page_cgroup *pc);
#define TESTPCGFLAG(uname, lname) \
static inline int PageCgroup##uname(struct page_cgroup *pc) \
{ return test_bit(PCG_##lname, &pc->flags); }
#define SETPCGFLAG(uname, lname) \
static inline void SetPageCgroup##uname(struct page_cgroup *pc)\
{ set_bit(PCG_##lname, &pc->flags); }
#define CLEARPCGFLAG(uname, lname) \
static inline void ClearPageCgroup##uname(struct page_cgroup *pc) \
{ clear_bit(PCG_##lname, &pc->flags); }
#define TESTCLEARPCGFLAG(uname, lname) \
static inline int TestClearPageCgroup##uname(struct page_cgroup *pc) \
{ return test_and_clear_bit(PCG_##lname, &pc->flags); }
TESTPCGFLAG(Used, USED)
CLEARPCGFLAG(Used, USED)
SETPCGFLAG(Used, USED)
memcg: fix mis-accounting of file mapped racy with migration FILE_MAPPED per memcg of migrated file cache is not properly updated, because our hook in page_add_file_rmap() can't know to which memcg FILE_MAPPED should be counted. Basically, this patch is for fixing the bug but includes some big changes to fix up other messes. Now, at migrating mapped file, events happen in following sequence. 1. allocate a new page. 2. get memcg of an old page. 3. charge ageinst a new page before migration. But at this point, no changes to new page's page_cgroup, no commit for the charge. (IOW, PCG_USED bit is not set.) 4. page migration replaces radix-tree, old-page and new-page. 5. page migration remaps the new page if the old page was mapped. 6. Here, the new page is unlocked. 7. memcg commits the charge for newpage, Mark the new page's page_cgroup as PCG_USED. Because "commit" happens after page-remap, we can count FILE_MAPPED at "5", because we should avoid to trust page_cgroup->mem_cgroup. if PCG_USED bit is unset. (Note: memcg's LRU removal code does that but LRU-isolation logic is used for helping it. When we overwrite page_cgroup->mem_cgroup, page_cgroup is not on LRU or page_cgroup->mem_cgroup is NULL.) We can lose file_mapped accounting information at 5 because FILE_MAPPED is updated only when mapcount changes 0->1. So we should catch it. BTW, historically, above implemntation comes from migration-failure of anonymous page. Because we charge both of old page and new page with mapcount=0, we can't catch - the page is really freed before remap. - migration fails but it's freed before remap or .....corner cases. New migration sequence with memcg is: 1. allocate a new page. 2. mark PageCgroupMigration to the old page. 3. charge against a new page onto the old page's memcg. (here, new page's pc is marked as PageCgroupUsed.) 4. page migration replaces radix-tree, page table, etc... 5. At remapping, new page's page_cgroup is now makrked as "USED" We can catch 0->1 event and FILE_MAPPED will be properly updated. And we can catch SWAPOUT event after unlock this and freeing this page by unmap() can be caught. 7. Clear PageCgroupMigration of the old page. So, FILE_MAPPED will be correctly updated. Then, for what MIGRATION flag is ? Without it, at migration failure, we may have to charge old page again because it may be fully unmapped. "charge" means that we have to dive into memory reclaim or something complated. So, it's better to avoid charge it again. Before this patch, __commit_charge() was working for both of the old/new page and fixed up all. But this technique has some racy condtion around FILE_MAPPED and SWAPOUT etc... Now, the kernel use MIGRATION flag and don't uncharge old page until the end of migration. I hope this change will make memcg's page migration much simpler. This page migration has caused several troubles. Worth to add a flag for simplification. Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 05:42:46 +08:00
SETPCGFLAG(Migration, MIGRATION)
CLEARPCGFLAG(Migration, MIGRATION)
TESTPCGFLAG(Migration, MIGRATION)
static inline void lock_page_cgroup(struct page_cgroup *pc)
{
memcg: add lock to synchronize page accounting and migration Introduce a new bit spin lock, PCG_MOVE_LOCK, to synchronize the page accounting and migration code. This reworks the locking scheme of _update_stat() and _move_account() by adding new lock bit PCG_MOVE_LOCK, which is always taken under IRQ disable. 1. If pages are being migrated from a memcg, then updates to that memcg page statistics are protected by grabbing PCG_MOVE_LOCK using move_lock_page_cgroup(). In an upcoming commit, memcg dirty page accounting will be updating memcg page accounting (specifically: num writeback pages) from IRQ context (softirq). Avoid a deadlocking nested spin lock attempt by disabling irq on the local processor when grabbing the PCG_MOVE_LOCK. 2. lock for update_page_stat is used only for avoiding race with move_account(). So, IRQ awareness of lock_page_cgroup() itself is not a problem. The problem is between mem_cgroup_update_page_stat() and mem_cgroup_move_account_page(). Trade-off: * Changing lock_page_cgroup() to always disable IRQ (or local_bh) has some impacts on performance and I think it's bad to disable IRQ when it's not necessary. * adding a new lock makes move_account() slower. Score is here. Performance Impact: moving a 8G anon process. Before: real 0m0.792s user 0m0.000s sys 0m0.780s After: real 0m0.854s user 0m0.000s sys 0m0.842s This score is bad but planned patches for optimization can reduce this impact. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Greg Thelen <gthelen@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Andrea Righi <arighi@develer.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:47:38 +08:00
/*
* Don't take this lock in IRQ context.
* This lock is for pc->mem_cgroup, USED, MIGRATION
memcg: add lock to synchronize page accounting and migration Introduce a new bit spin lock, PCG_MOVE_LOCK, to synchronize the page accounting and migration code. This reworks the locking scheme of _update_stat() and _move_account() by adding new lock bit PCG_MOVE_LOCK, which is always taken under IRQ disable. 1. If pages are being migrated from a memcg, then updates to that memcg page statistics are protected by grabbing PCG_MOVE_LOCK using move_lock_page_cgroup(). In an upcoming commit, memcg dirty page accounting will be updating memcg page accounting (specifically: num writeback pages) from IRQ context (softirq). Avoid a deadlocking nested spin lock attempt by disabling irq on the local processor when grabbing the PCG_MOVE_LOCK. 2. lock for update_page_stat is used only for avoiding race with move_account(). So, IRQ awareness of lock_page_cgroup() itself is not a problem. The problem is between mem_cgroup_update_page_stat() and mem_cgroup_move_account_page(). Trade-off: * Changing lock_page_cgroup() to always disable IRQ (or local_bh) has some impacts on performance and I think it's bad to disable IRQ when it's not necessary. * adding a new lock makes move_account() slower. Score is here. Performance Impact: moving a 8G anon process. Before: real 0m0.792s user 0m0.000s sys 0m0.780s After: real 0m0.854s user 0m0.000s sys 0m0.842s This score is bad but planned patches for optimization can reduce this impact. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Greg Thelen <gthelen@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Andrea Righi <arighi@develer.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14 07:47:38 +08:00
*/
bit_spin_lock(PCG_LOCK, &pc->flags);
}
static inline void unlock_page_cgroup(struct page_cgroup *pc)
{
bit_spin_unlock(PCG_LOCK, &pc->flags);
}
#else /* CONFIG_MEMCG */
struct page_cgroup;
static inline void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
{
}
static inline struct page_cgroup *lookup_page_cgroup(struct page *page)
{
return NULL;
}
static inline void page_cgroup_init(void)
{
}
static inline void __init page_cgroup_init_flatmem(void)
{
}
#endif /* CONFIG_MEMCG */
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
#include <linux/swap.h>
#ifdef CONFIG_MEMCG_SWAP
extern unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
unsigned short old, unsigned short new);
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
extern unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id);
extern unsigned short lookup_swap_cgroup_id(swp_entry_t ent);
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
extern int swap_cgroup_swapon(int type, unsigned long max_pages);
extern void swap_cgroup_swapoff(int type);
#else
static inline
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
{
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
return 0;
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
}
static inline
unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
{
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
return 0;
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
}
static inline int
swap_cgroup_swapon(int type, unsigned long max_pages)
{
return 0;
}
static inline void swap_cgroup_swapoff(int type)
{
return;
}
#endif /* CONFIG_MEMCG_SWAP */
#endif /* !__GENERATING_BOUNDS_H */
#endif /* __LINUX_PAGE_CGROUP_H */