OpenCloudOS-Kernel/drivers/pci/hotplug/cpqphp_ctrl.c

2928 lines
74 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Compaq Hot Plug Controller Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
*
* All rights reserved.
*
* Send feedback to <greg@kroah.com>
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include <linux/kthread.h>
#include "cpqphp.h"
static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources);
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources);
static void interrupt_event_handler(struct controller *ctrl);
static struct task_struct *cpqhp_event_thread;
static struct timer_list *pushbutton_pending; /* = NULL */
/* delay is in jiffies to wait for */
static void long_delay(int delay)
{
/*
* XXX(hch): if someone is bored please convert all callers
* to call msleep_interruptible directly. They really want
* to specify timeouts in natural units and spend a lot of
* effort converting them to jiffies..
*/
msleep_interruptible(jiffies_to_msecs(delay));
}
/* FIXME: The following line needs to be somewhere else... */
#define WRONG_BUS_FREQUENCY 0x07
static u8 handle_switch_change(u8 change, struct controller *ctrl)
{
int hp_slot;
u8 rc = 0;
u16 temp_word;
struct pci_func *func;
struct event_info *taskInfo;
if (!change)
return 0;
/* Switch Change */
dbg("cpqsbd: Switch interrupt received.\n");
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
if (change & (0x1L << hp_slot)) {
/*
* this one changed.
*/
func = cpqhp_slot_find(ctrl->bus,
(hp_slot + ctrl->slot_device_offset), 0);
/* this is the structure that tells the worker thread
* what to do
*/
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
/*
* Switch opened
*/
func->switch_save = 0;
taskInfo->event_type = INT_SWITCH_OPEN;
} else {
/*
* Switch closed
*/
func->switch_save = 0x10;
taskInfo->event_type = INT_SWITCH_CLOSE;
}
}
}
return rc;
}
/**
* cpqhp_find_slot - find the struct slot of given device
* @ctrl: scan lots of this controller
* @device: the device id to find
*/
static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
{
struct slot *slot = ctrl->slot;
while (slot && (slot->device != device))
slot = slot->next;
return slot;
}
static u8 handle_presence_change(u16 change, struct controller *ctrl)
{
int hp_slot;
u8 rc = 0;
u8 temp_byte;
u16 temp_word;
struct pci_func *func;
struct event_info *taskInfo;
struct slot *p_slot;
if (!change)
return 0;
/*
* Presence Change
*/
dbg("cpqsbd: Presence/Notify input change.\n");
dbg(" Changed bits are 0x%4.4x\n", change);
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
if (change & (0x0101 << hp_slot)) {
/*
* this one changed.
*/
func = cpqhp_slot_find(ctrl->bus,
(hp_slot + ctrl->slot_device_offset), 0);
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
if (!p_slot)
return 0;
/* If the switch closed, must be a button
* If not in button mode, nevermind
*/
if (func->switch_save && (ctrl->push_button == 1)) {
temp_word = ctrl->ctrl_int_comp >> 16;
temp_byte = (temp_word >> hp_slot) & 0x01;
temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
if (temp_byte != func->presence_save) {
/*
* button Pressed (doesn't do anything)
*/
dbg("hp_slot %d button pressed\n", hp_slot);
taskInfo->event_type = INT_BUTTON_PRESS;
} else {
/*
* button Released - TAKE ACTION!!!!
*/
dbg("hp_slot %d button released\n", hp_slot);
taskInfo->event_type = INT_BUTTON_RELEASE;
/* Cancel if we are still blinking */
if ((p_slot->state == BLINKINGON_STATE)
|| (p_slot->state == BLINKINGOFF_STATE)) {
taskInfo->event_type = INT_BUTTON_CANCEL;
dbg("hp_slot %d button cancel\n", hp_slot);
} else if ((p_slot->state == POWERON_STATE)
|| (p_slot->state == POWEROFF_STATE)) {
/* info(msg_button_ignore, p_slot->number); */
taskInfo->event_type = INT_BUTTON_IGNORE;
dbg("hp_slot %d button ignore\n", hp_slot);
}
}
} else {
/* Switch is open, assume a presence change
* Save the presence state
*/
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
(!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
/* Present */
taskInfo->event_type = INT_PRESENCE_ON;
} else {
/* Not Present */
taskInfo->event_type = INT_PRESENCE_OFF;
}
}
}
}
return rc;
}
static u8 handle_power_fault(u8 change, struct controller *ctrl)
{
int hp_slot;
u8 rc = 0;
struct pci_func *func;
struct event_info *taskInfo;
if (!change)
return 0;
/*
* power fault
*/
info("power fault interrupt\n");
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
if (change & (0x01 << hp_slot)) {
/*
* this one changed.
*/
func = cpqhp_slot_find(ctrl->bus,
(hp_slot + ctrl->slot_device_offset), 0);
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
/*
* power fault Cleared
*/
func->status = 0x00;
taskInfo->event_type = INT_POWER_FAULT_CLEAR;
} else {
/*
* power fault
*/
taskInfo->event_type = INT_POWER_FAULT;
if (ctrl->rev < 4) {
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
set_SOGO(ctrl);
/* this is a fatal condition, we want
* to crash the machine to protect from
* data corruption. simulated_NMI
* shouldn't ever return */
/* FIXME
simulated_NMI(hp_slot, ctrl); */
/* The following code causes a software
* crash just in case simulated_NMI did
* return */
/*FIXME
panic(msg_power_fault); */
} else {
/* set power fault status for this board */
func->status = 0xFF;
info("power fault bit %x set\n", hp_slot);
}
}
}
}
return rc;
}
/**
* sort_by_size - sort nodes on the list by their length, smallest first.
* @head: list to sort
*/
static int sort_by_size(struct pci_resource **head)
{
struct pci_resource *current_res;
struct pci_resource *next_res;
int out_of_order = 1;
if (!(*head))
return 1;
if (!((*head)->next))
return 0;
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->length > (*head)->next->length)) {
out_of_order++;
current_res = *head;
*head = (*head)->next;
current_res->next = (*head)->next;
(*head)->next = current_res;
}
current_res = *head;
while (current_res->next && current_res->next->next) {
if (current_res->next->length > current_res->next->next->length) {
out_of_order++;
next_res = current_res->next;
current_res->next = current_res->next->next;
current_res = current_res->next;
next_res->next = current_res->next;
current_res->next = next_res;
} else
current_res = current_res->next;
}
} /* End of out_of_order loop */
return 0;
}
/**
* sort_by_max_size - sort nodes on the list by their length, largest first.
* @head: list to sort
*/
static int sort_by_max_size(struct pci_resource **head)
{
struct pci_resource *current_res;
struct pci_resource *next_res;
int out_of_order = 1;
if (!(*head))
return 1;
if (!((*head)->next))
return 0;
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->length < (*head)->next->length)) {
out_of_order++;
current_res = *head;
*head = (*head)->next;
current_res->next = (*head)->next;
(*head)->next = current_res;
}
current_res = *head;
while (current_res->next && current_res->next->next) {
if (current_res->next->length < current_res->next->next->length) {
out_of_order++;
next_res = current_res->next;
current_res->next = current_res->next->next;
current_res = current_res->next;
next_res->next = current_res->next;
current_res->next = next_res;
} else
current_res = current_res->next;
}
} /* End of out_of_order loop */
return 0;
}
/**
* do_pre_bridge_resource_split - find node of resources that are unused
* @head: new list head
* @orig_head: original list head
* @alignment: max node size (?)
*/
static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
struct pci_resource **orig_head, u32 alignment)
{
struct pci_resource *prevnode = NULL;
struct pci_resource *node;
struct pci_resource *split_node;
u32 rc;
u32 temp_dword;
dbg("do_pre_bridge_resource_split\n");
if (!(*head) || !(*orig_head))
return NULL;
rc = cpqhp_resource_sort_and_combine(head);
if (rc)
return NULL;
if ((*head)->base != (*orig_head)->base)
return NULL;
if ((*head)->length == (*orig_head)->length)
return NULL;
/* If we got here, there the bridge requires some of the resource, but
* we may be able to split some off of the front
*/
node = *head;
if (node->length & (alignment - 1)) {
/* this one isn't an aligned length, so we'll make a new entry
* and split it up.
*/
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
temp_dword = (node->length | (alignment-1)) + 1 - alignment;
split_node->base = node->base;
split_node->length = temp_dword;
node->length -= temp_dword;
node->base += split_node->length;
/* Put it in the list */
*head = split_node;
split_node->next = node;
}
if (node->length < alignment)
return NULL;
/* Now unlink it */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
return node;
}
/**
* do_bridge_resource_split - find one node of resources that aren't in use
* @head: list head
* @alignment: max node size (?)
*/
static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
{
struct pci_resource *prevnode = NULL;
struct pci_resource *node;
u32 rc;
u32 temp_dword;
rc = cpqhp_resource_sort_and_combine(head);
if (rc)
return NULL;
node = *head;
while (node->next) {
prevnode = node;
node = node->next;
kfree(prevnode);
}
if (node->length < alignment)
goto error;
if (node->base & (alignment - 1)) {
/* Short circuit if adjusted size is too small */
temp_dword = (node->base | (alignment-1)) + 1;
if ((node->length - (temp_dword - node->base)) < alignment)
goto error;
node->length -= (temp_dword - node->base);
node->base = temp_dword;
}
if (node->length & (alignment - 1))
/* There's stuff in use after this node */
goto error;
return node;
error:
kfree(node);
return NULL;
}
/**
* get_io_resource - find first node of given size not in ISA aliasing window.
* @head: list to search
* @size: size of node to find, must be a power of two.
*
* Description: This function sorts the resource list by size and then returns
* returns the first node of "size" length that is not in the ISA aliasing
* window. If it finds a node larger than "size" it will split it up.
*/
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *prevnode;
struct pci_resource *node;
struct pci_resource *split_node;
u32 temp_dword;
if (!(*head))
return NULL;
if (cpqhp_resource_sort_and_combine(head))
return NULL;
if (sort_by_size(head))
return NULL;
for (node = *head; node; node = node->next) {
if (node->length < size)
continue;
if (node->base & (size - 1)) {
/* this one isn't base aligned properly
* so we'll make a new entry and split it up
*/
temp_dword = (node->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((node->length - (temp_dword - node->base)) < size)
continue;
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base;
split_node->length = temp_dword - node->base;
node->base = temp_dword;
node->length -= split_node->length;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of non-aligned base */
/* Don't need to check if too small since we already did */
if (node->length > size) {
/* this one is longer than we need
* so we'll make a new entry and split it up
*/
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base + size;
split_node->length = node->length - size;
node->length = size;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of too big on top end */
/* For IO make sure it's not in the ISA aliasing space */
if (node->base & 0x300L)
continue;
/* If we got here, then it is the right size
* Now take it out of the list and break
*/
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
break;
}
return node;
}
/**
* get_max_resource - get largest node which has at least the given size.
* @head: the list to search the node in
* @size: the minimum size of the node to find
*
* Description: Gets the largest node that is at least "size" big from the
* list pointed to by head. It aligns the node on top and bottom
* to "size" alignment before returning it.
*/
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *max;
struct pci_resource *temp;
struct pci_resource *split_node;
u32 temp_dword;
if (cpqhp_resource_sort_and_combine(head))
return NULL;
if (sort_by_max_size(head))
return NULL;
for (max = *head; max; max = max->next) {
/* If not big enough we could probably just bail,
* instead we'll continue to the next.
*/
if (max->length < size)
continue;
if (max->base & (size - 1)) {
/* this one isn't base aligned properly
* so we'll make a new entry and split it up
*/
temp_dword = (max->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((max->length - (temp_dword - max->base)) < size)
continue;
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = max->base;
split_node->length = temp_dword - max->base;
max->base = temp_dword;
max->length -= split_node->length;
split_node->next = max->next;
max->next = split_node;
}
if ((max->base + max->length) & (size - 1)) {
/* this one isn't end aligned properly at the top
* so we'll make a new entry and split it up
*/
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
temp_dword = ((max->base + max->length) & ~(size - 1));
split_node->base = temp_dword;
split_node->length = max->length + max->base
- split_node->base;
max->length -= split_node->length;
split_node->next = max->next;
max->next = split_node;
}
/* Make sure it didn't shrink too much when we aligned it */
if (max->length < size)
continue;
/* Now take it out of the list */
temp = *head;
if (temp == max) {
*head = max->next;
} else {
while (temp && temp->next != max)
temp = temp->next;
if (temp)
temp->next = max->next;
}
max->next = NULL;
break;
}
return max;
}
/**
* get_resource - find resource of given size and split up larger ones.
* @head: the list to search for resources
* @size: the size limit to use
*
* Description: This function sorts the resource list by size and then
* returns the first node of "size" length. If it finds a node
* larger than "size" it will split it up.
*
* size must be a power of two.
*/
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *prevnode;
struct pci_resource *node;
struct pci_resource *split_node;
u32 temp_dword;
if (cpqhp_resource_sort_and_combine(head))
return NULL;
if (sort_by_size(head))
return NULL;
for (node = *head; node; node = node->next) {
dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
__func__, size, node, node->base, node->length);
if (node->length < size)
continue;
if (node->base & (size - 1)) {
dbg("%s: not aligned\n", __func__);
/* this one isn't base aligned properly
* so we'll make a new entry and split it up
*/
temp_dword = (node->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((node->length - (temp_dword - node->base)) < size)
continue;
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base;
split_node->length = temp_dword - node->base;
node->base = temp_dword;
node->length -= split_node->length;
split_node->next = node->next;
node->next = split_node;
} /* End of non-aligned base */
/* Don't need to check if too small since we already did */
if (node->length > size) {
dbg("%s: too big\n", __func__);
/* this one is longer than we need
* so we'll make a new entry and split it up
*/
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base + size;
split_node->length = node->length - size;
node->length = size;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of too big on top end */
dbg("%s: got one!!!\n", __func__);
/* If we got here, then it is the right size
* Now take it out of the list */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
break;
}
return node;
}
/**
* cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
* @head: the list to sort and clean up
*
* Description: Sorts all of the nodes in the list in ascending order by
* their base addresses. Also does garbage collection by
* combining adjacent nodes.
*
* Returns %0 if success.
*/
int cpqhp_resource_sort_and_combine(struct pci_resource **head)
{
struct pci_resource *node1;
struct pci_resource *node2;
int out_of_order = 1;
dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
if (!(*head))
return 1;
dbg("*head->next = %p\n", (*head)->next);
if (!(*head)->next)
return 0; /* only one item on the list, already sorted! */
dbg("*head->base = 0x%x\n", (*head)->base);
dbg("*head->next->base = 0x%x\n", (*head)->next->base);
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->base > (*head)->next->base)) {
node1 = *head;
(*head) = (*head)->next;
node1->next = (*head)->next;
(*head)->next = node1;
out_of_order++;
}
node1 = (*head);
while (node1->next && node1->next->next) {
if (node1->next->base > node1->next->next->base) {
out_of_order++;
node2 = node1->next;
node1->next = node1->next->next;
node1 = node1->next;
node2->next = node1->next;
node1->next = node2;
} else
node1 = node1->next;
}
} /* End of out_of_order loop */
node1 = *head;
while (node1 && node1->next) {
if ((node1->base + node1->length) == node1->next->base) {
/* Combine */
dbg("8..\n");
node1->length += node1->next->length;
node2 = node1->next;
node1->next = node1->next->next;
kfree(node2);
} else
node1 = node1->next;
}
return 0;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
{
struct controller *ctrl = data;
u8 schedule_flag = 0;
u8 reset;
u16 misc;
u32 Diff;
u32 temp_dword;
misc = readw(ctrl->hpc_reg + MISC);
/*
* Check to see if it was our interrupt
*/
if (!(misc & 0x000C))
return IRQ_NONE;
if (misc & 0x0004) {
/*
* Serial Output interrupt Pending
*/
/* Clear the interrupt */
misc |= 0x0004;
writew(misc, ctrl->hpc_reg + MISC);
/* Read to clear posted writes */
misc = readw(ctrl->hpc_reg + MISC);
dbg("%s - waking up\n", __func__);
wake_up_interruptible(&ctrl->queue);
}
if (misc & 0x0008) {
/* General-interrupt-input interrupt Pending */
Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
/* Clear the interrupt */
writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
/* Read it back to clear any posted writes */
temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
if (!Diff)
/* Clear all interrupts */
writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
}
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
if (reset & 0x40) {
/* Bus reset has completed */
reset &= 0xCF;
writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
wake_up_interruptible(&ctrl->queue);
}
if (schedule_flag) {
wake_up_process(cpqhp_event_thread);
dbg("Waking even thread");
}
return IRQ_HANDLED;
}
/**
* cpqhp_slot_create - Creates a node and adds it to the proper bus.
* @busnumber: bus where new node is to be located
*
* Returns pointer to the new node or %NULL if unsuccessful.
*/
struct pci_func *cpqhp_slot_create(u8 busnumber)
{
struct pci_func *new_slot;
struct pci_func *next;
new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
if (new_slot == NULL)
return new_slot;
new_slot->next = NULL;
new_slot->configured = 1;
if (cpqhp_slot_list[busnumber] == NULL) {
cpqhp_slot_list[busnumber] = new_slot;
} else {
next = cpqhp_slot_list[busnumber];
while (next->next != NULL)
next = next->next;
next->next = new_slot;
}
return new_slot;
}
/**
* slot_remove - Removes a node from the linked list of slots.
* @old_slot: slot to remove
*
* Returns %0 if successful, !0 otherwise.
*/
static int slot_remove(struct pci_func *old_slot)
{
struct pci_func *next;
if (old_slot == NULL)
return 1;
next = cpqhp_slot_list[old_slot->bus];
if (next == NULL)
return 1;
if (next == old_slot) {
cpqhp_slot_list[old_slot->bus] = old_slot->next;
cpqhp_destroy_board_resources(old_slot);
kfree(old_slot);
return 0;
}
while ((next->next != old_slot) && (next->next != NULL))
next = next->next;
if (next->next == old_slot) {
next->next = old_slot->next;
cpqhp_destroy_board_resources(old_slot);
kfree(old_slot);
return 0;
} else
return 2;
}
/**
* bridge_slot_remove - Removes a node from the linked list of slots.
* @bridge: bridge to remove
*
* Returns %0 if successful, !0 otherwise.
*/
static int bridge_slot_remove(struct pci_func *bridge)
{
u8 subordinateBus, secondaryBus;
u8 tempBus;
struct pci_func *next;
secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
next = cpqhp_slot_list[tempBus];
while (!slot_remove(next))
next = cpqhp_slot_list[tempBus];
}
next = cpqhp_slot_list[bridge->bus];
if (next == NULL)
return 1;
if (next == bridge) {
cpqhp_slot_list[bridge->bus] = bridge->next;
goto out;
}
while ((next->next != bridge) && (next->next != NULL))
next = next->next;
if (next->next != bridge)
return 2;
next->next = bridge->next;
out:
kfree(bridge);
return 0;
}
/**
* cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
* @bus: bus to find
* @device: device to find
* @index: is %0 for first function found, %1 for the second...
*
* Returns pointer to the node if successful, %NULL otherwise.
*/
struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
{
int found = -1;
struct pci_func *func;
func = cpqhp_slot_list[bus];
if ((func == NULL) || ((func->device == device) && (index == 0)))
return func;
if (func->device == device)
found++;
while (func->next != NULL) {
func = func->next;
if (func->device == device)
found++;
if (found == index)
return func;
}
return NULL;
}
/* DJZ: I don't think is_bridge will work as is.
* FIXME */
static int is_bridge(struct pci_func *func)
{
/* Check the header type */
if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
return 1;
else
return 0;
}
/**
* set_controller_speed - set the frequency and/or mode of a specific controller segment.
* @ctrl: controller to change frequency/mode for.
* @adapter_speed: the speed of the adapter we want to match.
* @hp_slot: the slot number where the adapter is installed.
*
* Returns %0 if we successfully change frequency and/or mode to match the
* adapter speed.
*/
static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
{
struct slot *slot;
struct pci_bus *bus = ctrl->pci_bus;
u8 reg;
u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
u16 reg16;
u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
if (bus->cur_bus_speed == adapter_speed)
return 0;
/* We don't allow freq/mode changes if we find another adapter running
* in another slot on this controller
*/
for (slot = ctrl->slot; slot; slot = slot->next) {
if (slot->device == (hp_slot + ctrl->slot_device_offset))
continue;
PCI: hotplug: Drop hotplug_slot_info Ever since the PCI hotplug core was introduced in 2002, drivers had to allocate and register a struct hotplug_slot_info for every slot: https://git.kernel.org/tglx/history/c/a8a2069f432c Apparently the idea was that drivers furnish the hotplug core with an up-to-date card presence status, power status, latch status and attention indicator status as well as notify the hotplug core of changes thereof. However only 4 out of 12 hotplug drivers bother to notify the hotplug core with pci_hp_change_slot_info() and the hotplug core never made any use of the information: There is just a single macro in pci_hotplug_core.c, GET_STATUS(), which uses the hotplug_slot_info if the driver lacks the corresponding callback in hotplug_slot_ops. The macro is called when the user reads the attribute via sysfs. Now, if the callback isn't defined, the attribute isn't exposed in sysfs in the first place (see e.g. has_power_file()). There are only two situations when the hotplug_slot_info would actually be accessed: * If the driver defines ->enable_slot or ->disable_slot but not ->get_power_status. * If the driver defines ->set_attention_status but not ->get_attention_status. There is no driver doing the former and just a single driver doing the latter, namely pnv_php.c. Amend it with a ->get_attention_status callback. With that, the hotplug_slot_info becomes completely unused by the PCI hotplug core. But a few drivers use it internally as a cache: cpcihp uses it to cache the latch_status and adapter_status. cpqhp uses it to cache the adapter_status. pnv_php and rpaphp use it to cache the attention_status. shpchp uses it to cache all four values. Amend these drivers to cache the information in their private slot struct. shpchp's slot struct already contains members to cache the power_status and adapter_status, so additional members are only needed for the other two values. In the case of cpqphp, the cached value is only accessed in a single place, so instead of caching it, read the current value from the hardware. Caution: acpiphp, cpci, cpqhp, shpchp, asus-wmi and eeepc-laptop populate the hotplug_slot_info with initial values on probe. That code is herewith removed. There is a theoretical chance that the code has side effects without which the driver fails to function, e.g. if the ACPI method to read the adapter status needs to be executed at least once on probe. That seems unlikely to me, still maintainers should review the changes carefully for this possibility. Rafael adds: "I'm not aware of any case in which it will break anything, [...] but if that happens, it may be necessary to add the execution of the control methods in question directly to the initialization part." Signed-off-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com> # drivers/pci/hotplug/rpa* Acked-by: Sebastian Ott <sebott@linux.ibm.com> # drivers/pci/hotplug/s390* Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com> # drivers/platform/x86 Cc: Len Brown <lenb@kernel.org> Cc: Scott Murray <scott@spiteful.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Oliver OHalloran <oliveroh@au1.ibm.com> Cc: Gavin Shan <gwshan@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Corentin Chary <corentin.chary@gmail.com> Cc: Darren Hart <dvhart@infradead.org>
2018-09-08 15:59:01 +08:00
if (get_presence_status(ctrl, slot) == 0)
continue;
/* If another adapter is running on the same segment but at a
* lower speed/mode, we allow the new adapter to function at
* this rate if supported
*/
if (bus->cur_bus_speed < adapter_speed)
return 0;
return 1;
}
/* If the controller doesn't support freq/mode changes and the
* controller is running at a higher mode, we bail
*/
if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
return 1;
/* But we allow the adapter to run at a lower rate if possible */
if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
return 0;
/* We try to set the max speed supported by both the adapter and
* controller
*/
if (bus->max_bus_speed < adapter_speed) {
if (bus->cur_bus_speed == bus->max_bus_speed)
return 0;
adapter_speed = bus->max_bus_speed;
}
writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
set_SOGO(ctrl);
wait_for_ctrl_irq(ctrl);
if (adapter_speed != PCI_SPEED_133MHz_PCIX)
reg = 0xF5;
else
reg = 0xF4;
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
reg16 &= ~0x000F;
switch (adapter_speed) {
case(PCI_SPEED_133MHz_PCIX):
reg = 0x75;
reg16 |= 0xB;
break;
case(PCI_SPEED_100MHz_PCIX):
reg = 0x74;
reg16 |= 0xA;
break;
case(PCI_SPEED_66MHz_PCIX):
reg = 0x73;
reg16 |= 0x9;
break;
case(PCI_SPEED_66MHz):
reg = 0x73;
reg16 |= 0x1;
break;
default: /* 33MHz PCI 2.2 */
reg = 0x71;
break;
}
reg16 |= 0xB << 12;
writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
mdelay(5);
/* Reenable interrupts */
writel(0, ctrl->hpc_reg + INT_MASK);
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
/* Restart state machine */
reg = ~0xF;
pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
/* Only if mode change...*/
if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
set_SOGO(ctrl);
wait_for_ctrl_irq(ctrl);
mdelay(1100);
/* Restore LED/Slot state */
writel(leds, ctrl->hpc_reg + LED_CONTROL);
writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
set_SOGO(ctrl);
wait_for_ctrl_irq(ctrl);
bus->cur_bus_speed = adapter_speed;
slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
info("Successfully changed frequency/mode for adapter in slot %d\n",
slot->number);
return 0;
}
/* the following routines constitute the bulk of the
* hotplug controller logic
*/
/**
* board_replaced - Called after a board has been replaced in the system.
* @func: PCI device/function information
* @ctrl: hotplug controller
*
* This is only used if we don't have resources for hot add.
* Turns power on for the board.
* Checks to see if board is the same.
* If board is same, reconfigures it.
* If board isn't same, turns it back off.
*/
static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
{
struct pci_bus *bus = ctrl->pci_bus;
u8 hp_slot;
u8 temp_byte;
u8 adapter_speed;
u32 rc = 0;
hp_slot = func->device - ctrl->slot_device_offset;
/*
* The switch is open.
*/
if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
rc = INTERLOCK_OPEN;
/*
* The board is already on
*/
else if (is_slot_enabled(ctrl, hp_slot))
rc = CARD_FUNCTIONING;
else {
mutex_lock(&ctrl->crit_sect);
/* turn on board without attaching to the bus */
enable_slot_power(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
/* Change bits in slot power register to force another shift out
* NOTE: this is to work around the timer bug */
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
adapter_speed = get_adapter_speed(ctrl, hp_slot);
if (bus->cur_bus_speed != adapter_speed)
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
rc = WRONG_BUS_FREQUENCY;
/* turn off board without attaching to the bus */
disable_slot_power(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
if (rc)
return rc;
mutex_lock(&ctrl->crit_sect);
slot_enable(ctrl, hp_slot);
green_LED_blink(ctrl, hp_slot);
amber_LED_off(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
/* Wait for ~1 second because of hot plug spec */
long_delay(1*HZ);
/* Check for a power fault */
if (func->status == 0xFF) {
/* power fault occurred, but it was benign */
rc = POWER_FAILURE;
func->status = 0;
} else
rc = cpqhp_valid_replace(ctrl, func);
if (!rc) {
/* It must be the same board */
rc = cpqhp_configure_board(ctrl, func);
/* If configuration fails, turn it off
* Get slot won't work for devices behind
* bridges, but in this case it will always be
* called for the "base" bus/dev/func of an
* adapter.
*/
mutex_lock(&ctrl->crit_sect);
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
slot_disable(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
if (rc)
return rc;
else
return 1;
} else {
/* Something is wrong
* Get slot won't work for devices behind bridges, but
* in this case it will always be called for the "base"
* bus/dev/func of an adapter.
*/
mutex_lock(&ctrl->crit_sect);
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
slot_disable(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
}
}
return rc;
}
/**
* board_added - Called after a board has been added to the system.
* @func: PCI device/function info
* @ctrl: hotplug controller
*
* Turns power on for the board.
* Configures board.
*/
static u32 board_added(struct pci_func *func, struct controller *ctrl)
{
u8 hp_slot;
u8 temp_byte;
u8 adapter_speed;
int index;
u32 temp_register = 0xFFFFFFFF;
u32 rc = 0;
struct pci_func *new_slot = NULL;
struct pci_bus *bus = ctrl->pci_bus;
struct slot *p_slot;
struct resource_lists res_lists;
hp_slot = func->device - ctrl->slot_device_offset;
dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
__func__, func->device, ctrl->slot_device_offset, hp_slot);
mutex_lock(&ctrl->crit_sect);
/* turn on board without attaching to the bus */
enable_slot_power(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
/* Change bits in slot power register to force another shift out
* NOTE: this is to work around the timer bug
*/
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
adapter_speed = get_adapter_speed(ctrl, hp_slot);
if (bus->cur_bus_speed != adapter_speed)
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
rc = WRONG_BUS_FREQUENCY;
/* turn off board without attaching to the bus */
disable_slot_power(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
if (rc)
return rc;
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
/* turn on board and blink green LED */
dbg("%s: before down\n", __func__);
mutex_lock(&ctrl->crit_sect);
dbg("%s: after down\n", __func__);
dbg("%s: before slot_enable\n", __func__);
slot_enable(ctrl, hp_slot);
dbg("%s: before green_LED_blink\n", __func__);
green_LED_blink(ctrl, hp_slot);
dbg("%s: before amber_LED_blink\n", __func__);
amber_LED_off(ctrl, hp_slot);
dbg("%s: before set_SOGO\n", __func__);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
dbg("%s: before wait_for_ctrl_irq\n", __func__);
wait_for_ctrl_irq(ctrl);
dbg("%s: after wait_for_ctrl_irq\n", __func__);
dbg("%s: before up\n", __func__);
mutex_unlock(&ctrl->crit_sect);
dbg("%s: after up\n", __func__);
/* Wait for ~1 second because of hot plug spec */
dbg("%s: before long_delay\n", __func__);
long_delay(1*HZ);
dbg("%s: after long_delay\n", __func__);
dbg("%s: func status = %x\n", __func__, func->status);
/* Check for a power fault */
if (func->status == 0xFF) {
/* power fault occurred, but it was benign */
temp_register = 0xFFFFFFFF;
dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
rc = POWER_FAILURE;
func->status = 0;
} else {
/* Get vendor/device ID u32 */
ctrl->pci_bus->number = func->bus;
rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
dbg("%s: temp_register is %x\n", __func__, temp_register);
if (rc != 0) {
/* Something's wrong here */
temp_register = 0xFFFFFFFF;
dbg("%s: temp register set to %x by error\n", __func__, temp_register);
}
/* Preset return code. It will be changed later if things go okay. */
rc = NO_ADAPTER_PRESENT;
}
/* All F's is an empty slot or an invalid board */
if (temp_register != 0xFFFFFFFF) {
res_lists.io_head = ctrl->io_head;
res_lists.mem_head = ctrl->mem_head;
res_lists.p_mem_head = ctrl->p_mem_head;
res_lists.bus_head = ctrl->bus_head;
res_lists.irqs = NULL;
rc = configure_new_device(ctrl, func, 0, &res_lists);
dbg("%s: back from configure_new_device\n", __func__);
ctrl->io_head = res_lists.io_head;
ctrl->mem_head = res_lists.mem_head;
ctrl->p_mem_head = res_lists.p_mem_head;
ctrl->bus_head = res_lists.bus_head;
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
if (rc) {
mutex_lock(&ctrl->crit_sect);
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
slot_disable(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
return rc;
} else {
cpqhp_save_slot_config(ctrl, func);
}
func->status = 0;
func->switch_save = 0x10;
func->is_a_board = 0x01;
/* next, we will instantiate the linux pci_dev structures (with
* appropriate driver notification, if already present) */
dbg("%s: configure linux pci_dev structure\n", __func__);
index = 0;
do {
new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
if (new_slot && !new_slot->pci_dev)
cpqhp_configure_device(ctrl, new_slot);
} while (new_slot);
mutex_lock(&ctrl->crit_sect);
green_LED_on(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
} else {
mutex_lock(&ctrl->crit_sect);
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
slot_disable(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
return rc;
}
return 0;
}
/**
* remove_board - Turns off slot and LEDs
* @func: PCI device/function info
* @replace_flag: whether replacing or adding a new device
* @ctrl: target controller
*/
static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
{
int index;
u8 skip = 0;
u8 device;
u8 hp_slot;
u8 temp_byte;
u32 rc;
struct resource_lists res_lists;
struct pci_func *temp_func;
if (cpqhp_unconfigure_device(func))
return 1;
device = func->device;
hp_slot = func->device - ctrl->slot_device_offset;
dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
/* When we get here, it is safe to change base address registers.
* We will attempt to save the base address register lengths */
if (replace_flag || !ctrl->add_support)
rc = cpqhp_save_base_addr_length(ctrl, func);
else if (!func->bus_head && !func->mem_head &&
!func->p_mem_head && !func->io_head) {
/* Here we check to see if we've saved any of the board's
* resources already. If so, we'll skip the attempt to
* determine what's being used. */
index = 0;
temp_func = cpqhp_slot_find(func->bus, func->device, index++);
while (temp_func) {
if (temp_func->bus_head || temp_func->mem_head
|| temp_func->p_mem_head || temp_func->io_head) {
skip = 1;
break;
}
temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
}
if (!skip)
rc = cpqhp_save_used_resources(ctrl, func);
}
/* Change status to shutdown */
if (func->is_a_board)
func->status = 0x01;
func->configured = 0;
mutex_lock(&ctrl->crit_sect);
green_LED_off(ctrl, hp_slot);
slot_disable(ctrl, hp_slot);
set_SOGO(ctrl);
/* turn off SERR for slot */
temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
temp_byte &= ~(0x01 << hp_slot);
writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
if (!replace_flag && ctrl->add_support) {
while (func) {
res_lists.io_head = ctrl->io_head;
res_lists.mem_head = ctrl->mem_head;
res_lists.p_mem_head = ctrl->p_mem_head;
res_lists.bus_head = ctrl->bus_head;
cpqhp_return_board_resources(func, &res_lists);
ctrl->io_head = res_lists.io_head;
ctrl->mem_head = res_lists.mem_head;
ctrl->p_mem_head = res_lists.p_mem_head;
ctrl->bus_head = res_lists.bus_head;
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
if (is_bridge(func)) {
bridge_slot_remove(func);
} else
slot_remove(func);
func = cpqhp_slot_find(ctrl->bus, device, 0);
}
/* Setup slot structure with entry for empty slot */
func = cpqhp_slot_create(ctrl->bus);
if (func == NULL)
return 1;
func->bus = ctrl->bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->switch_save = 0x10;
func->is_a_board = 0;
func->p_task_event = NULL;
}
return 0;
}
static void pushbutton_helper_thread(struct timer_list *t)
{
pushbutton_pending = t;
wake_up_process(cpqhp_event_thread);
}
/* this is the main worker thread */
static int event_thread(void *data)
{
struct controller *ctrl;
while (1) {
dbg("!!!!event_thread sleeping\n");
set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (kthread_should_stop())
break;
/* Do stuff here */
if (pushbutton_pending)
cpqhp_pushbutton_thread(pushbutton_pending);
else
for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
interrupt_event_handler(ctrl);
}
dbg("event_thread signals exit\n");
return 0;
}
int cpqhp_event_start_thread(void)
{
cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
if (IS_ERR(cpqhp_event_thread)) {
err("Can't start up our event thread\n");
return PTR_ERR(cpqhp_event_thread);
}
return 0;
}
void cpqhp_event_stop_thread(void)
{
kthread_stop(cpqhp_event_thread);
}
static void interrupt_event_handler(struct controller *ctrl)
{
int loop = 0;
int change = 1;
struct pci_func *func;
u8 hp_slot;
struct slot *p_slot;
while (change) {
change = 0;
for (loop = 0; loop < 10; loop++) {
/* dbg("loop %d\n", loop); */
if (ctrl->event_queue[loop].event_type != 0) {
hp_slot = ctrl->event_queue[loop].hp_slot;
func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
if (!func)
return;
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
if (!p_slot)
return;
dbg("hp_slot %d, func %p, p_slot %p\n",
hp_slot, func, p_slot);
if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
dbg("button pressed\n");
} else if (ctrl->event_queue[loop].event_type ==
INT_BUTTON_CANCEL) {
dbg("button cancel\n");
del_timer(&p_slot->task_event);
mutex_lock(&ctrl->crit_sect);
if (p_slot->state == BLINKINGOFF_STATE) {
/* slot is on */
dbg("turn on green LED\n");
green_LED_on(ctrl, hp_slot);
} else if (p_slot->state == BLINKINGON_STATE) {
/* slot is off */
dbg("turn off green LED\n");
green_LED_off(ctrl, hp_slot);
}
info(msg_button_cancel, p_slot->number);
p_slot->state = STATIC_STATE;
amber_LED_off(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
}
/*** button Released (No action on press...) */
else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
dbg("button release\n");
if (is_slot_enabled(ctrl, hp_slot)) {
dbg("slot is on\n");
p_slot->state = BLINKINGOFF_STATE;
info(msg_button_off, p_slot->number);
} else {
dbg("slot is off\n");
p_slot->state = BLINKINGON_STATE;
info(msg_button_on, p_slot->number);
}
mutex_lock(&ctrl->crit_sect);
dbg("blink green LED and turn off amber\n");
amber_LED_off(ctrl, hp_slot);
green_LED_blink(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
timer_setup(&p_slot->task_event,
pushbutton_helper_thread,
0);
p_slot->hp_slot = hp_slot;
p_slot->ctrl = ctrl;
/* p_slot->physical_slot = physical_slot; */
p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
dbg("add_timer p_slot = %p\n", p_slot);
add_timer(&p_slot->task_event);
}
/***********POWER FAULT */
else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
dbg("power fault\n");
}
ctrl->event_queue[loop].event_type = 0;
change = 1;
}
} /* End of FOR loop */
}
return;
}
/**
* cpqhp_pushbutton_thread - handle pushbutton events
* @slot: target slot (struct)
*
* Scheduled procedure to handle blocking stuff for the pushbuttons.
* Handles all pending events and exits.
*/
void cpqhp_pushbutton_thread(struct timer_list *t)
{
u8 hp_slot;
u8 device;
struct pci_func *func;
struct slot *p_slot = from_timer(p_slot, t, task_event);
struct controller *ctrl = (struct controller *) p_slot->ctrl;
pushbutton_pending = NULL;
hp_slot = p_slot->hp_slot;
device = p_slot->device;
if (is_slot_enabled(ctrl, hp_slot)) {
p_slot->state = POWEROFF_STATE;
/* power Down board */
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
if (!func) {
dbg("Error! func NULL in %s\n", __func__);
return;
}
if (cpqhp_process_SS(ctrl, func) != 0) {
amber_LED_on(ctrl, hp_slot);
green_LED_on(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
}
p_slot->state = STATIC_STATE;
} else {
p_slot->state = POWERON_STATE;
/* slot is off */
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
if (!func) {
dbg("Error! func NULL in %s\n", __func__);
return;
}
if (ctrl != NULL) {
if (cpqhp_process_SI(ctrl, func) != 0) {
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
}
}
p_slot->state = STATIC_STATE;
}
return;
}
int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
{
u8 device, hp_slot;
u16 temp_word;
u32 tempdword;
int rc;
struct slot *p_slot;
int physical_slot = 0;
tempdword = 0;
device = func->device;
hp_slot = device - ctrl->slot_device_offset;
p_slot = cpqhp_find_slot(ctrl, device);
if (p_slot)
physical_slot = p_slot->number;
/* Check to see if the interlock is closed */
tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
if (tempdword & (0x01 << hp_slot))
return 1;
if (func->is_a_board) {
rc = board_replaced(func, ctrl);
} else {
/* add board */
slot_remove(func);
func = cpqhp_slot_create(ctrl->bus);
if (func == NULL)
return 1;
func->bus = ctrl->bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->is_a_board = 1;
/* We have to save the presence info for these slots */
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
func->switch_save = 0;
} else {
func->switch_save = 0x10;
}
rc = board_added(func, ctrl);
if (rc) {
if (is_bridge(func)) {
bridge_slot_remove(func);
} else
slot_remove(func);
/* Setup slot structure with entry for empty slot */
func = cpqhp_slot_create(ctrl->bus);
if (func == NULL)
return 1;
func->bus = ctrl->bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->is_a_board = 0;
/* We have to save the presence info for these slots */
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |=
(temp_word >> (hp_slot + 7)) & 0x02;
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
func->switch_save = 0;
} else {
func->switch_save = 0x10;
}
}
}
if (rc)
dbg("%s: rc = %d\n", __func__, rc);
return rc;
}
int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
{
u8 device, class_code, header_type, BCR;
u8 index = 0;
u8 replace_flag;
u32 rc = 0;
unsigned int devfn;
struct slot *p_slot;
struct pci_bus *pci_bus = ctrl->pci_bus;
int physical_slot = 0;
device = func->device;
func = cpqhp_slot_find(ctrl->bus, device, index++);
p_slot = cpqhp_find_slot(ctrl, device);
if (p_slot)
physical_slot = p_slot->number;
/* Make sure there are no video controllers here */
while (func && !rc) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check the Class Code */
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
if (rc)
return rc;
if (class_code == PCI_BASE_CLASS_DISPLAY) {
/* Display/Video adapter (not supported) */
rc = REMOVE_NOT_SUPPORTED;
} else {
/* See if it's a bridge */
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
/* If it's a bridge, check the VGA Enable bit */
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
if (rc)
return rc;
/* If the VGA Enable bit is set, remove isn't
* supported */
if (BCR & PCI_BRIDGE_CTL_VGA)
rc = REMOVE_NOT_SUPPORTED;
}
}
func = cpqhp_slot_find(ctrl->bus, device, index++);
}
func = cpqhp_slot_find(ctrl->bus, device, 0);
if ((func != NULL) && !rc) {
/* FIXME: Replace flag should be passed into process_SS */
replace_flag = !(ctrl->add_support);
rc = remove_board(func, replace_flag, ctrl);
} else if (!rc) {
rc = 1;
}
return rc;
}
/**
* switch_leds - switch the leds, go from one site to the other.
* @ctrl: controller to use
* @num_of_slots: number of slots to use
* @work_LED: LED control value
* @direction: 1 to start from the left side, 0 to start right.
*/
static void switch_leds(struct controller *ctrl, const int num_of_slots,
u32 *work_LED, const int direction)
{
int loop;
for (loop = 0; loop < num_of_slots; loop++) {
if (direction)
*work_LED = *work_LED >> 1;
else
*work_LED = *work_LED << 1;
writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
set_SOGO(ctrl);
/* Wait for SOGO interrupt */
wait_for_ctrl_irq(ctrl);
/* Get ready for next iteration */
long_delay((2*HZ)/10);
}
}
/**
* cpqhp_hardware_test - runs hardware tests
* @ctrl: target controller
* @test_num: the number written to the "test" file in sysfs.
*
* For hot plug ctrl folks to play with.
*/
int cpqhp_hardware_test(struct controller *ctrl, int test_num)
{
u32 save_LED;
u32 work_LED;
int loop;
int num_of_slots;
num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
switch (test_num) {
case 1:
/* Do stuff here! */
/* Do that funky LED thing */
/* so we can restore them later */
save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
work_LED = 0x01010101;
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
work_LED = 0x01010000;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
work_LED = 0x00000101;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
work_LED = 0x01010000;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
for (loop = 0; loop < num_of_slots; loop++) {
set_SOGO(ctrl);
/* Wait for SOGO interrupt */
wait_for_ctrl_irq(ctrl);
/* Get ready for next iteration */
long_delay((3*HZ)/10);
work_LED = work_LED >> 16;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
set_SOGO(ctrl);
/* Wait for SOGO interrupt */
wait_for_ctrl_irq(ctrl);
/* Get ready for next iteration */
long_delay((3*HZ)/10);
work_LED = work_LED << 16;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
work_LED = work_LED << 1;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
}
/* put it back the way it was */
writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
break;
case 2:
/* Do other stuff here! */
break;
case 3:
/* and more... */
break;
}
return 0;
}
/**
* configure_new_device - Configures the PCI header information of one board.
* @ctrl: pointer to controller structure
* @func: pointer to function structure
* @behind_bridge: 1 if this is a recursive call, 0 if not
* @resources: pointer to set of resource lists
*
* Returns 0 if success.
*/
static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources)
{
u8 temp_byte, function, max_functions, stop_it;
int rc;
u32 ID;
struct pci_func *new_slot;
int index;
new_slot = func;
dbg("%s\n", __func__);
/* Check for Multi-function device */
ctrl->pci_bus->number = func->bus;
rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
if (rc) {
dbg("%s: rc = %d\n", __func__, rc);
return rc;
}
if (temp_byte & 0x80) /* Multi-function device */
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
if (rc) {
dbg("configure_new_function failed %d\n", rc);
index = 0;
while (new_slot) {
new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
if (new_slot)
cpqhp_return_board_resources(new_slot, resources);
}
return rc;
}
function++;
stop_it = 0;
/* The following loop skips to the next present function
* and creates a board structure */
while ((function < max_functions) && (!stop_it)) {
pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
if (ID == 0xFFFFFFFF) {
function++;
} else {
/* Setup slot structure. */
new_slot = cpqhp_slot_create(func->bus);
if (new_slot == NULL)
return 1;
new_slot->bus = func->bus;
new_slot->device = func->device;
new_slot->function = function;
new_slot->is_a_board = 1;
new_slot->status = 0;
stop_it++;
}
}
} while (function < max_functions);
dbg("returning from configure_new_device\n");
return 0;
}
/*
* Configuration logic that involves the hotplug data structures and
* their bookkeeping
*/
/**
* configure_new_function - Configures the PCI header information of one device
* @ctrl: pointer to controller structure
* @func: pointer to function structure
* @behind_bridge: 1 if this is a recursive call, 0 if not
* @resources: pointer to set of resource lists
*
* Calls itself recursively for bridged devices.
* Returns 0 if success.
*/
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge,
struct resource_lists *resources)
{
int cloop;
u8 IRQ = 0;
u8 temp_byte;
u8 device;
u8 class_code;
u16 command;
u16 temp_word;
u32 temp_dword;
u32 rc;
u32 temp_register;
u32 base;
u32 ID;
unsigned int devfn;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
struct pci_resource *hold_mem_node;
struct pci_resource *hold_p_mem_node;
struct pci_resource *hold_IO_node;
struct pci_resource *hold_bus_node;
struct irq_mapping irqs;
struct pci_func *new_slot;
struct pci_bus *pci_bus;
struct resource_lists temp_resources;
pci_bus = ctrl->pci_bus;
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check for Bridge */
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
if (rc)
return rc;
if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
/* set Primary bus */
dbg("set Primary bus = %d\n", func->bus);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
if (rc)
return rc;
/* find range of buses to use */
dbg("find ranges of buses to use\n");
bus_node = get_max_resource(&(resources->bus_head), 1);
/* If we don't have any buses to allocate, we can't continue */
if (!bus_node)
return -ENOMEM;
/* set Secondary bus */
temp_byte = bus_node->base;
dbg("set Secondary bus = %d\n", bus_node->base);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
if (rc)
return rc;
/* set subordinate bus */
temp_byte = bus_node->base + bus_node->length - 1;
dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
if (rc)
return rc;
/* set subordinate Latency Timer and base Latency Timer */
temp_byte = 0x40;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
if (rc)
return rc;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
if (rc)
return rc;
/* set Cache Line size */
temp_byte = 0x08;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
if (rc)
return rc;
/* Setup the IO, memory, and prefetchable windows */
io_node = get_max_resource(&(resources->io_head), 0x1000);
if (!io_node)
return -ENOMEM;
mem_node = get_max_resource(&(resources->mem_head), 0x100000);
if (!mem_node)
return -ENOMEM;
p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
if (!p_mem_node)
return -ENOMEM;
dbg("Setup the IO, memory, and prefetchable windows\n");
dbg("io_node\n");
dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
io_node->length, io_node->next);
dbg("mem_node\n");
dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
mem_node->length, mem_node->next);
dbg("p_mem_node\n");
dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
p_mem_node->length, p_mem_node->next);
/* set up the IRQ info */
if (!resources->irqs) {
irqs.barber_pole = 0;
irqs.interrupt[0] = 0;
irqs.interrupt[1] = 0;
irqs.interrupt[2] = 0;
irqs.interrupt[3] = 0;
irqs.valid_INT = 0;
} else {
irqs.barber_pole = resources->irqs->barber_pole;
irqs.interrupt[0] = resources->irqs->interrupt[0];
irqs.interrupt[1] = resources->irqs->interrupt[1];
irqs.interrupt[2] = resources->irqs->interrupt[2];
irqs.interrupt[3] = resources->irqs->interrupt[3];
irqs.valid_INT = resources->irqs->valid_INT;
}
/* set up resource lists that are now aligned on top and bottom
* for anything behind the bridge. */
temp_resources.bus_head = bus_node;
temp_resources.io_head = io_node;
temp_resources.mem_head = mem_node;
temp_resources.p_mem_head = p_mem_node;
temp_resources.irqs = &irqs;
/* Make copies of the nodes we are going to pass down so that
* if there is a problem,we can just use these to free resources
*/
hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
kfree(hold_bus_node);
kfree(hold_IO_node);
kfree(hold_mem_node);
kfree(hold_p_mem_node);
return 1;
}
memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
bus_node->base += 1;
bus_node->length -= 1;
bus_node->next = NULL;
/* If we have IO resources copy them and fill in the bridge's
* IO range registers */
memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
io_node->next = NULL;
/* set IO base and Limit registers */
temp_byte = io_node->base >> 8;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
temp_byte = (io_node->base + io_node->length - 1) >> 8;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
/* Copy the memory resources and fill in the bridge's memory
* range registers.
*/
memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
mem_node->next = NULL;
/* set Mem base and Limit registers */
temp_word = mem_node->base >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
temp_word = (mem_node->base + mem_node->length - 1) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
p_mem_node->next = NULL;
/* set Pre Mem base and Limit registers */
temp_word = p_mem_node->base >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
/* Adjust this to compensate for extra adjustment in first loop
*/
irqs.barber_pole--;
rc = 0;
/* Here we actually find the devices and configure them */
for (device = 0; (device <= 0x1F) && !rc; device++) {
irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
ID = 0xFFFFFFFF;
pci_bus->number = hold_bus_node->base;
pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
pci_bus->number = func->bus;
if (ID != 0xFFFFFFFF) { /* device present */
/* Setup slot structure. */
new_slot = cpqhp_slot_create(hold_bus_node->base);
if (new_slot == NULL) {
rc = -ENOMEM;
continue;
}
new_slot->bus = hold_bus_node->base;
new_slot->device = device;
new_slot->function = 0;
new_slot->is_a_board = 1;
new_slot->status = 0;
rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
dbg("configure_new_device rc=0x%x\n", rc);
} /* End of IF (device in slot?) */
} /* End of FOR loop */
if (rc)
goto free_and_out;
/* save the interrupt routing information */
if (resources->irqs) {
resources->irqs->interrupt[0] = irqs.interrupt[0];
resources->irqs->interrupt[1] = irqs.interrupt[1];
resources->irqs->interrupt[2] = irqs.interrupt[2];
resources->irqs->interrupt[3] = irqs.interrupt[3];
resources->irqs->valid_INT = irqs.valid_INT;
} else if (!behind_bridge) {
/* We need to hook up the interrupts here */
for (cloop = 0; cloop < 4; cloop++) {
if (irqs.valid_INT & (0x01 << cloop)) {
rc = cpqhp_set_irq(func->bus, func->device,
cloop + 1, irqs.interrupt[cloop]);
if (rc)
goto free_and_out;
}
} /* end of for loop */
}
/* Return unused bus resources
* First use the temporary node to store information for
* the board */
if (bus_node && temp_resources.bus_head) {
hold_bus_node->length = bus_node->base - hold_bus_node->base;
hold_bus_node->next = func->bus_head;
func->bus_head = hold_bus_node;
temp_byte = temp_resources.bus_head->base - 1;
/* set subordinate bus */
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
if (temp_resources.bus_head->length == 0) {
kfree(temp_resources.bus_head);
temp_resources.bus_head = NULL;
} else {
return_resource(&(resources->bus_head), temp_resources.bus_head);
}
}
/* If we have IO space available and there is some left,
* return the unused portion */
if (hold_IO_node && temp_resources.io_head) {
io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
&hold_IO_node, 0x1000);
/* Check if we were able to split something off */
if (io_node) {
hold_IO_node->base = io_node->base + io_node->length;
temp_byte = (hold_IO_node->base) >> 8;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
return_resource(&(resources->io_head), io_node);
}
io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
/* Check if we were able to split something off */
if (io_node) {
/* First use the temporary node to store
* information for the board */
hold_IO_node->length = io_node->base - hold_IO_node->base;
/* If we used any, add it to the board's list */
if (hold_IO_node->length) {
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
temp_byte = (io_node->base - 1) >> 8;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
return_resource(&(resources->io_head), io_node);
} else {
/* it doesn't need any IO */
temp_word = 0x0000;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
return_resource(&(resources->io_head), io_node);
kfree(hold_IO_node);
}
} else {
/* it used most of the range */
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
}
} else if (hold_IO_node) {
/* it used the whole range */
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
}
/* If we have memory space available and there is some left,
* return the unused portion */
if (hold_mem_node && temp_resources.mem_head) {
mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
&hold_mem_node, 0x100000);
/* Check if we were able to split something off */
if (mem_node) {
hold_mem_node->base = mem_node->base + mem_node->length;
temp_word = (hold_mem_node->base) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
return_resource(&(resources->mem_head), mem_node);
}
mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
/* Check if we were able to split something off */
if (mem_node) {
/* First use the temporary node to store
* information for the board */
hold_mem_node->length = mem_node->base - hold_mem_node->base;
if (hold_mem_node->length) {
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
/* configure end address */
temp_word = (mem_node->base - 1) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
/* Return unused resources to the pool */
return_resource(&(resources->mem_head), mem_node);
} else {
/* it doesn't need any Mem */
temp_word = 0x0000;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
return_resource(&(resources->mem_head), mem_node);
kfree(hold_mem_node);
}
} else {
/* it used most of the range */
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
}
} else if (hold_mem_node) {
/* it used the whole range */
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
}
/* If we have prefetchable memory space available and there
* is some left at the end, return the unused portion */
if (temp_resources.p_mem_head) {
p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
&hold_p_mem_node, 0x100000);
/* Check if we were able to split something off */
if (p_mem_node) {
hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
temp_word = (hold_p_mem_node->base) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
}
p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
/* Check if we were able to split something off */
if (p_mem_node) {
/* First use the temporary node to store
* information for the board */
hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
/* If we used any, add it to the board's list */
if (hold_p_mem_node->length) {
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
temp_word = (p_mem_node->base - 1) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
} else {
/* it doesn't need any PMem */
temp_word = 0x0000;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
kfree(hold_p_mem_node);
}
} else {
/* it used the most of the range */
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
}
} else if (hold_p_mem_node) {
/* it used the whole range */
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
}
/* We should be configuring an IRQ and the bridge's base address
* registers if it needs them. Although we have never seen such
* a device */
/* enable card */
command = 0x0157; /* = PCI_COMMAND_IO |
* PCI_COMMAND_MEMORY |
* PCI_COMMAND_MASTER |
* PCI_COMMAND_INVALIDATE |
* PCI_COMMAND_PARITY |
* PCI_COMMAND_SERR */
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
/* set Bridge Control Register */
command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
* PCI_BRIDGE_CTL_SERR |
* PCI_BRIDGE_CTL_NO_ISA */
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
/* Standard device */
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
if (class_code == PCI_BASE_CLASS_DISPLAY) {
/* Display (video) adapter (not supported) */
return DEVICE_TYPE_NOT_SUPPORTED;
}
/* Figure out IO and memory needs */
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
temp_register = 0xFFFFFFFF;
dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
dbg("CND: base = 0x%x\n", temp_register);
if (temp_register) { /* If this register is implemented */
if ((temp_register & 0x03L) == 0x01) {
/* Map IO */
/* set base = amount of IO space */
base = temp_register & 0xFFFFFFFC;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
io_node = get_io_resource(&(resources->io_head), base);
if (!io_node)
return -ENOMEM;
dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
io_node->base, io_node->length, io_node->next);
dbg("func (%p) io_head (%p)\n", func, func->io_head);
/* allocate the resource to the board */
base = io_node->base;
io_node->next = func->io_head;
func->io_head = io_node;
} else if ((temp_register & 0x0BL) == 0x08) {
/* Map prefetchable memory */
base = temp_register & 0xFFFFFFF0;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
p_mem_node = get_resource(&(resources->p_mem_head), base);
/* allocate the resource to the board */
if (p_mem_node) {
base = p_mem_node->base;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else
return -ENOMEM;
} else if ((temp_register & 0x0BL) == 0x00) {
/* Map memory */
base = temp_register & 0xFFFFFFF0;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
mem_node = get_resource(&(resources->mem_head), base);
/* allocate the resource to the board */
if (mem_node) {
base = mem_node->base;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return -ENOMEM;
} else {
/* Reserved bits or requesting space below 1M */
return NOT_ENOUGH_RESOURCES;
}
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
/* Check for 64-bit base */
if ((temp_register & 0x07L) == 0x04) {
cloop += 4;
/* Upper 32 bits of address always zero
* on today's systems */
/* FIXME this is probably not true on
* Alpha and ia64??? */
base = 0;
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
}
}
} /* End of base register loop */
if (cpqhp_legacy_mode) {
/* Figure out which interrupt pin this function uses */
rc = pci_bus_read_config_byte(pci_bus, devfn,
PCI_INTERRUPT_PIN, &temp_byte);
/* If this function needs an interrupt and we are behind
* a bridge and the pin is tied to something that's
* already mapped, set this one the same */
if (temp_byte && resources->irqs &&
(resources->irqs->valid_INT &
(0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
/* We have to share with something already set up */
IRQ = resources->irqs->interrupt[(temp_byte +
resources->irqs->barber_pole - 1) & 0x03];
} else {
/* Program IRQ based on card type */
rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
if (class_code == PCI_BASE_CLASS_STORAGE)
IRQ = cpqhp_disk_irq;
else
IRQ = cpqhp_nic_irq;
}
/* IRQ Line */
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
}
if (!behind_bridge) {
rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
if (rc)
return 1;
} else {
/* TBD - this code may also belong in the other clause
* of this If statement */
resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
}
/* Latency Timer */
temp_byte = 0x40;
rc = pci_bus_write_config_byte(pci_bus, devfn,
PCI_LATENCY_TIMER, temp_byte);
/* Cache Line size */
temp_byte = 0x08;
rc = pci_bus_write_config_byte(pci_bus, devfn,
PCI_CACHE_LINE_SIZE, temp_byte);
/* disable ROM base Address */
temp_dword = 0x00L;
rc = pci_bus_write_config_word(pci_bus, devfn,
PCI_ROM_ADDRESS, temp_dword);
/* enable card */
temp_word = 0x0157; /* = PCI_COMMAND_IO |
* PCI_COMMAND_MEMORY |
* PCI_COMMAND_MASTER |
* PCI_COMMAND_INVALIDATE |
* PCI_COMMAND_PARITY |
* PCI_COMMAND_SERR */
rc = pci_bus_write_config_word(pci_bus, devfn,
PCI_COMMAND, temp_word);
} else { /* End of Not-A-Bridge else */
/* It's some strange type of PCI adapter (Cardbus?) */
return DEVICE_TYPE_NOT_SUPPORTED;
}
func->configured = 1;
return 0;
free_and_out:
cpqhp_destroy_resource_list(&temp_resources);
return_resource(&(resources->bus_head), hold_bus_node);
return_resource(&(resources->io_head), hold_IO_node);
return_resource(&(resources->mem_head), hold_mem_node);
return_resource(&(resources->p_mem_head), hold_p_mem_node);
return rc;
}