OpenCloudOS-Kernel/drivers/infiniband/hw/qedr/main.c

1037 lines
27 KiB
C
Raw Normal View History

/* QLogic qedr NIC Driver
* Copyright (c) 2015-2016 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_user_verbs.h>
#include <rdma/iw_cm.h>
#include <rdma/ib_mad.h>
#include <linux/netdevice.h>
#include <linux/iommu.h>
#include <linux/pci.h>
#include <net/addrconf.h>
#include <linux/idr.h>
#include <linux/qed/qed_chain.h>
#include <linux/qed/qed_if.h>
#include "qedr.h"
#include "verbs.h"
#include <rdma/qedr-abi.h>
#include "qedr_iw_cm.h"
MODULE_DESCRIPTION("QLogic 40G/100G ROCE Driver");
MODULE_AUTHOR("QLogic Corporation");
MODULE_LICENSE("Dual BSD/GPL");
#define QEDR_WQ_MULTIPLIER_DFT (3)
static void qedr_ib_dispatch_event(struct qedr_dev *dev, u8 port_num,
enum ib_event_type type)
{
struct ib_event ibev;
ibev.device = &dev->ibdev;
ibev.element.port_num = port_num;
ibev.event = type;
ib_dispatch_event(&ibev);
}
static enum rdma_link_layer qedr_link_layer(struct ib_device *device,
u8 port_num)
{
return IB_LINK_LAYER_ETHERNET;
}
static void qedr_get_dev_fw_str(struct ib_device *ibdev, char *str)
{
struct qedr_dev *qedr = get_qedr_dev(ibdev);
u32 fw_ver = (u32)qedr->attr.fw_ver;
snprintf(str, IB_FW_VERSION_NAME_MAX, "%d. %d. %d. %d",
(fw_ver >> 24) & 0xFF, (fw_ver >> 16) & 0xFF,
(fw_ver >> 8) & 0xFF, fw_ver & 0xFF);
}
static struct net_device *qedr_get_netdev(struct ib_device *dev, u8 port_num)
{
struct qedr_dev *qdev;
qdev = get_qedr_dev(dev);
dev_hold(qdev->ndev);
/* The HW vendor's device driver must guarantee
* that this function returns NULL before the net device has finished
* NETDEV_UNREGISTER state.
*/
return qdev->ndev;
}
static int qedr_roce_port_immutable(struct ib_device *ibdev, u8 port_num,
struct ib_port_immutable *immutable)
{
struct ib_port_attr attr;
int err;
err = qedr_query_port(ibdev, port_num, &attr);
if (err)
return err;
immutable->pkey_tbl_len = attr.pkey_tbl_len;
immutable->gid_tbl_len = attr.gid_tbl_len;
immutable->core_cap_flags = RDMA_CORE_PORT_IBA_ROCE |
RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP;
immutable->max_mad_size = IB_MGMT_MAD_SIZE;
return 0;
}
static int qedr_iw_port_immutable(struct ib_device *ibdev, u8 port_num,
struct ib_port_immutable *immutable)
{
struct ib_port_attr attr;
int err;
err = qedr_query_port(ibdev, port_num, &attr);
if (err)
return err;
immutable->pkey_tbl_len = 1;
immutable->gid_tbl_len = 1;
immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
immutable->max_mad_size = 0;
return 0;
}
/* QEDR sysfs interface */
static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr,
char *buf)
{
struct qedr_dev *dev = dev_get_drvdata(device);
return scnprintf(buf, PAGE_SIZE, "0x%x\n", dev->pdev->vendor);
}
static DEVICE_ATTR_RO(hw_rev);
static ssize_t hca_type_show(struct device *device,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%s\n", "HCA_TYPE_TO_SET");
}
static DEVICE_ATTR_RO(hca_type);
static struct attribute *qedr_attributes[] = {
&dev_attr_hw_rev.attr,
&dev_attr_hca_type.attr,
NULL
};
static const struct attribute_group qedr_attr_group = {
.attrs = qedr_attributes,
};
static const struct ib_device_ops qedr_iw_dev_ops = {
.get_port_immutable = qedr_iw_port_immutable,
.query_gid = qedr_iw_query_gid,
};
static int qedr_iw_register_device(struct qedr_dev *dev)
{
dev->ibdev.node_type = RDMA_NODE_RNIC;
ib_set_device_ops(&dev->ibdev, &qedr_iw_dev_ops);
dev->ibdev.iwcm = kzalloc(sizeof(*dev->ibdev.iwcm), GFP_KERNEL);
if (!dev->ibdev.iwcm)
return -ENOMEM;
dev->ibdev.iwcm->connect = qedr_iw_connect;
dev->ibdev.iwcm->accept = qedr_iw_accept;
dev->ibdev.iwcm->reject = qedr_iw_reject;
dev->ibdev.iwcm->create_listen = qedr_iw_create_listen;
dev->ibdev.iwcm->destroy_listen = qedr_iw_destroy_listen;
dev->ibdev.iwcm->add_ref = qedr_iw_qp_add_ref;
dev->ibdev.iwcm->rem_ref = qedr_iw_qp_rem_ref;
dev->ibdev.iwcm->get_qp = qedr_iw_get_qp;
memcpy(dev->ibdev.iwcm->ifname,
dev->ndev->name, sizeof(dev->ibdev.iwcm->ifname));
return 0;
}
static const struct ib_device_ops qedr_roce_dev_ops = {
.get_port_immutable = qedr_roce_port_immutable,
};
static void qedr_roce_register_device(struct qedr_dev *dev)
{
dev->ibdev.node_type = RDMA_NODE_IB_CA;
ib_set_device_ops(&dev->ibdev, &qedr_roce_dev_ops);
}
static const struct ib_device_ops qedr_dev_ops = {
.alloc_mr = qedr_alloc_mr,
.alloc_pd = qedr_alloc_pd,
.alloc_ucontext = qedr_alloc_ucontext,
.create_ah = qedr_create_ah,
.create_cq = qedr_create_cq,
.create_qp = qedr_create_qp,
.create_srq = qedr_create_srq,
.dealloc_pd = qedr_dealloc_pd,
.dealloc_ucontext = qedr_dealloc_ucontext,
.dereg_mr = qedr_dereg_mr,
.destroy_ah = qedr_destroy_ah,
.destroy_cq = qedr_destroy_cq,
.destroy_qp = qedr_destroy_qp,
.destroy_srq = qedr_destroy_srq,
.get_dev_fw_str = qedr_get_dev_fw_str,
.get_dma_mr = qedr_get_dma_mr,
.get_link_layer = qedr_link_layer,
.get_netdev = qedr_get_netdev,
.map_mr_sg = qedr_map_mr_sg,
.mmap = qedr_mmap,
.modify_port = qedr_modify_port,
.modify_qp = qedr_modify_qp,
.modify_srq = qedr_modify_srq,
.poll_cq = qedr_poll_cq,
.post_recv = qedr_post_recv,
.post_send = qedr_post_send,
.post_srq_recv = qedr_post_srq_recv,
.process_mad = qedr_process_mad,
.query_device = qedr_query_device,
.query_pkey = qedr_query_pkey,
.query_port = qedr_query_port,
.query_qp = qedr_query_qp,
.query_srq = qedr_query_srq,
.reg_user_mr = qedr_reg_user_mr,
.req_notify_cq = qedr_arm_cq,
.resize_cq = qedr_resize_cq,
};
static int qedr_register_device(struct qedr_dev *dev)
{
int rc;
dev->ibdev.node_guid = dev->attr.node_guid;
memcpy(dev->ibdev.node_desc, QEDR_NODE_DESC, sizeof(QEDR_NODE_DESC));
dev->ibdev.owner = THIS_MODULE;
dev->ibdev.uverbs_abi_ver = QEDR_ABI_VERSION;
dev->ibdev.uverbs_cmd_mask = QEDR_UVERBS(GET_CONTEXT) |
QEDR_UVERBS(QUERY_DEVICE) |
QEDR_UVERBS(QUERY_PORT) |
QEDR_UVERBS(ALLOC_PD) |
QEDR_UVERBS(DEALLOC_PD) |
QEDR_UVERBS(CREATE_COMP_CHANNEL) |
QEDR_UVERBS(CREATE_CQ) |
QEDR_UVERBS(RESIZE_CQ) |
QEDR_UVERBS(DESTROY_CQ) |
QEDR_UVERBS(REQ_NOTIFY_CQ) |
QEDR_UVERBS(CREATE_QP) |
QEDR_UVERBS(MODIFY_QP) |
QEDR_UVERBS(QUERY_QP) |
QEDR_UVERBS(DESTROY_QP) |
QEDR_UVERBS(CREATE_SRQ) |
QEDR_UVERBS(DESTROY_SRQ) |
QEDR_UVERBS(QUERY_SRQ) |
QEDR_UVERBS(MODIFY_SRQ) |
QEDR_UVERBS(POST_SRQ_RECV) |
QEDR_UVERBS(REG_MR) |
QEDR_UVERBS(DEREG_MR) |
QEDR_UVERBS(POLL_CQ) |
QEDR_UVERBS(POST_SEND) |
QEDR_UVERBS(POST_RECV);
if (IS_IWARP(dev)) {
rc = qedr_iw_register_device(dev);
if (rc)
return rc;
} else {
qedr_roce_register_device(dev);
}
dev->ibdev.phys_port_cnt = 1;
dev->ibdev.num_comp_vectors = dev->num_cnq;
dev->ibdev.dev.parent = &dev->pdev->dev;
rdma_set_device_sysfs_group(&dev->ibdev, &qedr_attr_group);
ib_set_device_ops(&dev->ibdev, &qedr_dev_ops);
dev->ibdev.driver_id = RDMA_DRIVER_QEDR;
return ib_register_device(&dev->ibdev, "qedr%d");
}
/* This function allocates fast-path status block memory */
static int qedr_alloc_mem_sb(struct qedr_dev *dev,
struct qed_sb_info *sb_info, u16 sb_id)
{
struct status_block_e4 *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = dma_alloc_coherent(&dev->pdev->dev,
sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
if (!sb_virt)
return -ENOMEM;
rc = dev->ops->common->sb_init(dev->cdev, sb_info,
sb_virt, sb_phys, sb_id,
QED_SB_TYPE_CNQ);
if (rc) {
pr_err("Status block initialization failed\n");
dma_free_coherent(&dev->pdev->dev, sizeof(*sb_virt),
sb_virt, sb_phys);
return rc;
}
return 0;
}
static void qedr_free_mem_sb(struct qedr_dev *dev,
struct qed_sb_info *sb_info, int sb_id)
{
if (sb_info->sb_virt) {
dev->ops->common->sb_release(dev->cdev, sb_info, sb_id);
dma_free_coherent(&dev->pdev->dev, sizeof(*sb_info->sb_virt),
(void *)sb_info->sb_virt, sb_info->sb_phys);
}
}
static void qedr_free_resources(struct qedr_dev *dev)
{
int i;
if (IS_IWARP(dev))
destroy_workqueue(dev->iwarp_wq);
for (i = 0; i < dev->num_cnq; i++) {
qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i);
dev->ops->common->chain_free(dev->cdev, &dev->cnq_array[i].pbl);
}
kfree(dev->cnq_array);
kfree(dev->sb_array);
kfree(dev->sgid_tbl);
}
static int qedr_alloc_resources(struct qedr_dev *dev)
{
struct qedr_cnq *cnq;
__le16 *cons_pi;
u16 n_entries;
int i, rc;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
dev->sgid_tbl = kcalloc(QEDR_MAX_SGID, sizeof(union ib_gid),
GFP_KERNEL);
if (!dev->sgid_tbl)
return -ENOMEM;
spin_lock_init(&dev->sgid_lock);
if (IS_IWARP(dev)) {
spin_lock_init(&dev->qpidr.idr_lock);
idr_init(&dev->qpidr.idr);
dev->iwarp_wq = create_singlethread_workqueue("qedr_iwarpq");
}
/* Allocate Status blocks for CNQ */
dev->sb_array = kcalloc(dev->num_cnq, sizeof(*dev->sb_array),
GFP_KERNEL);
if (!dev->sb_array) {
rc = -ENOMEM;
goto err1;
}
dev->cnq_array = kcalloc(dev->num_cnq,
sizeof(*dev->cnq_array), GFP_KERNEL);
if (!dev->cnq_array) {
rc = -ENOMEM;
goto err2;
}
dev->sb_start = dev->ops->rdma_get_start_sb(dev->cdev);
/* Allocate CNQ PBLs */
n_entries = min_t(u32, QED_RDMA_MAX_CNQ_SIZE, QEDR_ROCE_MAX_CNQ_SIZE);
for (i = 0; i < dev->num_cnq; i++) {
cnq = &dev->cnq_array[i];
rc = qedr_alloc_mem_sb(dev, &dev->sb_array[i],
dev->sb_start + i);
if (rc)
goto err3;
rc = dev->ops->common->chain_alloc(dev->cdev,
QED_CHAIN_USE_TO_CONSUME,
QED_CHAIN_MODE_PBL,
QED_CHAIN_CNT_TYPE_U16,
n_entries,
sizeof(struct regpair *),
&cnq->pbl, NULL);
if (rc)
goto err4;
cnq->dev = dev;
cnq->sb = &dev->sb_array[i];
cons_pi = dev->sb_array[i].sb_virt->pi_array;
cnq->hw_cons_ptr = &cons_pi[QED_ROCE_PROTOCOL_INDEX];
cnq->index = i;
sprintf(cnq->name, "qedr%d@pci:%s", i, pci_name(dev->pdev));
DP_DEBUG(dev, QEDR_MSG_INIT, "cnq[%d].cons=%d\n",
i, qed_chain_get_cons_idx(&cnq->pbl));
}
return 0;
err4:
qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i);
err3:
for (--i; i >= 0; i--) {
dev->ops->common->chain_free(dev->cdev, &dev->cnq_array[i].pbl);
qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i);
}
kfree(dev->cnq_array);
err2:
kfree(dev->sb_array);
err1:
kfree(dev->sgid_tbl);
return rc;
}
static void qedr_pci_set_atomic(struct qedr_dev *dev, struct pci_dev *pdev)
{
int rc = pci_enable_atomic_ops_to_root(pdev,
PCI_EXP_DEVCAP2_ATOMIC_COMP64);
if (rc) {
dev->atomic_cap = IB_ATOMIC_NONE;
DP_DEBUG(dev, QEDR_MSG_INIT, "Atomic capability disabled\n");
} else {
dev->atomic_cap = IB_ATOMIC_GLOB;
DP_DEBUG(dev, QEDR_MSG_INIT, "Atomic capability enabled\n");
}
}
static const struct qed_rdma_ops *qed_ops;
#define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo))
static irqreturn_t qedr_irq_handler(int irq, void *handle)
{
u16 hw_comp_cons, sw_comp_cons;
struct qedr_cnq *cnq = handle;
struct regpair *cq_handle;
struct qedr_cq *cq;
qed_sb_ack(cnq->sb, IGU_INT_DISABLE, 0);
qed_sb_update_sb_idx(cnq->sb);
hw_comp_cons = le16_to_cpu(*cnq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&cnq->pbl);
/* Align protocol-index and chain reads */
rmb();
while (sw_comp_cons != hw_comp_cons) {
cq_handle = (struct regpair *)qed_chain_consume(&cnq->pbl);
cq = (struct qedr_cq *)(uintptr_t)HILO_U64(cq_handle->hi,
cq_handle->lo);
if (cq == NULL) {
DP_ERR(cnq->dev,
"Received NULL CQ cq_handle->hi=%d cq_handle->lo=%d sw_comp_cons=%d hw_comp_cons=%d\n",
cq_handle->hi, cq_handle->lo, sw_comp_cons,
hw_comp_cons);
break;
}
if (cq->sig != QEDR_CQ_MAGIC_NUMBER) {
DP_ERR(cnq->dev,
"Problem with cq signature, cq_handle->hi=%d ch_handle->lo=%d cq=%p\n",
cq_handle->hi, cq_handle->lo, cq);
break;
}
cq->arm_flags = 0;
if (!cq->destroyed && cq->ibcq.comp_handler)
(*cq->ibcq.comp_handler)
(&cq->ibcq, cq->ibcq.cq_context);
/* The CQ's CNQ notification counter is checked before
* destroying the CQ in a busy-wait loop that waits for all of
* the CQ's CNQ interrupts to be processed. It is increased
* here, only after the completion handler, to ensure that the
* the handler is not running when the CQ is destroyed.
*/
cq->cnq_notif++;
sw_comp_cons = qed_chain_get_cons_idx(&cnq->pbl);
cnq->n_comp++;
}
qed_ops->rdma_cnq_prod_update(cnq->dev->rdma_ctx, cnq->index,
sw_comp_cons);
qed_sb_ack(cnq->sb, IGU_INT_ENABLE, 1);
return IRQ_HANDLED;
}
static void qedr_sync_free_irqs(struct qedr_dev *dev)
{
u32 vector;
int i;
for (i = 0; i < dev->int_info.used_cnt; i++) {
if (dev->int_info.msix_cnt) {
vector = dev->int_info.msix[i * dev->num_hwfns].vector;
synchronize_irq(vector);
free_irq(vector, &dev->cnq_array[i]);
}
}
dev->int_info.used_cnt = 0;
}
static int qedr_req_msix_irqs(struct qedr_dev *dev)
{
int i, rc = 0;
if (dev->num_cnq > dev->int_info.msix_cnt) {
DP_ERR(dev,
"Interrupt mismatch: %d CNQ queues > %d MSI-x vectors\n",
dev->num_cnq, dev->int_info.msix_cnt);
return -EINVAL;
}
for (i = 0; i < dev->num_cnq; i++) {
rc = request_irq(dev->int_info.msix[i * dev->num_hwfns].vector,
qedr_irq_handler, 0, dev->cnq_array[i].name,
&dev->cnq_array[i]);
if (rc) {
DP_ERR(dev, "Request cnq %d irq failed\n", i);
qedr_sync_free_irqs(dev);
} else {
DP_DEBUG(dev, QEDR_MSG_INIT,
"Requested cnq irq for %s [entry %d]. Cookie is at %p\n",
dev->cnq_array[i].name, i,
&dev->cnq_array[i]);
dev->int_info.used_cnt++;
}
}
return rc;
}
static int qedr_setup_irqs(struct qedr_dev *dev)
{
int rc;
DP_DEBUG(dev, QEDR_MSG_INIT, "qedr_setup_irqs\n");
/* Learn Interrupt configuration */
rc = dev->ops->rdma_set_rdma_int(dev->cdev, dev->num_cnq);
if (rc < 0)
return rc;
rc = dev->ops->rdma_get_rdma_int(dev->cdev, &dev->int_info);
if (rc) {
DP_DEBUG(dev, QEDR_MSG_INIT, "get_rdma_int failed\n");
return rc;
}
if (dev->int_info.msix_cnt) {
DP_DEBUG(dev, QEDR_MSG_INIT, "rdma msix_cnt = %d\n",
dev->int_info.msix_cnt);
rc = qedr_req_msix_irqs(dev);
if (rc)
return rc;
}
DP_DEBUG(dev, QEDR_MSG_INIT, "qedr_setup_irqs succeeded\n");
return 0;
}
static int qedr_set_device_attr(struct qedr_dev *dev)
{
struct qed_rdma_device *qed_attr;
struct qedr_device_attr *attr;
u32 page_size;
/* Part 1 - query core capabilities */
qed_attr = dev->ops->rdma_query_device(dev->rdma_ctx);
/* Part 2 - check capabilities */
page_size = ~dev->attr.page_size_caps + 1;
if (page_size > PAGE_SIZE) {
DP_ERR(dev,
"Kernel PAGE_SIZE is %ld which is smaller than minimum page size (%d) required by qedr\n",
PAGE_SIZE, page_size);
return -ENODEV;
}
/* Part 3 - copy and update capabilities */
attr = &dev->attr;
attr->vendor_id = qed_attr->vendor_id;
attr->vendor_part_id = qed_attr->vendor_part_id;
attr->hw_ver = qed_attr->hw_ver;
attr->fw_ver = qed_attr->fw_ver;
attr->node_guid = qed_attr->node_guid;
attr->sys_image_guid = qed_attr->sys_image_guid;
attr->max_cnq = qed_attr->max_cnq;
attr->max_sge = qed_attr->max_sge;
attr->max_inline = qed_attr->max_inline;
attr->max_sqe = min_t(u32, qed_attr->max_wqe, QEDR_MAX_SQE);
attr->max_rqe = min_t(u32, qed_attr->max_wqe, QEDR_MAX_RQE);
attr->max_qp_resp_rd_atomic_resc = qed_attr->max_qp_resp_rd_atomic_resc;
attr->max_qp_req_rd_atomic_resc = qed_attr->max_qp_req_rd_atomic_resc;
attr->max_dev_resp_rd_atomic_resc =
qed_attr->max_dev_resp_rd_atomic_resc;
attr->max_cq = qed_attr->max_cq;
attr->max_qp = qed_attr->max_qp;
attr->max_mr = qed_attr->max_mr;
attr->max_mr_size = qed_attr->max_mr_size;
attr->max_cqe = min_t(u64, qed_attr->max_cqe, QEDR_MAX_CQES);
attr->max_mw = qed_attr->max_mw;
attr->max_fmr = qed_attr->max_fmr;
attr->max_mr_mw_fmr_pbl = qed_attr->max_mr_mw_fmr_pbl;
attr->max_mr_mw_fmr_size = qed_attr->max_mr_mw_fmr_size;
attr->max_pd = qed_attr->max_pd;
attr->max_ah = qed_attr->max_ah;
attr->max_pkey = qed_attr->max_pkey;
attr->max_srq = qed_attr->max_srq;
attr->max_srq_wr = qed_attr->max_srq_wr;
attr->dev_caps = qed_attr->dev_caps;
attr->page_size_caps = qed_attr->page_size_caps;
attr->dev_ack_delay = qed_attr->dev_ack_delay;
attr->reserved_lkey = qed_attr->reserved_lkey;
attr->bad_pkey_counter = qed_attr->bad_pkey_counter;
attr->max_stats_queues = qed_attr->max_stats_queues;
return 0;
}
static void qedr_unaffiliated_event(void *context, u8 event_code)
{
pr_err("unaffiliated event not implemented yet\n");
}
static void qedr_affiliated_event(void *context, u8 e_code, void *fw_handle)
{
#define EVENT_TYPE_NOT_DEFINED 0
#define EVENT_TYPE_CQ 1
#define EVENT_TYPE_QP 2
#define EVENT_TYPE_SRQ 3
struct qedr_dev *dev = (struct qedr_dev *)context;
struct regpair *async_handle = (struct regpair *)fw_handle;
u64 roce_handle64 = ((u64) async_handle->hi << 32) + async_handle->lo;
u8 event_type = EVENT_TYPE_NOT_DEFINED;
struct ib_event event;
struct ib_srq *ibsrq;
struct qedr_srq *srq;
unsigned long flags;
struct ib_cq *ibcq;
struct ib_qp *ibqp;
struct qedr_cq *cq;
struct qedr_qp *qp;
u16 srq_id;
if (IS_ROCE(dev)) {
switch (e_code) {
case ROCE_ASYNC_EVENT_CQ_OVERFLOW_ERR:
event.event = IB_EVENT_CQ_ERR;
event_type = EVENT_TYPE_CQ;
break;
case ROCE_ASYNC_EVENT_SQ_DRAINED:
event.event = IB_EVENT_SQ_DRAINED;
event_type = EVENT_TYPE_QP;
break;
case ROCE_ASYNC_EVENT_QP_CATASTROPHIC_ERR:
event.event = IB_EVENT_QP_FATAL;
event_type = EVENT_TYPE_QP;
break;
case ROCE_ASYNC_EVENT_LOCAL_INVALID_REQUEST_ERR:
event.event = IB_EVENT_QP_REQ_ERR;
event_type = EVENT_TYPE_QP;
break;
case ROCE_ASYNC_EVENT_LOCAL_ACCESS_ERR:
event.event = IB_EVENT_QP_ACCESS_ERR;
event_type = EVENT_TYPE_QP;
break;
case ROCE_ASYNC_EVENT_SRQ_LIMIT:
event.event = IB_EVENT_SRQ_LIMIT_REACHED;
event_type = EVENT_TYPE_SRQ;
break;
case ROCE_ASYNC_EVENT_SRQ_EMPTY:
event.event = IB_EVENT_SRQ_ERR;
event_type = EVENT_TYPE_SRQ;
break;
default:
DP_ERR(dev, "unsupported event %d on handle=%llx\n",
e_code, roce_handle64);
}
} else {
switch (e_code) {
case QED_IWARP_EVENT_SRQ_LIMIT:
event.event = IB_EVENT_SRQ_LIMIT_REACHED;
event_type = EVENT_TYPE_SRQ;
break;
case QED_IWARP_EVENT_SRQ_EMPTY:
event.event = IB_EVENT_SRQ_ERR;
event_type = EVENT_TYPE_SRQ;
break;
default:
DP_ERR(dev, "unsupported event %d on handle=%llx\n", e_code,
roce_handle64);
}
}
switch (event_type) {
case EVENT_TYPE_CQ:
cq = (struct qedr_cq *)(uintptr_t)roce_handle64;
if (cq) {
ibcq = &cq->ibcq;
if (ibcq->event_handler) {
event.device = ibcq->device;
event.element.cq = ibcq;
ibcq->event_handler(&event, ibcq->cq_context);
}
} else {
WARN(1,
"Error: CQ event with NULL pointer ibcq. Handle=%llx\n",
roce_handle64);
}
DP_ERR(dev, "CQ event %d on handle %p\n", e_code, cq);
break;
case EVENT_TYPE_QP:
qp = (struct qedr_qp *)(uintptr_t)roce_handle64;
if (qp) {
ibqp = &qp->ibqp;
if (ibqp->event_handler) {
event.device = ibqp->device;
event.element.qp = ibqp;
ibqp->event_handler(&event, ibqp->qp_context);
}
} else {
WARN(1,
"Error: QP event with NULL pointer ibqp. Handle=%llx\n",
roce_handle64);
}
DP_ERR(dev, "QP event %d on handle %p\n", e_code, qp);
break;
case EVENT_TYPE_SRQ:
srq_id = (u16)roce_handle64;
spin_lock_irqsave(&dev->srqidr.idr_lock, flags);
srq = idr_find(&dev->srqidr.idr, srq_id);
if (srq) {
ibsrq = &srq->ibsrq;
if (ibsrq->event_handler) {
event.device = ibsrq->device;
event.element.srq = ibsrq;
ibsrq->event_handler(&event,
ibsrq->srq_context);
}
} else {
DP_NOTICE(dev,
"SRQ event with NULL pointer ibsrq. Handle=%llx\n",
roce_handle64);
}
spin_unlock_irqrestore(&dev->srqidr.idr_lock, flags);
DP_NOTICE(dev, "SRQ event %d on handle %p\n", e_code, srq);
default:
break;
}
}
static int qedr_init_hw(struct qedr_dev *dev)
{
struct qed_rdma_add_user_out_params out_params;
struct qed_rdma_start_in_params *in_params;
struct qed_rdma_cnq_params *cur_pbl;
struct qed_rdma_events events;
dma_addr_t p_phys_table;
u32 page_cnt;
int rc = 0;
int i;
in_params = kzalloc(sizeof(*in_params), GFP_KERNEL);
if (!in_params) {
rc = -ENOMEM;
goto out;
}
in_params->desired_cnq = dev->num_cnq;
for (i = 0; i < dev->num_cnq; i++) {
cur_pbl = &in_params->cnq_pbl_list[i];
page_cnt = qed_chain_get_page_cnt(&dev->cnq_array[i].pbl);
cur_pbl->num_pbl_pages = page_cnt;
p_phys_table = qed_chain_get_pbl_phys(&dev->cnq_array[i].pbl);
cur_pbl->pbl_ptr = (u64)p_phys_table;
}
events.affiliated_event = qedr_affiliated_event;
events.unaffiliated_event = qedr_unaffiliated_event;
events.context = dev;
in_params->events = &events;
in_params->cq_mode = QED_RDMA_CQ_MODE_32_BITS;
in_params->max_mtu = dev->ndev->mtu;
dev->iwarp_max_mtu = dev->ndev->mtu;
ether_addr_copy(&in_params->mac_addr[0], dev->ndev->dev_addr);
rc = dev->ops->rdma_init(dev->cdev, in_params);
if (rc)
goto out;
rc = dev->ops->rdma_add_user(dev->rdma_ctx, &out_params);
if (rc)
goto out;
dev->db_addr = (void __iomem *)(uintptr_t)out_params.dpi_addr;
dev->db_phys_addr = out_params.dpi_phys_addr;
dev->db_size = out_params.dpi_size;
dev->dpi = out_params.dpi;
rc = qedr_set_device_attr(dev);
out:
kfree(in_params);
if (rc)
DP_ERR(dev, "Init HW Failed rc = %d\n", rc);
return rc;
}
static void qedr_stop_hw(struct qedr_dev *dev)
{
dev->ops->rdma_remove_user(dev->rdma_ctx, dev->dpi);
dev->ops->rdma_stop(dev->rdma_ctx);
}
static struct qedr_dev *qedr_add(struct qed_dev *cdev, struct pci_dev *pdev,
struct net_device *ndev)
{
struct qed_dev_rdma_info dev_info;
struct qedr_dev *dev;
int rc = 0;
dev = (struct qedr_dev *)ib_alloc_device(sizeof(*dev));
if (!dev) {
pr_err("Unable to allocate ib device\n");
return NULL;
}
DP_DEBUG(dev, QEDR_MSG_INIT, "qedr add device called\n");
dev->pdev = pdev;
dev->ndev = ndev;
dev->cdev = cdev;
qed_ops = qed_get_rdma_ops();
if (!qed_ops) {
DP_ERR(dev, "Failed to get qed roce operations\n");
goto init_err;
}
dev->ops = qed_ops;
rc = qed_ops->fill_dev_info(cdev, &dev_info);
if (rc)
goto init_err;
dev->user_dpm_enabled = dev_info.user_dpm_enabled;
dev->rdma_type = dev_info.rdma_type;
dev->num_hwfns = dev_info.common.num_hwfns;
dev->rdma_ctx = dev->ops->rdma_get_rdma_ctx(cdev);
dev->num_cnq = dev->ops->rdma_get_min_cnq_msix(cdev);
if (!dev->num_cnq) {
DP_ERR(dev, "Failed. At least one CNQ is required.\n");
rc = -ENOMEM;
goto init_err;
}
dev->wq_multiplier = QEDR_WQ_MULTIPLIER_DFT;
qedr_pci_set_atomic(dev, pdev);
rc = qedr_alloc_resources(dev);
if (rc)
goto init_err;
rc = qedr_init_hw(dev);
if (rc)
goto alloc_err;
rc = qedr_setup_irqs(dev);
if (rc)
goto irq_err;
rc = qedr_register_device(dev);
if (rc) {
DP_ERR(dev, "Unable to allocate register device\n");
goto reg_err;
}
if (!test_and_set_bit(QEDR_ENET_STATE_BIT, &dev->enet_state))
qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_PORT_ACTIVE);
DP_DEBUG(dev, QEDR_MSG_INIT, "qedr driver loaded successfully\n");
return dev;
reg_err:
qedr_sync_free_irqs(dev);
irq_err:
qedr_stop_hw(dev);
alloc_err:
qedr_free_resources(dev);
init_err:
ib_dealloc_device(&dev->ibdev);
DP_ERR(dev, "qedr driver load failed rc=%d\n", rc);
return NULL;
}
static void qedr_remove(struct qedr_dev *dev)
{
/* First unregister with stack to stop all the active traffic
* of the registered clients.
*/
ib_unregister_device(&dev->ibdev);
qedr_stop_hw(dev);
qedr_sync_free_irqs(dev);
qedr_free_resources(dev);
ib_dealloc_device(&dev->ibdev);
}
static void qedr_close(struct qedr_dev *dev)
{
if (test_and_clear_bit(QEDR_ENET_STATE_BIT, &dev->enet_state))
qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_PORT_ERR);
}
static void qedr_shutdown(struct qedr_dev *dev)
{
qedr_close(dev);
qedr_remove(dev);
}
static void qedr_open(struct qedr_dev *dev)
{
if (!test_and_set_bit(QEDR_ENET_STATE_BIT, &dev->enet_state))
qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_PORT_ACTIVE);
}
static void qedr_mac_address_change(struct qedr_dev *dev)
{
union ib_gid *sgid = &dev->sgid_tbl[0];
u8 guid[8], mac_addr[6];
int rc;
/* Update SGID */
ether_addr_copy(&mac_addr[0], dev->ndev->dev_addr);
guid[0] = mac_addr[0] ^ 2;
guid[1] = mac_addr[1];
guid[2] = mac_addr[2];
guid[3] = 0xff;
guid[4] = 0xfe;
guid[5] = mac_addr[3];
guid[6] = mac_addr[4];
guid[7] = mac_addr[5];
sgid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
memcpy(&sgid->raw[8], guid, sizeof(guid));
/* Update LL2 */
rc = dev->ops->ll2_set_mac_filter(dev->cdev,
dev->gsi_ll2_mac_address,
dev->ndev->dev_addr);
ether_addr_copy(dev->gsi_ll2_mac_address, dev->ndev->dev_addr);
qedr_ib_dispatch_event(dev, QEDR_PORT, IB_EVENT_GID_CHANGE);
if (rc)
DP_ERR(dev, "Error updating mac filter\n");
}
/* event handling via NIC driver ensures that all the NIC specific
* initialization done before RoCE driver notifies
* event to stack.
*/
static void qedr_notify(struct qedr_dev *dev, enum qede_rdma_event event)
{
switch (event) {
case QEDE_UP:
qedr_open(dev);
break;
case QEDE_DOWN:
qedr_close(dev);
break;
case QEDE_CLOSE:
qedr_shutdown(dev);
break;
case QEDE_CHANGE_ADDR:
qedr_mac_address_change(dev);
break;
default:
pr_err("Event not supported\n");
}
}
static struct qedr_driver qedr_drv = {
.name = "qedr_driver",
.add = qedr_add,
.remove = qedr_remove,
.notify = qedr_notify,
};
static int __init qedr_init_module(void)
{
return qede_rdma_register_driver(&qedr_drv);
}
static void __exit qedr_exit_module(void)
{
qede_rdma_unregister_driver(&qedr_drv);
}
module_init(qedr_init_module);
module_exit(qedr_exit_module);