OpenCloudOS-Kernel/drivers/firmware/efi/libstub/mem.c

266 lines
7.1 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"
#define EFI_MMAP_NR_SLACK_SLOTS 8
static inline bool mmap_has_headroom(unsigned long buff_size,
unsigned long map_size,
unsigned long desc_size)
{
unsigned long slack = buff_size - map_size;
return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
}
efi_status_t efi_get_memory_map(struct efi_boot_memmap *map)
{
efi_memory_desc_t *m = NULL;
efi_status_t status;
unsigned long key;
u32 desc_version;
*map->desc_size = sizeof(*m);
*map->map_size = *map->desc_size * 32;
*map->buff_size = *map->map_size;
again:
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA,
*map->map_size, (void **)&m);
if (status != EFI_SUCCESS)
goto fail;
*map->desc_size = 0;
key = 0;
status = efi_bs_call(get_memory_map, map->map_size, m,
&key, map->desc_size, &desc_version);
if (status == EFI_BUFFER_TOO_SMALL ||
!mmap_has_headroom(*map->buff_size, *map->map_size,
*map->desc_size)) {
efi_bs_call(free_pool, m);
/*
* Make sure there is some entries of headroom so that the
* buffer can be reused for a new map after allocations are
* no longer permitted. Its unlikely that the map will grow to
* exceed this headroom once we are ready to trigger
* ExitBootServices()
*/
*map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
*map->buff_size = *map->map_size;
goto again;
}
if (status != EFI_SUCCESS)
efi_bs_call(free_pool, m);
if (map->key_ptr && status == EFI_SUCCESS)
*map->key_ptr = key;
if (map->desc_ver && status == EFI_SUCCESS)
*map->desc_ver = desc_version;
fail:
*map->map = m;
return status;
}
/**
* efi_allocate_pages() - Allocate memory pages
* @size: minimum number of bytes to allocate
* @addr: On return the address of the first allocated page. The first
* allocated page has alignment EFI_ALLOC_ALIGN which is an
* architecture dependent multiple of the page size.
* @max: the address that the last allocated memory page shall not
* exceed
*
* Allocate pages as EFI_LOADER_DATA. The allocated pages are aligned according
* to EFI_ALLOC_ALIGN. The last allocated page will not exceed the address
* given by @max.
*
* Return: status code
*/
efi_status_t efi_allocate_pages(unsigned long size, unsigned long *addr,
unsigned long max)
{
efi_physical_addr_t alloc_addr = ALIGN_DOWN(max + 1, EFI_ALLOC_ALIGN) - 1;
int slack = EFI_ALLOC_ALIGN / EFI_PAGE_SIZE - 1;
efi_status_t status;
size = round_up(size, EFI_ALLOC_ALIGN);
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
EFI_LOADER_DATA, size / EFI_PAGE_SIZE + slack,
&alloc_addr);
if (status != EFI_SUCCESS)
return status;
*addr = ALIGN((unsigned long)alloc_addr, EFI_ALLOC_ALIGN);
if (slack > 0) {
int l = (alloc_addr % EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
if (l) {
efi_bs_call(free_pages, alloc_addr, slack - l + 1);
slack = l - 1;
}
if (slack)
efi_bs_call(free_pages, *addr + size, slack);
}
return EFI_SUCCESS;
}
/*
* Allocate at the lowest possible address that is not below 'min'.
*/
efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align,
unsigned long *addr, unsigned long min)
{
unsigned long map_size, desc_size, buff_size;
efi_memory_desc_t *map;
efi_status_t status;
unsigned long nr_pages;
int i;
struct efi_boot_memmap boot_map;
boot_map.map = &map;
boot_map.map_size = &map_size;
boot_map.desc_size = &desc_size;
boot_map.desc_ver = NULL;
boot_map.key_ptr = NULL;
boot_map.buff_size = &buff_size;
status = efi_get_memory_map(&boot_map);
if (status != EFI_SUCCESS)
goto fail;
/*
* Enforce minimum alignment that EFI or Linux requires when
* requesting a specific address. We are doing page-based (or
* larger) allocations, and both the address and size must meet
* alignment constraints.
*/
if (align < EFI_ALLOC_ALIGN)
align = EFI_ALLOC_ALIGN;
size = round_up(size, EFI_ALLOC_ALIGN);
nr_pages = size / EFI_PAGE_SIZE;
for (i = 0; i < map_size / desc_size; i++) {
efi_memory_desc_t *desc;
unsigned long m = (unsigned long)map;
u64 start, end;
desc = efi_early_memdesc_ptr(m, desc_size, i);
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (efi_soft_reserve_enabled() &&
(desc->attribute & EFI_MEMORY_SP))
continue;
if (desc->num_pages < nr_pages)
continue;
start = desc->phys_addr;
end = start + desc->num_pages * EFI_PAGE_SIZE;
if (start < min)
start = min;
start = round_up(start, align);
if ((start + size) > end)
continue;
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA, nr_pages, &start);
if (status == EFI_SUCCESS) {
*addr = start;
break;
}
}
if (i == map_size / desc_size)
status = EFI_NOT_FOUND;
efi_bs_call(free_pool, map);
fail:
return status;
}
void efi_free(unsigned long size, unsigned long addr)
{
unsigned long nr_pages;
if (!size)
return;
nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
efi_bs_call(free_pages, addr, nr_pages);
}
/*
* Relocate a kernel image, either compressed or uncompressed.
* In the ARM64 case, all kernel images are currently
* uncompressed, and as such when we relocate it we need to
* allocate additional space for the BSS segment. Any low
* memory that this function should avoid needs to be
* unavailable in the EFI memory map, as if the preferred
* address is not available the lowest available address will
* be used.
*/
efi_status_t efi_relocate_kernel(unsigned long *image_addr,
unsigned long image_size,
unsigned long alloc_size,
unsigned long preferred_addr,
unsigned long alignment,
unsigned long min_addr)
{
unsigned long cur_image_addr;
unsigned long new_addr = 0;
efi_status_t status;
unsigned long nr_pages;
efi_physical_addr_t efi_addr = preferred_addr;
if (!image_addr || !image_size || !alloc_size)
return EFI_INVALID_PARAMETER;
if (alloc_size < image_size)
return EFI_INVALID_PARAMETER;
cur_image_addr = *image_addr;
/*
* The EFI firmware loader could have placed the kernel image
* anywhere in memory, but the kernel has restrictions on the
* max physical address it can run at. Some architectures
* also have a prefered address, so first try to relocate
* to the preferred address. If that fails, allocate as low
* as possible while respecting the required alignment.
*/
nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA, nr_pages, &efi_addr);
new_addr = efi_addr;
/*
* If preferred address allocation failed allocate as low as
* possible.
*/
if (status != EFI_SUCCESS) {
status = efi_low_alloc_above(alloc_size, alignment, &new_addr,
min_addr);
}
if (status != EFI_SUCCESS) {
pr_efi_err("Failed to allocate usable memory for kernel.\n");
return status;
}
/*
* We know source/dest won't overlap since both memory ranges
* have been allocated by UEFI, so we can safely use memcpy.
*/
memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
/* Return the new address of the relocated image. */
*image_addr = new_addr;
return status;
}