OpenCloudOS-Kernel/drivers/gpio/gpiolib-acpi.c

993 lines
25 KiB
C
Raw Normal View History

/*
* ACPI helpers for GPIO API
*
* Copyright (C) 2012, Intel Corporation
* Authors: Mathias Nyman <mathias.nyman@linux.intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/export.h>
#include <linux/acpi.h>
#include <linux/interrupt.h>
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
#include <linux/mutex.h>
#include <linux/pinctrl/pinctrl.h>
#include "gpiolib.h"
struct acpi_gpio_event {
struct list_head node;
acpi_handle handle;
unsigned int pin;
unsigned int irq;
struct gpio_desc *desc;
};
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
struct acpi_gpio_connection {
struct list_head node;
unsigned int pin;
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
struct gpio_desc *desc;
};
struct acpi_gpio_chip {
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
/*
* ACPICA requires that the first field of the context parameter
* passed to acpi_install_address_space_handler() is large enough
* to hold struct acpi_connection_info.
*/
struct acpi_connection_info conn_info;
struct list_head conns;
struct mutex conn_lock;
struct gpio_chip *chip;
struct list_head events;
};
static int acpi_gpiochip_find(struct gpio_chip *gc, void *data)
{
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
if (!gc->parent)
return false;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
return ACPI_HANDLE(gc->parent) == data;
}
#ifdef CONFIG_PINCTRL
/**
* acpi_gpiochip_pin_to_gpio_offset() - translates ACPI GPIO to Linux GPIO
* @chip: GPIO chip
* @pin: ACPI GPIO pin number from GpioIo/GpioInt resource
*
* Function takes ACPI GpioIo/GpioInt pin number as a parameter and
* translates it to a corresponding offset suitable to be passed to a
* GPIO controller driver.
*
* Typically the returned offset is same as @pin, but if the GPIO
* controller uses pin controller and the mapping is not contiguous the
* offset might be different.
*/
static int acpi_gpiochip_pin_to_gpio_offset(struct gpio_device *gdev, int pin)
{
struct gpio_pin_range *pin_range;
/* If there are no ranges in this chip, use 1:1 mapping */
if (list_empty(&gdev->pin_ranges))
return pin;
list_for_each_entry(pin_range, &gdev->pin_ranges, node) {
const struct pinctrl_gpio_range *range = &pin_range->range;
int i;
if (range->pins) {
for (i = 0; i < range->npins; i++) {
if (range->pins[i] == pin)
return range->base + i - gdev->base;
}
} else {
if (pin >= range->pin_base &&
pin < range->pin_base + range->npins) {
unsigned gpio_base;
gpio_base = range->base - gdev->base;
return gpio_base + pin - range->pin_base;
}
}
}
return -EINVAL;
}
#else
static inline int acpi_gpiochip_pin_to_gpio_offset(struct gpio_device *gdev,
int pin)
{
return pin;
}
#endif
/**
* acpi_get_gpiod() - Translate ACPI GPIO pin to GPIO descriptor usable with GPIO API
* @path: ACPI GPIO controller full path name, (e.g. "\\_SB.GPO1")
* @pin: ACPI GPIO pin number (0-based, controller-relative)
*
* Return: GPIO descriptor to use with Linux generic GPIO API, or ERR_PTR
* error value. Specifically returns %-EPROBE_DEFER if the referenced GPIO
* controller does not have gpiochip registered at the moment. This is to
* support probe deferral.
*/
static struct gpio_desc *acpi_get_gpiod(char *path, int pin)
{
struct gpio_chip *chip;
acpi_handle handle;
acpi_status status;
int offset;
status = acpi_get_handle(NULL, path, &handle);
if (ACPI_FAILURE(status))
return ERR_PTR(-ENODEV);
chip = gpiochip_find(handle, acpi_gpiochip_find);
if (!chip)
return ERR_PTR(-EPROBE_DEFER);
offset = acpi_gpiochip_pin_to_gpio_offset(chip->gpiodev, pin);
if (offset < 0)
return ERR_PTR(offset);
return gpiochip_get_desc(chip, offset);
}
static irqreturn_t acpi_gpio_irq_handler(int irq, void *data)
{
struct acpi_gpio_event *event = data;
acpi_evaluate_object(event->handle, NULL, NULL, NULL);
return IRQ_HANDLED;
}
static irqreturn_t acpi_gpio_irq_handler_evt(int irq, void *data)
{
struct acpi_gpio_event *event = data;
acpi_execute_simple_method(event->handle, NULL, event->pin);
return IRQ_HANDLED;
}
static void acpi_gpio_chip_dh(acpi_handle handle, void *data)
{
/* The address of this function is used as a key. */
}
static acpi_status acpi_gpiochip_request_interrupt(struct acpi_resource *ares,
void *context)
{
struct acpi_gpio_chip *acpi_gpio = context;
struct gpio_chip *chip = acpi_gpio->chip;
struct acpi_resource_gpio *agpio;
acpi_handle handle, evt_handle;
struct acpi_gpio_event *event;
irq_handler_t handler = NULL;
struct gpio_desc *desc;
unsigned long irqflags;
int ret, pin, irq;
if (ares->type != ACPI_RESOURCE_TYPE_GPIO)
return AE_OK;
agpio = &ares->data.gpio;
if (agpio->connection_type != ACPI_RESOURCE_GPIO_TYPE_INT)
return AE_OK;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
handle = ACPI_HANDLE(chip->parent);
pin = agpio->pin_table[0];
if (pin <= 255) {
char ev_name[5];
sprintf(ev_name, "_%c%02X",
agpio->triggering == ACPI_EDGE_SENSITIVE ? 'E' : 'L',
pin);
if (ACPI_SUCCESS(acpi_get_handle(handle, ev_name, &evt_handle)))
handler = acpi_gpio_irq_handler;
}
if (!handler) {
if (ACPI_SUCCESS(acpi_get_handle(handle, "_EVT", &evt_handle)))
handler = acpi_gpio_irq_handler_evt;
}
if (!handler)
return AE_BAD_PARAMETER;
pin = acpi_gpiochip_pin_to_gpio_offset(chip->gpiodev, pin);
if (pin < 0)
return AE_BAD_PARAMETER;
desc = gpiochip_request_own_desc(chip, pin, "ACPI:Event");
if (IS_ERR(desc)) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent, "Failed to request GPIO\n");
return AE_ERROR;
}
gpiod_direction_input(desc);
ret = gpiochip_lock_as_irq(chip, pin);
if (ret) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent, "Failed to lock GPIO as interrupt\n");
goto fail_free_desc;
}
irq = gpiod_to_irq(desc);
if (irq < 0) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent, "Failed to translate GPIO to IRQ\n");
goto fail_unlock_irq;
}
irqflags = IRQF_ONESHOT;
if (agpio->triggering == ACPI_LEVEL_SENSITIVE) {
if (agpio->polarity == ACPI_ACTIVE_HIGH)
irqflags |= IRQF_TRIGGER_HIGH;
else
irqflags |= IRQF_TRIGGER_LOW;
} else {
switch (agpio->polarity) {
case ACPI_ACTIVE_HIGH:
irqflags |= IRQF_TRIGGER_RISING;
break;
case ACPI_ACTIVE_LOW:
irqflags |= IRQF_TRIGGER_FALLING;
break;
default:
irqflags |= IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING;
break;
}
}
event = kzalloc(sizeof(*event), GFP_KERNEL);
if (!event)
goto fail_unlock_irq;
event->handle = evt_handle;
event->irq = irq;
event->pin = pin;
event->desc = desc;
ret = request_threaded_irq(event->irq, NULL, handler, irqflags,
"ACPI:Event", event);
if (ret) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent,
"Failed to setup interrupt handler for %d\n",
event->irq);
goto fail_free_event;
}
list_add_tail(&event->node, &acpi_gpio->events);
return AE_OK;
fail_free_event:
kfree(event);
fail_unlock_irq:
gpiochip_unlock_as_irq(chip, pin);
fail_free_desc:
gpiochip_free_own_desc(desc);
return AE_ERROR;
}
/**
* acpi_gpiochip_request_interrupts() - Register isr for gpio chip ACPI events
* @chip: GPIO chip
*
* ACPI5 platforms can use GPIO signaled ACPI events. These GPIO interrupts are
* handled by ACPI event methods which need to be called from the GPIO
* chip's interrupt handler. acpi_gpiochip_request_interrupts finds out which
* gpio pins have acpi event methods and assigns interrupt handlers that calls
* the acpi event methods for those pins.
*/
void acpi_gpiochip_request_interrupts(struct gpio_chip *chip)
{
struct acpi_gpio_chip *acpi_gpio;
acpi_handle handle;
acpi_status status;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
if (!chip->parent || !chip->to_irq)
return;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
handle = ACPI_HANDLE(chip->parent);
if (!handle)
return;
status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio);
if (ACPI_FAILURE(status))
return;
acpi_walk_resources(handle, "_AEI",
acpi_gpiochip_request_interrupt, acpi_gpio);
}
EXPORT_SYMBOL_GPL(acpi_gpiochip_request_interrupts);
/**
* acpi_gpiochip_free_interrupts() - Free GPIO ACPI event interrupts.
* @chip: GPIO chip
*
* Free interrupts associated with GPIO ACPI event method for the given
* GPIO chip.
*/
void acpi_gpiochip_free_interrupts(struct gpio_chip *chip)
{
struct acpi_gpio_chip *acpi_gpio;
struct acpi_gpio_event *event, *ep;
acpi_handle handle;
acpi_status status;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
if (!chip->parent || !chip->to_irq)
return;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
handle = ACPI_HANDLE(chip->parent);
if (!handle)
return;
status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio);
if (ACPI_FAILURE(status))
return;
list_for_each_entry_safe_reverse(event, ep, &acpi_gpio->events, node) {
struct gpio_desc *desc;
free_irq(event->irq, event);
desc = event->desc;
if (WARN_ON(IS_ERR(desc)))
continue;
gpiochip_unlock_as_irq(chip, event->pin);
gpiochip_free_own_desc(desc);
list_del(&event->node);
kfree(event);
}
}
EXPORT_SYMBOL_GPL(acpi_gpiochip_free_interrupts);
int acpi_dev_add_driver_gpios(struct acpi_device *adev,
const struct acpi_gpio_mapping *gpios)
{
if (adev && gpios) {
adev->driver_gpios = gpios;
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(acpi_dev_add_driver_gpios);
static bool acpi_get_driver_gpio_data(struct acpi_device *adev,
const char *name, int index,
struct acpi_reference_args *args)
{
const struct acpi_gpio_mapping *gm;
if (!adev->driver_gpios)
return false;
for (gm = adev->driver_gpios; gm->name; gm++)
if (!strcmp(name, gm->name) && gm->data && index < gm->size) {
const struct acpi_gpio_params *par = gm->data + index;
args->adev = adev;
args->args[0] = par->crs_entry_index;
args->args[1] = par->line_index;
args->args[2] = par->active_low;
args->nargs = 3;
return true;
}
return false;
}
struct acpi_gpio_lookup {
struct acpi_gpio_info info;
int index;
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
int pin_index;
bool active_low;
struct acpi_device *adev;
struct gpio_desc *desc;
int n;
};
static int acpi_find_gpio(struct acpi_resource *ares, void *data)
{
struct acpi_gpio_lookup *lookup = data;
if (ares->type != ACPI_RESOURCE_TYPE_GPIO)
return 1;
if (lookup->n++ == lookup->index && !lookup->desc) {
const struct acpi_resource_gpio *agpio = &ares->data.gpio;
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
int pin_index = lookup->pin_index;
if (pin_index >= agpio->pin_table_length)
return 1;
lookup->desc = acpi_get_gpiod(agpio->resource_source.string_ptr,
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
agpio->pin_table[pin_index]);
lookup->info.gpioint =
agpio->connection_type == ACPI_RESOURCE_GPIO_TYPE_INT;
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
/*
* ActiveLow is only specified for GpioInt resource. If
* GpioIo is used then the only way to set the flag is
* to use _DSD "gpios" property.
* Note: we expect here:
* - ACPI_ACTIVE_LOW == GPIO_ACTIVE_LOW
* - ACPI_ACTIVE_HIGH == GPIO_ACTIVE_HIGH
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
*/
if (lookup->info.gpioint) {
lookup->info.polarity = agpio->polarity;
lookup->info.triggering = agpio->triggering;
}
}
return 1;
}
static int acpi_gpio_resource_lookup(struct acpi_gpio_lookup *lookup,
struct acpi_gpio_info *info)
{
struct list_head res_list;
int ret;
INIT_LIST_HEAD(&res_list);
ret = acpi_dev_get_resources(lookup->adev, &res_list, acpi_find_gpio,
lookup);
if (ret < 0)
return ret;
acpi_dev_free_resource_list(&res_list);
if (!lookup->desc)
return -ENOENT;
if (info) {
*info = lookup->info;
if (lookup->active_low)
info->polarity = lookup->active_low;
}
return 0;
}
static int acpi_gpio_property_lookup(struct fwnode_handle *fwnode,
const char *propname, int index,
struct acpi_gpio_lookup *lookup)
{
struct acpi_reference_args args;
int ret;
memset(&args, 0, sizeof(args));
ret = acpi_node_get_property_reference(fwnode, propname, index, &args);
if (ret) {
struct acpi_device *adev = to_acpi_device_node(fwnode);
if (!adev)
return ret;
if (!acpi_get_driver_gpio_data(adev, propname, index, &args))
return ret;
}
/*
* The property was found and resolved, so need to lookup the GPIO based
* on returned args.
*/
lookup->adev = args.adev;
if (args.nargs >= 2) {
lookup->index = args.args[0];
lookup->pin_index = args.args[1];
/* 3rd argument, if present is used to specify active_low. */
if (args.nargs >= 3)
lookup->active_low = !!args.args[2];
}
return 0;
}
/**
* acpi_get_gpiod_by_index() - get a GPIO descriptor from device resources
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
* @adev: pointer to a ACPI device to get GPIO from
* @propname: Property name of the GPIO (optional)
* @index: index of GpioIo/GpioInt resource (starting from %0)
* @info: info pointer to fill in (optional)
*
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
* Function goes through ACPI resources for @adev and based on @index looks
* up a GpioIo/GpioInt resource, translates it to the Linux GPIO descriptor,
* and returns it. @index matches GpioIo/GpioInt resources only so if there
* are total %3 GPIO resources, the index goes from %0 to %2.
*
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
* If @propname is specified the GPIO is looked using device property. In
* that case @index is used to select the GPIO entry in the property value
* (in case of multiple).
*
* If the GPIO cannot be translated or there is an error an ERR_PTR is
* returned.
*
* Note: if the GPIO resource has multiple entries in the pin list, this
* function only returns the first.
*/
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
struct gpio_desc *acpi_get_gpiod_by_index(struct acpi_device *adev,
const char *propname, int index,
struct acpi_gpio_info *info)
{
struct acpi_gpio_lookup lookup;
int ret;
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
if (!adev)
return ERR_PTR(-ENODEV);
memset(&lookup, 0, sizeof(lookup));
lookup.index = index;
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
if (propname) {
dev_dbg(&adev->dev, "GPIO: looking up %s\n", propname);
ret = acpi_gpio_property_lookup(acpi_fwnode_handle(adev),
propname, index, &lookup);
if (ret)
return ERR_PTR(ret);
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
dev_dbg(&adev->dev, "GPIO: _DSD returned %s %d %d %u\n",
dev_name(&lookup.adev->dev), lookup.index,
lookup.pin_index, lookup.active_low);
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
} else {
dev_dbg(&adev->dev, "GPIO: looking up %d in _CRS\n", index);
lookup.adev = adev;
gpio / ACPI: Add support for _DSD device properties With release of ACPI 5.1 and _DSD method we can finally name GPIOs (and other things as well) returned by _CRS. Previously we were only able to use integer index to find the corresponding GPIO, which is pretty error prone if the order changes. With _DSD we can now query GPIOs using name instead of an integer index, like the below example shows: // Bluetooth device with reset and shutdown GPIOs Device (BTH) { Name (_HID, ...) Name (_CRS, ResourceTemplate () { GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {15} GpioIo (Exclusive, PullUp, 0, 0, IoRestrictionInputOnly, "\\_SB.GPO0", 0, ResourceConsumer) {27, 31} }) Name (_DSD, Package () { ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), Package () { Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }}, Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }}, } }) } The format of the supported GPIO property is: Package () { "name", Package () { ref, index, pin, active_low }} ref - The device that has _CRS containing GpioIo()/GpioInt() resources, typically this is the device itself (BTH in our case). index - Index of the GpioIo()/GpioInt() resource in _CRS starting from zero. pin - Pin in the GpioIo()/GpioInt() resource. Typically this is zero. active_low - If 1 the GPIO is marked as active_low. Since ACPI GpioIo() resource does not have field saying whether it is active low or high, the "active_low" argument can be used here. Setting it to 1 marks the GPIO as active low. In our Bluetooth example the "reset-gpio" refers to the second GpioIo() resource, second pin in that resource with the GPIO number of 31. This patch implements necessary support to gpiolib for extracting GPIOs using _DSD device properties. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Grant Likely <grant.likely@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-29 22:41:01 +08:00
}
ret = acpi_gpio_resource_lookup(&lookup, info);
return ret ? ERR_PTR(ret) : lookup.desc;
}
/**
* acpi_node_get_gpiod() - get a GPIO descriptor from ACPI resources
* @fwnode: pointer to an ACPI firmware node to get the GPIO information from
* @propname: Property name of the GPIO
* @index: index of GpioIo/GpioInt resource (starting from %0)
* @info: info pointer to fill in (optional)
*
* If @fwnode is an ACPI device object, call %acpi_get_gpiod_by_index() for it.
* Otherwise (ie. it is a data-only non-device object), use the property-based
* GPIO lookup to get to the GPIO resource with the relevant information and use
* that to obtain the GPIO descriptor to return.
*/
struct gpio_desc *acpi_node_get_gpiod(struct fwnode_handle *fwnode,
const char *propname, int index,
struct acpi_gpio_info *info)
{
struct acpi_gpio_lookup lookup;
struct acpi_device *adev;
int ret;
adev = to_acpi_device_node(fwnode);
if (adev)
return acpi_get_gpiod_by_index(adev, propname, index, info);
if (!is_acpi_data_node(fwnode))
return ERR_PTR(-ENODEV);
if (!propname)
return ERR_PTR(-EINVAL);
memset(&lookup, 0, sizeof(lookup));
lookup.index = index;
ret = acpi_gpio_property_lookup(fwnode, propname, index, &lookup);
if (ret)
return ERR_PTR(ret);
ret = acpi_gpio_resource_lookup(&lookup, info);
return ret ? ERR_PTR(ret) : lookup.desc;
}
/**
* acpi_dev_gpio_irq_get() - Find GpioInt and translate it to Linux IRQ number
* @adev: pointer to a ACPI device to get IRQ from
* @index: index of GpioInt resource (starting from %0)
*
* If the device has one or more GpioInt resources, this function can be
* used to translate from the GPIO offset in the resource to the Linux IRQ
* number.
*
* Return: Linux IRQ number (>%0) on success, negative errno on failure.
*/
int acpi_dev_gpio_irq_get(struct acpi_device *adev, int index)
{
int idx, i;
unsigned int irq_flags;
for (i = 0, idx = 0; idx <= index; i++) {
struct acpi_gpio_info info;
struct gpio_desc *desc;
desc = acpi_get_gpiod_by_index(adev, NULL, i, &info);
if (IS_ERR(desc))
break;
if (info.gpioint && idx++ == index) {
int irq = gpiod_to_irq(desc);
if (irq < 0)
return irq;
irq_flags = acpi_dev_get_irq_type(info.triggering,
info.polarity);
/* Set type if specified and different than the current one */
if (irq_flags != IRQ_TYPE_NONE &&
irq_flags != irq_get_trigger_type(irq))
irq_set_irq_type(irq, irq_flags);
return irq;
}
}
return -ENOENT;
}
EXPORT_SYMBOL_GPL(acpi_dev_gpio_irq_get);
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
static acpi_status
acpi_gpio_adr_space_handler(u32 function, acpi_physical_address address,
u32 bits, u64 *value, void *handler_context,
void *region_context)
{
struct acpi_gpio_chip *achip = region_context;
struct gpio_chip *chip = achip->chip;
struct acpi_resource_gpio *agpio;
struct acpi_resource *ares;
int pin_index = (int)address;
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
acpi_status status;
bool pull_up;
int length;
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
int i;
status = acpi_buffer_to_resource(achip->conn_info.connection,
achip->conn_info.length, &ares);
if (ACPI_FAILURE(status))
return status;
if (WARN_ON(ares->type != ACPI_RESOURCE_TYPE_GPIO)) {
ACPI_FREE(ares);
return AE_BAD_PARAMETER;
}
agpio = &ares->data.gpio;
pull_up = agpio->pin_config == ACPI_PIN_CONFIG_PULLUP;
if (WARN_ON(agpio->io_restriction == ACPI_IO_RESTRICT_INPUT &&
function == ACPI_WRITE)) {
ACPI_FREE(ares);
return AE_BAD_PARAMETER;
}
length = min(agpio->pin_table_length, (u16)(pin_index + bits));
for (i = pin_index; i < length; ++i) {
int pin = agpio->pin_table[i];
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
struct acpi_gpio_connection *conn;
struct gpio_desc *desc;
bool found;
pin = acpi_gpiochip_pin_to_gpio_offset(chip->gpiodev, pin);
if (pin < 0) {
status = AE_BAD_PARAMETER;
goto out;
}
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
mutex_lock(&achip->conn_lock);
found = false;
list_for_each_entry(conn, &achip->conns, node) {
if (conn->pin == pin) {
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
found = true;
desc = conn->desc;
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
break;
}
}
gpio / ACPI: Allow shared GPIO event to be read via operation region In Microsoft Surface3 the GPIO detecting lid state is shared between GPIO event and operation region. Below is simplied version of the DSDT from Surface3 including relevant parts: Scope (GPO0) { Name (_AEI, ResourceTemplate () { GpioInt (Edge, ActiveBoth, Shared, PullNone, 0x0000, "\\_SB.GPO0", 0x00, ResourceConsumer, , ) { // Pin list 0x004C } }) OperationRegion (GPOR, GeneralPurposeIo, Zero, One) Field (GPOR, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Shared, PullNone, 0x0000, 0x0000, IoRestrictionNone, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { // Pin list 0x004C } ), HELD, 1 } Method (_E4C, 0, Serialized) // _Exx: Edge-Triggered GPE { If ((HELD == One)) { ^^LID.LIDB = One } Else { ^^LID.LIDB = Zero Notify (LID, 0x80) // Status Change } Notify (^^PCI0.SPI1.NTRG, One) // Device Check } } When GPIO 0x4c changes we call ASL method _E4C which tries to read HELD field (the same GPIO). This triggers following error on the console: ACPI Error: Method parse/execution failed [\_SB.GPO0._E4C] (Node ffff88013f4b4438), AE_ERROR (20150930/psparse-542) The error happens because ACPI GPIO operation region handler (acpi_gpio_adr_space_handler()) tries to acquire the very same GPIO which returns an error (-EBUSY) because the GPIO is already reserved for the GPIO event. Fix this so that we "borrow" the event GPIO if we find the GPIO belongs to an event. Allow this only for GPIOs that are read. To be able to go through acpi_gpio->events list for operation region access we need to make sure the list is properly initialized whenever GPIO chip is registered. Link: https://bugzilla.kernel.org/show_bug.cgi?id=106571 Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-10-30 18:02:05 +08:00
/*
* The same GPIO can be shared between operation region and
* event but only if the access here is ACPI_READ. In that
* case we "borrow" the event GPIO instead.
*/
if (!found && agpio->sharable == ACPI_SHARED &&
function == ACPI_READ) {
struct acpi_gpio_event *event;
list_for_each_entry(event, &achip->events, node) {
if (event->pin == pin) {
desc = event->desc;
found = true;
break;
}
}
}
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
if (!found) {
desc = gpiochip_request_own_desc(chip, pin,
"ACPI:OpRegion");
if (IS_ERR(desc)) {
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
status = AE_ERROR;
mutex_unlock(&achip->conn_lock);
goto out;
}
switch (agpio->io_restriction) {
case ACPI_IO_RESTRICT_INPUT:
gpiod_direction_input(desc);
break;
case ACPI_IO_RESTRICT_OUTPUT:
/*
* ACPI GPIO resources don't contain an
* initial value for the GPIO. Therefore we
* deduce that value from the pull field
* instead. If the pin is pulled up we
* assume default to be high, otherwise
* low.
*/
gpiod_direction_output(desc, pull_up);
break;
default:
/*
* Assume that the BIOS has configured the
* direction and pull accordingly.
*/
break;
}
conn = kzalloc(sizeof(*conn), GFP_KERNEL);
if (!conn) {
status = AE_NO_MEMORY;
gpiochip_free_own_desc(desc);
mutex_unlock(&achip->conn_lock);
goto out;
}
conn->pin = pin;
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
conn->desc = desc;
list_add_tail(&conn->node, &achip->conns);
}
mutex_unlock(&achip->conn_lock);
if (function == ACPI_WRITE)
gpiod_set_raw_value_cansleep(desc,
!!((1 << i) & *value));
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
else
*value |= (u64)gpiod_get_raw_value_cansleep(desc) << i;
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
}
out:
ACPI_FREE(ares);
return status;
}
static void acpi_gpiochip_request_regions(struct acpi_gpio_chip *achip)
{
struct gpio_chip *chip = achip->chip;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
acpi_handle handle = ACPI_HANDLE(chip->parent);
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
acpi_status status;
INIT_LIST_HEAD(&achip->conns);
mutex_init(&achip->conn_lock);
status = acpi_install_address_space_handler(handle, ACPI_ADR_SPACE_GPIO,
acpi_gpio_adr_space_handler,
NULL, achip);
if (ACPI_FAILURE(status))
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent,
"Failed to install GPIO OpRegion handler\n");
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
}
static void acpi_gpiochip_free_regions(struct acpi_gpio_chip *achip)
{
struct gpio_chip *chip = achip->chip;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
acpi_handle handle = ACPI_HANDLE(chip->parent);
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
struct acpi_gpio_connection *conn, *tmp;
acpi_status status;
status = acpi_remove_address_space_handler(handle, ACPI_ADR_SPACE_GPIO,
acpi_gpio_adr_space_handler);
if (ACPI_FAILURE(status)) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent,
"Failed to remove GPIO OpRegion handler\n");
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
return;
}
list_for_each_entry_safe_reverse(conn, tmp, &achip->conns, node) {
gpiochip_free_own_desc(conn->desc);
list_del(&conn->node);
kfree(conn);
}
}
void acpi_gpiochip_add(struct gpio_chip *chip)
{
struct acpi_gpio_chip *acpi_gpio;
acpi_handle handle;
acpi_status status;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
if (!chip || !chip->parent)
gpio / ACPI: Don't crash on NULL chip->dev Commit aa92b6f689ac (gpio / ACPI: Allocate ACPI specific data directly in acpi_gpiochip_add()) moved ACPI handle checking to acpi_gpiochip_add() but forgot to check whether chip->dev is NULL before dereferencing it. Since chip->dev pointer is optional we can end up with crash like following: BUG: unable to handle kernel NULL pointer dereference at 00000138 IP: [<c126c2b3>] acpi_gpiochip_add+0x13/0x190 *pde = 00000000 Oops: 0000 [#1] PREEMPT SMP Modules linked in: ssb(+) ... CPU: 0 PID: 512 Comm: modprobe Tainted: G W 3.14.0-rc7-next-20140324-t1 #24 Hardware name: Dell Inc. Latitude D830 /0UY141, BIOS A02 06/07/2007 task: f5799900 ti: f543e000 task.ti: f543e000 EIP: 0060:[<c126c2b3>] EFLAGS: 00010282 CPU: 0 EIP is at acpi_gpiochip_add+0x13/0x190 EAX: 00000000 EBX: f57824c4 ECX: 00000000 EDX: 00000000 ESI: f57824c4 EDI: 00000010 EBP: f543fc54 ESP: f543fc40 DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068 CR0: 8005003b CR2: 00000138 CR3: 355f8000 CR4: 000007d0 Stack: f543fc5c fd1f7790 f57824c4 000000be 00000010 f543fc84 c1269f4e f543fc74 fd1f78bd 00008002 f57822b0 f5782090 fd1f8400 00000286 fd1f9994 00000000 f5782000 f543fc8c fd1f7e39 f543fcc8 fd1f0bd8 000000c0 00000000 00000000 Call Trace: [<fd1f7790>] ? ssb_pcie_mdio_write+0xa0/0xd0 [ssb] [<c1269f4e>] gpiochip_add+0xee/0x300 [<fd1f78bd>] ? ssb_pcicore_serdes_workaround+0xfd/0x140 [ssb] [<fd1f7e39>] ssb_gpio_init+0x89/0xa0 [ssb] [<fd1f0bd8>] ssb_attach_queued_buses+0xc8/0x2d0 [ssb] [<fd1f0f65>] ssb_bus_register+0x185/0x1f0 [ssb] [<fd1f3120>] ? ssb_pci_xtal+0x220/0x220 [ssb] [<fd1f106c>] ssb_bus_pcibus_register+0x2c/0x80 [ssb] [<fd1f40dc>] ssb_pcihost_probe+0x9c/0x110 [ssb] [<c1276c8f>] pci_device_probe+0x6f/0xc0 [<c11bdb55>] ? sysfs_create_link+0x25/0x40 [<c131d8b9>] driver_probe_device+0x79/0x360 [<c1276512>] ? pci_match_device+0xb2/0xc0 [<c131dc51>] __driver_attach+0x71/0x80 [<c131dbe0>] ? __device_attach+0x40/0x40 [<c131bd87>] bus_for_each_dev+0x47/0x80 [<c131d3ae>] driver_attach+0x1e/0x20 [<c131dbe0>] ? __device_attach+0x40/0x40 [<c131d007>] bus_add_driver+0x157/0x230 [<c131e219>] driver_register+0x59/0xe0 ... Fix this by checking chip->dev pointer against NULL first. Also we can now remove redundant check in acpi_gpiochip_request/free_interrupts(). Reported-by: Sabrina Dubroca <sd@queasysnail.net> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: Sabrina Dubroca <sd@queasysnail.net> Acked-by: Alexandre Courbot <acourbot@nvidia.com> Tested-by: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-31 20:16:49 +08:00
return;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
handle = ACPI_HANDLE(chip->parent);
if (!handle)
return;
acpi_gpio = kzalloc(sizeof(*acpi_gpio), GFP_KERNEL);
if (!acpi_gpio) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent,
"Failed to allocate memory for ACPI GPIO chip\n");
return;
}
acpi_gpio->chip = chip;
gpio / ACPI: Allow shared GPIO event to be read via operation region In Microsoft Surface3 the GPIO detecting lid state is shared between GPIO event and operation region. Below is simplied version of the DSDT from Surface3 including relevant parts: Scope (GPO0) { Name (_AEI, ResourceTemplate () { GpioInt (Edge, ActiveBoth, Shared, PullNone, 0x0000, "\\_SB.GPO0", 0x00, ResourceConsumer, , ) { // Pin list 0x004C } }) OperationRegion (GPOR, GeneralPurposeIo, Zero, One) Field (GPOR, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Shared, PullNone, 0x0000, 0x0000, IoRestrictionNone, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { // Pin list 0x004C } ), HELD, 1 } Method (_E4C, 0, Serialized) // _Exx: Edge-Triggered GPE { If ((HELD == One)) { ^^LID.LIDB = One } Else { ^^LID.LIDB = Zero Notify (LID, 0x80) // Status Change } Notify (^^PCI0.SPI1.NTRG, One) // Device Check } } When GPIO 0x4c changes we call ASL method _E4C which tries to read HELD field (the same GPIO). This triggers following error on the console: ACPI Error: Method parse/execution failed [\_SB.GPO0._E4C] (Node ffff88013f4b4438), AE_ERROR (20150930/psparse-542) The error happens because ACPI GPIO operation region handler (acpi_gpio_adr_space_handler()) tries to acquire the very same GPIO which returns an error (-EBUSY) because the GPIO is already reserved for the GPIO event. Fix this so that we "borrow" the event GPIO if we find the GPIO belongs to an event. Allow this only for GPIOs that are read. To be able to go through acpi_gpio->events list for operation region access we need to make sure the list is properly initialized whenever GPIO chip is registered. Link: https://bugzilla.kernel.org/show_bug.cgi?id=106571 Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-10-30 18:02:05 +08:00
INIT_LIST_HEAD(&acpi_gpio->events);
status = acpi_attach_data(handle, acpi_gpio_chip_dh, acpi_gpio);
if (ACPI_FAILURE(status)) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_err(chip->parent, "Failed to attach ACPI GPIO chip\n");
kfree(acpi_gpio);
return;
}
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
acpi_gpiochip_request_regions(acpi_gpio);
acpi_walk_dep_device_list(handle);
}
void acpi_gpiochip_remove(struct gpio_chip *chip)
{
struct acpi_gpio_chip *acpi_gpio;
acpi_handle handle;
acpi_status status;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
if (!chip || !chip->parent)
gpio / ACPI: Don't crash on NULL chip->dev Commit aa92b6f689ac (gpio / ACPI: Allocate ACPI specific data directly in acpi_gpiochip_add()) moved ACPI handle checking to acpi_gpiochip_add() but forgot to check whether chip->dev is NULL before dereferencing it. Since chip->dev pointer is optional we can end up with crash like following: BUG: unable to handle kernel NULL pointer dereference at 00000138 IP: [<c126c2b3>] acpi_gpiochip_add+0x13/0x190 *pde = 00000000 Oops: 0000 [#1] PREEMPT SMP Modules linked in: ssb(+) ... CPU: 0 PID: 512 Comm: modprobe Tainted: G W 3.14.0-rc7-next-20140324-t1 #24 Hardware name: Dell Inc. Latitude D830 /0UY141, BIOS A02 06/07/2007 task: f5799900 ti: f543e000 task.ti: f543e000 EIP: 0060:[<c126c2b3>] EFLAGS: 00010282 CPU: 0 EIP is at acpi_gpiochip_add+0x13/0x190 EAX: 00000000 EBX: f57824c4 ECX: 00000000 EDX: 00000000 ESI: f57824c4 EDI: 00000010 EBP: f543fc54 ESP: f543fc40 DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068 CR0: 8005003b CR2: 00000138 CR3: 355f8000 CR4: 000007d0 Stack: f543fc5c fd1f7790 f57824c4 000000be 00000010 f543fc84 c1269f4e f543fc74 fd1f78bd 00008002 f57822b0 f5782090 fd1f8400 00000286 fd1f9994 00000000 f5782000 f543fc8c fd1f7e39 f543fcc8 fd1f0bd8 000000c0 00000000 00000000 Call Trace: [<fd1f7790>] ? ssb_pcie_mdio_write+0xa0/0xd0 [ssb] [<c1269f4e>] gpiochip_add+0xee/0x300 [<fd1f78bd>] ? ssb_pcicore_serdes_workaround+0xfd/0x140 [ssb] [<fd1f7e39>] ssb_gpio_init+0x89/0xa0 [ssb] [<fd1f0bd8>] ssb_attach_queued_buses+0xc8/0x2d0 [ssb] [<fd1f0f65>] ssb_bus_register+0x185/0x1f0 [ssb] [<fd1f3120>] ? ssb_pci_xtal+0x220/0x220 [ssb] [<fd1f106c>] ssb_bus_pcibus_register+0x2c/0x80 [ssb] [<fd1f40dc>] ssb_pcihost_probe+0x9c/0x110 [ssb] [<c1276c8f>] pci_device_probe+0x6f/0xc0 [<c11bdb55>] ? sysfs_create_link+0x25/0x40 [<c131d8b9>] driver_probe_device+0x79/0x360 [<c1276512>] ? pci_match_device+0xb2/0xc0 [<c131dc51>] __driver_attach+0x71/0x80 [<c131dbe0>] ? __device_attach+0x40/0x40 [<c131bd87>] bus_for_each_dev+0x47/0x80 [<c131d3ae>] driver_attach+0x1e/0x20 [<c131dbe0>] ? __device_attach+0x40/0x40 [<c131d007>] bus_add_driver+0x157/0x230 [<c131e219>] driver_register+0x59/0xe0 ... Fix this by checking chip->dev pointer against NULL first. Also we can now remove redundant check in acpi_gpiochip_request/free_interrupts(). Reported-by: Sabrina Dubroca <sd@queasysnail.net> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Tested-by: Sabrina Dubroca <sd@queasysnail.net> Acked-by: Alexandre Courbot <acourbot@nvidia.com> Tested-by: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-31 20:16:49 +08:00
return;
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
handle = ACPI_HANDLE(chip->parent);
if (!handle)
return;
status = acpi_get_data(handle, acpi_gpio_chip_dh, (void **)&acpi_gpio);
if (ACPI_FAILURE(status)) {
gpio: change member .dev to .parent The name .dev in a struct is normally reserved for a struct device that is let us say a superclass to the thing described by the struct. struct gpio_chip stands out by confusingly using a struct device *dev to point to the parent device (such as a platform_device) that represents the hardware. As we want to give gpio_chip:s real devices, this is not working. We need to rename this member to parent. This was done by two coccinelle scripts, I guess it is possible to combine them into one, but I don't know such stuff. They look like this: @@ struct gpio_chip *var; @@ -var->dev +var->parent and: @@ struct gpio_chip var; @@ -var.dev +var.parent and: @@ struct bgpio_chip *var; @@ -var->gc.dev +var->gc.parent Plus a few instances of bgpio that I couldn't figure out how to teach Coccinelle to rewrite. This patch hits all over the place, but I *strongly* prefer this solution to any piecemal approaches that just exercise patch mechanics all over the place. It mainly hits drivers/gpio and drivers/pinctrl which is my own backyard anyway. Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Rafał Miłecki <zajec5@gmail.com> Cc: Richard Purdie <rpurdie@rpsys.net> Cc: Mauro Carvalho Chehab <mchehab@osg.samsung.com> Cc: Alek Du <alek.du@intel.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.com> Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Lee Jones <lee.jones@linaro.org> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no> Acked-by: Jacek Anaszewski <j.anaszewski@samsung.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2015-11-04 16:56:26 +08:00
dev_warn(chip->parent, "Failed to retrieve ACPI GPIO chip\n");
return;
}
gpio / ACPI: Add support for ACPI GPIO operation regions GPIO operation regions is a new feature introduced in ACPI 5.0 specification. This feature adds a way for platform ASL code to call back to OS GPIO driver and toggle GPIO pins. An example ASL code from Lenovo Miix 2 tablet with only relevant part listed: Device (\_SB.GPO0) { Name (AVBL, Zero) Method (_REG, 2, NotSerialized) { If (LEqual (Arg0, 0x08)) { // Marks the region available Store (Arg1, AVBL) } } OperationRegion (GPOP, GeneralPurposeIo, Zero, 0x0C) Field (GPOP, ByteAcc, NoLock, Preserve) { Connection ( GpioIo (Exclusive, PullDefault, 0, 0, IoRestrictionOutputOnly, "\\_SB.GPO0", 0x00, ResourceConsumer,,) { 0x003B } ), SHD3, 1, } } Device (SHUB) { Method (_PS0, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (One, \_SB.GPO0.SHD3) Sleep (0x32) } } Method (_PS3, 0, Serialized) { If (LEqual (\_SB.GPO0.AVBL, One)) { Store (Zero, \_SB.GPO0.SHD3) } } } How this works is that whenever _PS0 or _PS3 method is run (typically when SHUB device is transitioned to D0 or D3 respectively), ASL code checks if the GPIO operation region is available (\_SB.GPO0.AVBL). If it is we go and store either 0 or 1 to \_SB.GPO0.SHD3. Now, when ACPICA notices ACPI GPIO operation region access (the store above) it will call acpi_gpio_adr_space_handler() that then toggles the GPIO accordingly using standard gpiolib interfaces. Implement the support by registering GPIO operation region handlers for all GPIO devices that have an ACPI handle. First time the GPIO is used by the ASL code we make sure that the GPIO stays requested until the GPIO chip driver itself is unloaded. If we find out that the GPIO is already requested we just toggle it according to the value got from ASL code. Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2014-03-14 23:58:07 +08:00
acpi_gpiochip_free_regions(acpi_gpio);
acpi_detach_data(handle, acpi_gpio_chip_dh);
kfree(acpi_gpio);
}
static unsigned int acpi_gpio_package_count(const union acpi_object *obj)
{
const union acpi_object *element = obj->package.elements;
const union acpi_object *end = element + obj->package.count;
unsigned int count = 0;
while (element < end) {
if (element->type == ACPI_TYPE_LOCAL_REFERENCE)
count++;
element++;
}
return count;
}
static int acpi_find_gpio_count(struct acpi_resource *ares, void *data)
{
unsigned int *count = data;
if (ares->type == ACPI_RESOURCE_TYPE_GPIO)
*count += ares->data.gpio.pin_table_length;
return 1;
}
/**
* acpi_gpio_count - return the number of GPIOs associated with a
* device / function or -ENOENT if no GPIO has been
* assigned to the requested function.
* @dev: GPIO consumer, can be NULL for system-global GPIOs
* @con_id: function within the GPIO consumer
*/
int acpi_gpio_count(struct device *dev, const char *con_id)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
const union acpi_object *obj;
const struct acpi_gpio_mapping *gm;
int count = -ENOENT;
int ret;
char propname[32];
unsigned int i;
/* Try first from _DSD */
for (i = 0; i < ARRAY_SIZE(gpio_suffixes); i++) {
if (con_id && strcmp(con_id, "gpios"))
snprintf(propname, sizeof(propname), "%s-%s",
con_id, gpio_suffixes[i]);
else
snprintf(propname, sizeof(propname), "%s",
gpio_suffixes[i]);
ret = acpi_dev_get_property(adev, propname, ACPI_TYPE_ANY,
&obj);
if (ret == 0) {
if (obj->type == ACPI_TYPE_LOCAL_REFERENCE)
count = 1;
else if (obj->type == ACPI_TYPE_PACKAGE)
count = acpi_gpio_package_count(obj);
} else if (adev->driver_gpios) {
for (gm = adev->driver_gpios; gm->name; gm++)
if (strcmp(propname, gm->name) == 0) {
count = gm->size;
break;
}
}
if (count >= 0)
break;
}
/* Then from plain _CRS GPIOs */
if (count < 0) {
struct list_head resource_list;
unsigned int crs_count = 0;
INIT_LIST_HEAD(&resource_list);
acpi_dev_get_resources(adev, &resource_list,
acpi_find_gpio_count, &crs_count);
acpi_dev_free_resource_list(&resource_list);
if (crs_count > 0)
count = crs_count;
}
return count;
}
struct acpi_crs_lookup {
struct list_head node;
struct acpi_device *adev;
const char *con_id;
};
static DEFINE_MUTEX(acpi_crs_lookup_lock);
static LIST_HEAD(acpi_crs_lookup_list);
bool acpi_can_fallback_to_crs(struct acpi_device *adev, const char *con_id)
{
struct acpi_crs_lookup *l, *lookup = NULL;
/* Never allow fallback if the device has properties */
if (adev->data.properties || adev->driver_gpios)
return false;
mutex_lock(&acpi_crs_lookup_lock);
list_for_each_entry(l, &acpi_crs_lookup_list, node) {
if (l->adev == adev) {
lookup = l;
break;
}
}
if (!lookup) {
lookup = kmalloc(sizeof(*lookup), GFP_KERNEL);
if (lookup) {
lookup->adev = adev;
gpiolib-acpi: Duplicate con_id string when adding it to the crs lookup list Calling gpiod_get() from a module and then unloading the module leads to an oops due to acpi_can_fallback_to_crs() storing the pointer to the passed 'con_id' string onto acpi_crs_lookup_list. The next guy to come along will then try to access the string but the memory may now be gone with the module. Make a copy of the passed string instead, and store the copy on the list. BUG: unable to handle kernel paging request at ffffffffa03e7855 IP: [<ffffffff81338322>] strcmp+0x12/0x30 PGD 2a07067 PUD 2a08063 PMD 74720067 PTE 0 Oops: 0000 [#1] PREEMPT SMP Modules linked in: i915(+) drm_kms_helper drm intel_gtt snd_hda_codec snd_hda_core i2c_algo_bit syscopya rea sysfillrect sysimgblt fb_sys_fops agpgart snd_soc_sst_bytcr_rt5640 coretemp hwmon intel_rapl intel_soc_dts_thermal punit_atom_debug snd_soc_rt5640 snd_soc_rl6231 serio snd_intel_sst_acpi snd_intel_sst_core video snd_soc_sst_mfld_platf orm snd_soc_sst_match backlight int3402_thermal processor_thermal_device int3403_thermal int3400_thermal acpi_thermal_r el snd_soc_core intel_soc_dts_iosf int340x_thermal_zone snd_compress i2c_hid hid snd_pcm snd_timer snd soundcore evdev sch_fq_codel efivarfs ipv6 autofs4 [last unloaded: drm] CPU: 2 PID: 3064 Comm: modprobe Tainted: G U W 4.6.0-rc3-ffrd-ipvr+ #302 Hardware name: Intel Corp. VALLEYVIEW C0 PLATFORM/BYT-T FFD8, BIOS BLAKFF81.X64.0088.R10.1403240443 FFD8 _X64_R_2014_13_1_00 03/24/2014 task: ffff8800701cd200 ti: ffff880070034000 task.ti: ffff880070034000 RIP: 0010:[<ffffffff81338322>] [<ffffffff81338322>] strcmp+0x12/0x30 RSP: 0000:ffff880070037748 EFLAGS: 00010286 RAX: 0000000080000000 RBX: ffff88007a342800 RCX: 0000000000000006 RDX: 0000000000000006 RSI: ffffffffa054f856 RDI: ffffffffa03e7856 RBP: ffff880070037748 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffa054f855 R13: ffff88007281cae0 R14: 0000000000000010 R15: ffffffffffffffea FS: 00007faa51447700(0000) GS:ffff880079300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffa03e7855 CR3: 0000000041eba000 CR4: 00000000001006e0 Stack: ffff880070037770 ffffffff8136ad28 ffffffffa054f855 0000000000000000 ffff88007a0a2098 ffff8800700377e8 ffffffff8136852e ffff88007a342800 00000007700377a0 ffff8800700377a0 ffffffff81412442 70672d6c656e6170 Call Trace: [<ffffffff8136ad28>] acpi_can_fallback_to_crs+0x88/0x100 [<ffffffff8136852e>] gpiod_get_index+0x25e/0x310 [<ffffffff81412442>] ? mipi_dsi_attach+0x22/0x30 [<ffffffff813685f2>] gpiod_get+0x12/0x20 [<ffffffffa04fcf41>] intel_dsi_init+0x421/0x480 [i915] [<ffffffffa04d3783>] intel_modeset_init+0x853/0x16b0 [i915] [<ffffffffa0504864>] ? intel_setup_gmbus+0x214/0x260 [i915] [<ffffffffa0510158>] i915_driver_load+0xdc8/0x19b0 [i915] [<ffffffff8160fb53>] ? _raw_spin_unlock_irqrestore+0x43/0x70 [<ffffffffa026b13b>] drm_dev_register+0xab/0xc0 [drm] [<ffffffffa026d7b3>] drm_get_pci_dev+0x93/0x1f0 [drm] [<ffffffff8160fb53>] ? _raw_spin_unlock_irqrestore+0x43/0x70 [<ffffffffa043f1f4>] i915_pci_probe+0x34/0x50 [i915] [<ffffffff81379751>] pci_device_probe+0x91/0x100 [<ffffffff8141a75a>] driver_probe_device+0x20a/0x2d0 [<ffffffff8141a8be>] __driver_attach+0x9e/0xb0 [<ffffffff8141a820>] ? driver_probe_device+0x2d0/0x2d0 [<ffffffff81418439>] bus_for_each_dev+0x69/0xa0 [<ffffffff8141a04e>] driver_attach+0x1e/0x20 [<ffffffff81419c20>] bus_add_driver+0x1c0/0x240 [<ffffffff8141b6d0>] driver_register+0x60/0xe0 [<ffffffff81377d20>] __pci_register_driver+0x60/0x70 [<ffffffffa026d9f4>] drm_pci_init+0xe4/0x110 [drm] [<ffffffff810ce04e>] ? trace_hardirqs_on+0xe/0x10 [<ffffffffa02f1000>] ? 0xffffffffa02f1000 [<ffffffffa02f1094>] i915_init+0x94/0x9b [i915] [<ffffffff810003bb>] do_one_initcall+0x8b/0x1c0 [<ffffffff810eb616>] ? rcu_read_lock_sched_held+0x86/0x90 [<ffffffff811de6d6>] ? kmem_cache_alloc_trace+0x1f6/0x270 [<ffffffff81183826>] do_init_module+0x60/0x1dc [<ffffffff81115a8d>] load_module+0x1d0d/0x2390 [<ffffffff811120b0>] ? __symbol_put+0x70/0x70 [<ffffffff811f41b2>] ? kernel_read_file+0x92/0x120 [<ffffffff811162f4>] SYSC_finit_module+0xa4/0xb0 [<ffffffff8111631e>] SyS_finit_module+0xe/0x10 [<ffffffff81001ff3>] do_syscall_64+0x63/0x350 [<ffffffff816103da>] entry_SYSCALL64_slow_path+0x25/0x25 Code: f7 48 8d 76 01 48 8d 52 01 0f b6 4e ff 84 c9 88 4a ff 75 ed 5d c3 0f 1f 00 55 48 89 e5 eb 04 84 c0 74 18 48 8d 7f 01 48 8d 76 01 <0f> b6 47 ff 3a 46 ff 74 eb 19 c0 83 c8 01 5d c3 31 c0 5d c3 66 RIP [<ffffffff81338322>] strcmp+0x12/0x30 RSP <ffff880070037748> CR2: ffffffffa03e7855 v2: Make the copied con_id const Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Mika Westerberg <mika.westerberg@linux.intel.com> Cc: Alexandre Courbot <gnurou@gmail.com> Cc: stable@vger.kernel.org Fixes: 10cf4899f8af ("gpiolib: tighten up ACPI legacy gpio lookups") Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2016-04-25 21:01:19 +08:00
lookup->con_id = kstrdup(con_id, GFP_KERNEL);
list_add_tail(&lookup->node, &acpi_crs_lookup_list);
}
}
mutex_unlock(&acpi_crs_lookup_lock);
return lookup &&
((!lookup->con_id && !con_id) ||
(lookup->con_id && con_id &&
strcmp(lookup->con_id, con_id) == 0));
}