OpenCloudOS-Kernel/drivers/net/ethernet/freescale/enetc/enetc_pf.c

1106 lines
27 KiB
C
Raw Normal View History

enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/* Copyright 2017-2019 NXP */
#include <linux/mdio.h>
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
#include <linux/module.h>
#include <linux/fsl/enetc_mdio.h>
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include "enetc_pf.h"
#define ENETC_DRV_NAME_STR "ENETC PF driver"
static void enetc_pf_get_primary_mac_addr(struct enetc_hw *hw, int si, u8 *addr)
{
u32 upper = __raw_readl(hw->port + ENETC_PSIPMAR0(si));
u16 lower = __raw_readw(hw->port + ENETC_PSIPMAR1(si));
*(u32 *)addr = upper;
*(u16 *)(addr + 4) = lower;
}
static void enetc_pf_set_primary_mac_addr(struct enetc_hw *hw, int si,
const u8 *addr)
{
u32 upper = *(const u32 *)addr;
u16 lower = *(const u16 *)(addr + 4);
__raw_writel(upper, hw->port + ENETC_PSIPMAR0(si));
__raw_writew(lower, hw->port + ENETC_PSIPMAR1(si));
}
static int enetc_pf_set_mac_addr(struct net_device *ndev, void *addr)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct sockaddr *saddr = addr;
if (!is_valid_ether_addr(saddr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, saddr->sa_data, ndev->addr_len);
enetc_pf_set_primary_mac_addr(&priv->si->hw, 0, saddr->sa_data);
return 0;
}
static void enetc_set_vlan_promisc(struct enetc_hw *hw, char si_map)
{
u32 val = enetc_port_rd(hw, ENETC_PSIPVMR);
val &= ~ENETC_PSIPVMR_SET_VP(ENETC_VLAN_PROMISC_MAP_ALL);
enetc_port_wr(hw, ENETC_PSIPVMR, ENETC_PSIPVMR_SET_VP(si_map) | val);
}
static void enetc_enable_si_vlan_promisc(struct enetc_pf *pf, int si_idx)
{
pf->vlan_promisc_simap |= BIT(si_idx);
enetc_set_vlan_promisc(&pf->si->hw, pf->vlan_promisc_simap);
}
static void enetc_disable_si_vlan_promisc(struct enetc_pf *pf, int si_idx)
{
pf->vlan_promisc_simap &= ~BIT(si_idx);
enetc_set_vlan_promisc(&pf->si->hw, pf->vlan_promisc_simap);
}
static void enetc_set_isol_vlan(struct enetc_hw *hw, int si, u16 vlan, u8 qos)
{
u32 val = 0;
if (vlan)
val = ENETC_PSIVLAN_EN | ENETC_PSIVLAN_SET_QOS(qos) | vlan;
enetc_port_wr(hw, ENETC_PSIVLANR(si), val);
}
static int enetc_mac_addr_hash_idx(const u8 *addr)
{
u64 fold = __swab64(ether_addr_to_u64(addr)) >> 16;
u64 mask = 0;
int res = 0;
int i;
for (i = 0; i < 8; i++)
mask |= BIT_ULL(i * 6);
for (i = 0; i < 6; i++)
res |= (hweight64(fold & (mask << i)) & 0x1) << i;
return res;
}
static void enetc_reset_mac_addr_filter(struct enetc_mac_filter *filter)
{
filter->mac_addr_cnt = 0;
bitmap_zero(filter->mac_hash_table,
ENETC_MADDR_HASH_TBL_SZ);
}
static void enetc_add_mac_addr_em_filter(struct enetc_mac_filter *filter,
const unsigned char *addr)
{
/* add exact match addr */
ether_addr_copy(filter->mac_addr, addr);
filter->mac_addr_cnt++;
}
static void enetc_add_mac_addr_ht_filter(struct enetc_mac_filter *filter,
const unsigned char *addr)
{
int idx = enetc_mac_addr_hash_idx(addr);
/* add hash table entry */
__set_bit(idx, filter->mac_hash_table);
filter->mac_addr_cnt++;
}
static void enetc_clear_mac_ht_flt(struct enetc_si *si, int si_idx, int type)
{
bool err = si->errata & ENETC_ERR_UCMCSWP;
if (type == UC) {
enetc_port_wr(&si->hw, ENETC_PSIUMHFR0(si_idx, err), 0);
enetc_port_wr(&si->hw, ENETC_PSIUMHFR1(si_idx), 0);
} else { /* MC */
enetc_port_wr(&si->hw, ENETC_PSIMMHFR0(si_idx, err), 0);
enetc_port_wr(&si->hw, ENETC_PSIMMHFR1(si_idx), 0);
}
}
static void enetc_set_mac_ht_flt(struct enetc_si *si, int si_idx, int type,
u32 *hash)
{
bool err = si->errata & ENETC_ERR_UCMCSWP;
if (type == UC) {
enetc_port_wr(&si->hw, ENETC_PSIUMHFR0(si_idx, err), *hash);
enetc_port_wr(&si->hw, ENETC_PSIUMHFR1(si_idx), *(hash + 1));
} else { /* MC */
enetc_port_wr(&si->hw, ENETC_PSIMMHFR0(si_idx, err), *hash);
enetc_port_wr(&si->hw, ENETC_PSIMMHFR1(si_idx), *(hash + 1));
}
}
static void enetc_sync_mac_filters(struct enetc_pf *pf)
{
struct enetc_mac_filter *f = pf->mac_filter;
struct enetc_si *si = pf->si;
int i, pos;
pos = EMETC_MAC_ADDR_FILT_RES;
for (i = 0; i < MADDR_TYPE; i++, f++) {
bool em = (f->mac_addr_cnt == 1) && (i == UC);
bool clear = !f->mac_addr_cnt;
if (clear) {
if (i == UC)
enetc_clear_mac_flt_entry(si, pos);
enetc_clear_mac_ht_flt(si, 0, i);
continue;
}
/* exact match filter */
if (em) {
int err;
enetc_clear_mac_ht_flt(si, 0, UC);
err = enetc_set_mac_flt_entry(si, pos, f->mac_addr,
BIT(0));
if (!err)
continue;
/* fallback to HT filtering */
dev_warn(&si->pdev->dev, "fallback to HT filt (%d)\n",
err);
}
/* hash table filter, clear EM filter for UC entries */
if (i == UC)
enetc_clear_mac_flt_entry(si, pos);
enetc_set_mac_ht_flt(si, 0, i, (u32 *)f->mac_hash_table);
}
}
static void enetc_pf_set_rx_mode(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_pf *pf = enetc_si_priv(priv->si);
enetc: permit configuration of rx-vlan-filter with ethtool Each ENETC station interface (SI) has a VLAN filter list and a port flag (PSIPVMR) by which it can be put in "VLAN promiscuous" mode, which enables the reception of VLAN-tagged traffic even if it is not in the VLAN filtering list. Currently the handling of this setting works like this: the port starts off as VLAN promiscuous, then it switches to enabling VLAN filtering as soon as the first VLAN is installed in its filter via .ndo_vlan_rx_add_vid. In practice that does not work out very well, because more often than not, the first VLAN to be installed is out of the control of the user: the 8021q module, if loaded, adds its rule for 802.1p (VID 0) traffic upon bringing the interface up. What the user is currently seeing in ethtool is this: ethtool -k eno2 rx-vlan-filter: on [fixed] which doesn't match the intention of the code, but the practical reality of having the 8021q module install its VID which has the side-effect of turning on VLAN filtering in this driver. All in all, a slightly confusing experience. So instead of letting this driver switch the VLAN filtering state by itself, just wire it up with the rx-vlan-filter feature from ethtool, and let it be user-configurable just through that knob, except for one case, see below. In promiscuous mode, it is more intuitive that all traffic is received, including VLAN tagged traffic. It appears that it is necessary to set the flag in PSIPVMR for that to be the case, so VLAN promiscuous mode is also temporarily enabled. On exit from promiscuous mode, the setting made by ethtool is restored. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18 03:07:55 +08:00
char vlan_promisc_simap = pf->vlan_promisc_simap;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
struct enetc_hw *hw = &priv->si->hw;
bool uprom = false, mprom = false;
struct enetc_mac_filter *filter;
struct netdev_hw_addr *ha;
u32 psipmr = 0;
bool em;
if (ndev->flags & IFF_PROMISC) {
/* enable promisc mode for SI0 (PF) */
psipmr = ENETC_PSIPMR_SET_UP(0) | ENETC_PSIPMR_SET_MP(0);
uprom = true;
mprom = true;
enetc: permit configuration of rx-vlan-filter with ethtool Each ENETC station interface (SI) has a VLAN filter list and a port flag (PSIPVMR) by which it can be put in "VLAN promiscuous" mode, which enables the reception of VLAN-tagged traffic even if it is not in the VLAN filtering list. Currently the handling of this setting works like this: the port starts off as VLAN promiscuous, then it switches to enabling VLAN filtering as soon as the first VLAN is installed in its filter via .ndo_vlan_rx_add_vid. In practice that does not work out very well, because more often than not, the first VLAN to be installed is out of the control of the user: the 8021q module, if loaded, adds its rule for 802.1p (VID 0) traffic upon bringing the interface up. What the user is currently seeing in ethtool is this: ethtool -k eno2 rx-vlan-filter: on [fixed] which doesn't match the intention of the code, but the practical reality of having the 8021q module install its VID which has the side-effect of turning on VLAN filtering in this driver. All in all, a slightly confusing experience. So instead of letting this driver switch the VLAN filtering state by itself, just wire it up with the rx-vlan-filter feature from ethtool, and let it be user-configurable just through that knob, except for one case, see below. In promiscuous mode, it is more intuitive that all traffic is received, including VLAN tagged traffic. It appears that it is necessary to set the flag in PSIPVMR for that to be the case, so VLAN promiscuous mode is also temporarily enabled. On exit from promiscuous mode, the setting made by ethtool is restored. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18 03:07:55 +08:00
/* Enable VLAN promiscuous mode for SI0 (PF) */
vlan_promisc_simap |= BIT(0);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
} else if (ndev->flags & IFF_ALLMULTI) {
/* enable multi cast promisc mode for SI0 (PF) */
psipmr = ENETC_PSIPMR_SET_MP(0);
mprom = true;
}
enetc: permit configuration of rx-vlan-filter with ethtool Each ENETC station interface (SI) has a VLAN filter list and a port flag (PSIPVMR) by which it can be put in "VLAN promiscuous" mode, which enables the reception of VLAN-tagged traffic even if it is not in the VLAN filtering list. Currently the handling of this setting works like this: the port starts off as VLAN promiscuous, then it switches to enabling VLAN filtering as soon as the first VLAN is installed in its filter via .ndo_vlan_rx_add_vid. In practice that does not work out very well, because more often than not, the first VLAN to be installed is out of the control of the user: the 8021q module, if loaded, adds its rule for 802.1p (VID 0) traffic upon bringing the interface up. What the user is currently seeing in ethtool is this: ethtool -k eno2 rx-vlan-filter: on [fixed] which doesn't match the intention of the code, but the practical reality of having the 8021q module install its VID which has the side-effect of turning on VLAN filtering in this driver. All in all, a slightly confusing experience. So instead of letting this driver switch the VLAN filtering state by itself, just wire it up with the rx-vlan-filter feature from ethtool, and let it be user-configurable just through that knob, except for one case, see below. In promiscuous mode, it is more intuitive that all traffic is received, including VLAN tagged traffic. It appears that it is necessary to set the flag in PSIPVMR for that to be the case, so VLAN promiscuous mode is also temporarily enabled. On exit from promiscuous mode, the setting made by ethtool is restored. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18 03:07:55 +08:00
enetc_set_vlan_promisc(&pf->si->hw, vlan_promisc_simap);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
/* first 2 filter entries belong to PF */
if (!uprom) {
/* Update unicast filters */
filter = &pf->mac_filter[UC];
enetc_reset_mac_addr_filter(filter);
em = (netdev_uc_count(ndev) == 1);
netdev_for_each_uc_addr(ha, ndev) {
if (em) {
enetc_add_mac_addr_em_filter(filter, ha->addr);
break;
}
enetc_add_mac_addr_ht_filter(filter, ha->addr);
}
}
if (!mprom) {
/* Update multicast filters */
filter = &pf->mac_filter[MC];
enetc_reset_mac_addr_filter(filter);
netdev_for_each_mc_addr(ha, ndev) {
if (!is_multicast_ether_addr(ha->addr))
continue;
enetc_add_mac_addr_ht_filter(filter, ha->addr);
}
}
if (!uprom || !mprom)
/* update PF entries */
enetc_sync_mac_filters(pf);
psipmr |= enetc_port_rd(hw, ENETC_PSIPMR) &
~(ENETC_PSIPMR_SET_UP(0) | ENETC_PSIPMR_SET_MP(0));
enetc_port_wr(hw, ENETC_PSIPMR, psipmr);
}
static void enetc_set_vlan_ht_filter(struct enetc_hw *hw, int si_idx,
u32 *hash)
{
enetc_port_wr(hw, ENETC_PSIVHFR0(si_idx), *hash);
enetc_port_wr(hw, ENETC_PSIVHFR1(si_idx), *(hash + 1));
}
static int enetc_vid_hash_idx(unsigned int vid)
{
int res = 0;
int i;
for (i = 0; i < 6; i++)
res |= (hweight8(vid & (BIT(i) | BIT(i + 6))) & 0x1) << i;
return res;
}
static void enetc_sync_vlan_ht_filter(struct enetc_pf *pf, bool rehash)
{
int i;
if (rehash) {
bitmap_zero(pf->vlan_ht_filter, ENETC_VLAN_HT_SIZE);
for_each_set_bit(i, pf->active_vlans, VLAN_N_VID) {
int hidx = enetc_vid_hash_idx(i);
__set_bit(hidx, pf->vlan_ht_filter);
}
}
enetc_set_vlan_ht_filter(&pf->si->hw, 0, (u32 *)pf->vlan_ht_filter);
}
static int enetc_vlan_rx_add_vid(struct net_device *ndev, __be16 prot, u16 vid)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_pf *pf = enetc_si_priv(priv->si);
int idx;
__set_bit(vid, pf->active_vlans);
idx = enetc_vid_hash_idx(vid);
if (!__test_and_set_bit(idx, pf->vlan_ht_filter))
enetc_sync_vlan_ht_filter(pf, false);
return 0;
}
static int enetc_vlan_rx_del_vid(struct net_device *ndev, __be16 prot, u16 vid)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_pf *pf = enetc_si_priv(priv->si);
__clear_bit(vid, pf->active_vlans);
enetc_sync_vlan_ht_filter(pf, true);
return 0;
}
static void enetc_set_loopback(struct net_device *ndev, bool en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_hw *hw = &priv->si->hw;
u32 reg;
reg = enetc_port_rd(hw, ENETC_PM0_IF_MODE);
if (reg & ENETC_PMO_IFM_RG) {
/* RGMII mode */
reg = (reg & ~ENETC_PM0_IFM_RLP) |
(en ? ENETC_PM0_IFM_RLP : 0);
enetc_port_wr(hw, ENETC_PM0_IF_MODE, reg);
} else {
/* assume SGMII mode */
reg = enetc_port_rd(hw, ENETC_PM0_CMD_CFG);
reg = (reg & ~ENETC_PM0_CMD_XGLP) |
(en ? ENETC_PM0_CMD_XGLP : 0);
reg = (reg & ~ENETC_PM0_CMD_PHY_TX_EN) |
(en ? ENETC_PM0_CMD_PHY_TX_EN : 0);
enetc_port_wr(hw, ENETC_PM0_CMD_CFG, reg);
enetc_port_wr(hw, ENETC_PM1_CMD_CFG, reg);
}
}
static int enetc_pf_set_vf_mac(struct net_device *ndev, int vf, u8 *mac)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_pf *pf = enetc_si_priv(priv->si);
struct enetc_vf_state *vf_state;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (vf >= pf->total_vfs)
return -EINVAL;
if (!is_valid_ether_addr(mac))
return -EADDRNOTAVAIL;
vf_state = &pf->vf_state[vf];
vf_state->flags |= ENETC_VF_FLAG_PF_SET_MAC;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_pf_set_primary_mac_addr(&priv->si->hw, vf + 1, mac);
return 0;
}
static int enetc_pf_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan,
u8 qos, __be16 proto)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_pf *pf = enetc_si_priv(priv->si);
if (priv->si->errata & ENETC_ERR_VLAN_ISOL)
return -EOPNOTSUPP;
if (vf >= pf->total_vfs)
return -EINVAL;
if (proto != htons(ETH_P_8021Q))
/* only C-tags supported for now */
return -EPROTONOSUPPORT;
enetc_set_isol_vlan(&priv->si->hw, vf + 1, vlan, qos);
return 0;
}
static int enetc_pf_set_vf_spoofchk(struct net_device *ndev, int vf, bool en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_pf *pf = enetc_si_priv(priv->si);
u32 cfgr;
if (vf >= pf->total_vfs)
return -EINVAL;
cfgr = enetc_port_rd(&priv->si->hw, ENETC_PSICFGR0(vf + 1));
cfgr = (cfgr & ~ENETC_PSICFGR0_ASE) | (en ? ENETC_PSICFGR0_ASE : 0);
enetc_port_wr(&priv->si->hw, ENETC_PSICFGR0(vf + 1), cfgr);
return 0;
}
static void enetc_port_setup_primary_mac_address(struct enetc_si *si)
{
unsigned char mac_addr[MAX_ADDR_LEN];
struct enetc_pf *pf = enetc_si_priv(si);
struct enetc_hw *hw = &si->hw;
int i;
/* check MAC addresses for PF and all VFs, if any is 0 set it ro rand */
for (i = 0; i < pf->total_vfs + 1; i++) {
enetc_pf_get_primary_mac_addr(hw, i, mac_addr);
if (!is_zero_ether_addr(mac_addr))
continue;
eth_random_addr(mac_addr);
dev_info(&si->pdev->dev, "no MAC address specified for SI%d, using %pM\n",
i, mac_addr);
enetc_pf_set_primary_mac_addr(hw, i, mac_addr);
}
}
static void enetc_port_assign_rfs_entries(struct enetc_si *si)
{
struct enetc_pf *pf = enetc_si_priv(si);
struct enetc_hw *hw = &si->hw;
int num_entries, vf_entries, i;
u32 val;
/* split RFS entries between functions */
val = enetc_port_rd(hw, ENETC_PRFSCAPR);
num_entries = ENETC_PRFSCAPR_GET_NUM_RFS(val);
vf_entries = num_entries / (pf->total_vfs + 1);
for (i = 0; i < pf->total_vfs; i++)
enetc_port_wr(hw, ENETC_PSIRFSCFGR(i + 1), vf_entries);
enetc_port_wr(hw, ENETC_PSIRFSCFGR(0),
num_entries - vf_entries * pf->total_vfs);
/* enable RFS on port */
enetc_port_wr(hw, ENETC_PRFSMR, ENETC_PRFSMR_RFSE);
}
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
static void enetc_port_si_configure(struct enetc_si *si)
{
struct enetc_pf *pf = enetc_si_priv(si);
struct enetc_hw *hw = &si->hw;
int num_rings, i;
u32 val;
val = enetc_port_rd(hw, ENETC_PCAPR0);
num_rings = min(ENETC_PCAPR0_RXBDR(val), ENETC_PCAPR0_TXBDR(val));
val = ENETC_PSICFGR0_SET_TXBDR(ENETC_PF_NUM_RINGS);
val |= ENETC_PSICFGR0_SET_RXBDR(ENETC_PF_NUM_RINGS);
if (unlikely(num_rings < ENETC_PF_NUM_RINGS)) {
val = ENETC_PSICFGR0_SET_TXBDR(num_rings);
val |= ENETC_PSICFGR0_SET_RXBDR(num_rings);
dev_warn(&si->pdev->dev, "Found %d rings, expected %d!\n",
num_rings, ENETC_PF_NUM_RINGS);
num_rings = 0;
}
/* Add default one-time settings for SI0 (PF) */
val |= ENETC_PSICFGR0_SIVC(ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S);
enetc_port_wr(hw, ENETC_PSICFGR0(0), val);
if (num_rings)
num_rings -= ENETC_PF_NUM_RINGS;
/* Configure the SIs for each available VF */
val = ENETC_PSICFGR0_SIVC(ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S);
val |= ENETC_PSICFGR0_VTE | ENETC_PSICFGR0_SIVIE;
if (num_rings) {
num_rings /= pf->total_vfs;
val |= ENETC_PSICFGR0_SET_TXBDR(num_rings);
val |= ENETC_PSICFGR0_SET_RXBDR(num_rings);
}
for (i = 0; i < pf->total_vfs; i++)
enetc_port_wr(hw, ENETC_PSICFGR0(i + 1), val);
/* Port level VLAN settings */
val = ENETC_PVCLCTR_OVTPIDL(ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S);
enetc_port_wr(hw, ENETC_PVCLCTR, val);
/* use outer tag for VLAN filtering */
enetc_port_wr(hw, ENETC_PSIVLANFMR, ENETC_PSIVLANFMR_VS);
}
static void enetc_configure_port_mac(struct enetc_hw *hw,
phy_interface_t phy_mode)
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
{
enetc_port_wr(hw, ENETC_PM0_MAXFRM,
ENETC_SET_MAXFRM(ENETC_RX_MAXFRM_SIZE));
enetc_port_wr(hw, ENETC_PTCMSDUR(0), ENETC_MAC_MAXFRM_SIZE);
enetc_port_wr(hw, ENETC_PTXMBAR, 2 * ENETC_MAC_MAXFRM_SIZE);
enetc_port_wr(hw, ENETC_PM0_CMD_CFG, ENETC_PM0_CMD_PHY_TX_EN |
ENETC_PM0_CMD_TXP | ENETC_PM0_PROMISC |
ENETC_PM0_TX_EN | ENETC_PM0_RX_EN);
enetc_port_wr(hw, ENETC_PM1_CMD_CFG, ENETC_PM0_CMD_PHY_TX_EN |
ENETC_PM0_CMD_TXP | ENETC_PM0_PROMISC |
ENETC_PM0_TX_EN | ENETC_PM0_RX_EN);
/* set auto-speed for RGMII */
if (enetc_port_rd(hw, ENETC_PM0_IF_MODE) & ENETC_PMO_IFM_RG ||
phy_interface_mode_is_rgmii(phy_mode))
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_port_wr(hw, ENETC_PM0_IF_MODE, ENETC_PM0_IFM_RGAUTO);
if (phy_mode == PHY_INTERFACE_MODE_USXGMII)
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_port_wr(hw, ENETC_PM0_IF_MODE, ENETC_PM0_IFM_XGMII);
}
static void enetc_configure_port_pmac(struct enetc_hw *hw)
{
u32 temp;
/* Set pMAC step lock */
temp = enetc_port_rd(hw, ENETC_PFPMR);
enetc_port_wr(hw, ENETC_PFPMR,
temp | ENETC_PFPMR_PMACE | ENETC_PFPMR_MWLM);
temp = enetc_port_rd(hw, ENETC_MMCSR);
enetc_port_wr(hw, ENETC_MMCSR, temp | ENETC_MMCSR_ME);
}
static void enetc_configure_port(struct enetc_pf *pf)
{
u8 hash_key[ENETC_RSSHASH_KEY_SIZE];
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
struct enetc_hw *hw = &pf->si->hw;
enetc_configure_port_pmac(hw);
enetc_configure_port_mac(hw, pf->if_mode);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_port_si_configure(pf->si);
/* set up hash key */
get_random_bytes(hash_key, ENETC_RSSHASH_KEY_SIZE);
enetc_set_rss_key(hw, hash_key);
/* split up RFS entries */
enetc_port_assign_rfs_entries(pf->si);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
/* fix-up primary MAC addresses, if not set already */
enetc_port_setup_primary_mac_address(pf->si);
/* enforce VLAN promisc mode for all SIs */
pf->vlan_promisc_simap = ENETC_VLAN_PROMISC_MAP_ALL;
enetc_set_vlan_promisc(hw, pf->vlan_promisc_simap);
enetc_port_wr(hw, ENETC_PSIPMR, 0);
/* enable port */
enetc_port_wr(hw, ENETC_PMR, ENETC_PMR_EN);
}
/* Messaging */
static u16 enetc_msg_pf_set_vf_primary_mac_addr(struct enetc_pf *pf,
int vf_id)
{
struct enetc_vf_state *vf_state = &pf->vf_state[vf_id];
struct enetc_msg_swbd *msg = &pf->rxmsg[vf_id];
struct enetc_msg_cmd_set_primary_mac *cmd;
struct device *dev = &pf->si->pdev->dev;
u16 cmd_id;
char *addr;
cmd = (struct enetc_msg_cmd_set_primary_mac *)msg->vaddr;
cmd_id = cmd->header.id;
if (cmd_id != ENETC_MSG_CMD_MNG_ADD)
return ENETC_MSG_CMD_STATUS_FAIL;
addr = cmd->mac.sa_data;
if (vf_state->flags & ENETC_VF_FLAG_PF_SET_MAC)
dev_warn(dev, "Attempt to override PF set mac addr for VF%d\n",
vf_id);
else
enetc_pf_set_primary_mac_addr(&pf->si->hw, vf_id + 1, addr);
return ENETC_MSG_CMD_STATUS_OK;
}
void enetc_msg_handle_rxmsg(struct enetc_pf *pf, int vf_id, u16 *status)
{
struct enetc_msg_swbd *msg = &pf->rxmsg[vf_id];
struct device *dev = &pf->si->pdev->dev;
struct enetc_msg_cmd_header *cmd_hdr;
u16 cmd_type;
*status = ENETC_MSG_CMD_STATUS_OK;
cmd_hdr = (struct enetc_msg_cmd_header *)msg->vaddr;
cmd_type = cmd_hdr->type;
switch (cmd_type) {
case ENETC_MSG_CMD_MNG_MAC:
*status = enetc_msg_pf_set_vf_primary_mac_addr(pf, vf_id);
break;
default:
dev_err(dev, "command not supported (cmd_type: 0x%x)\n",
cmd_type);
}
}
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
#ifdef CONFIG_PCI_IOV
static int enetc_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct enetc_si *si = pci_get_drvdata(pdev);
struct enetc_pf *pf = enetc_si_priv(si);
int err;
if (!num_vfs) {
enetc_msg_psi_free(pf);
kfree(pf->vf_state);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
pf->num_vfs = 0;
pci_disable_sriov(pdev);
} else {
pf->num_vfs = num_vfs;
pf->vf_state = kcalloc(num_vfs, sizeof(struct enetc_vf_state),
GFP_KERNEL);
if (!pf->vf_state) {
pf->num_vfs = 0;
return -ENOMEM;
}
err = enetc_msg_psi_init(pf);
if (err) {
dev_err(&pdev->dev, "enetc_msg_psi_init (%d)\n", err);
goto err_msg_psi;
}
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
err = pci_enable_sriov(pdev, num_vfs);
if (err) {
dev_err(&pdev->dev, "pci_enable_sriov err %d\n", err);
goto err_en_sriov;
}
}
return num_vfs;
err_en_sriov:
enetc_msg_psi_free(pf);
err_msg_psi:
kfree(pf->vf_state);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
pf->num_vfs = 0;
return err;
}
#else
#define enetc_sriov_configure(pdev, num_vfs) (void)0
#endif
static int enetc_pf_set_features(struct net_device *ndev,
netdev_features_t features)
{
netdev_features_t changed = ndev->features ^ features;
struct enetc_ndev_priv *priv = netdev_priv(ndev);
enetc: permit configuration of rx-vlan-filter with ethtool Each ENETC station interface (SI) has a VLAN filter list and a port flag (PSIPVMR) by which it can be put in "VLAN promiscuous" mode, which enables the reception of VLAN-tagged traffic even if it is not in the VLAN filtering list. Currently the handling of this setting works like this: the port starts off as VLAN promiscuous, then it switches to enabling VLAN filtering as soon as the first VLAN is installed in its filter via .ndo_vlan_rx_add_vid. In practice that does not work out very well, because more often than not, the first VLAN to be installed is out of the control of the user: the 8021q module, if loaded, adds its rule for 802.1p (VID 0) traffic upon bringing the interface up. What the user is currently seeing in ethtool is this: ethtool -k eno2 rx-vlan-filter: on [fixed] which doesn't match the intention of the code, but the practical reality of having the 8021q module install its VID which has the side-effect of turning on VLAN filtering in this driver. All in all, a slightly confusing experience. So instead of letting this driver switch the VLAN filtering state by itself, just wire it up with the rx-vlan-filter feature from ethtool, and let it be user-configurable just through that knob, except for one case, see below. In promiscuous mode, it is more intuitive that all traffic is received, including VLAN tagged traffic. It appears that it is necessary to set the flag in PSIPVMR for that to be the case, so VLAN promiscuous mode is also temporarily enabled. On exit from promiscuous mode, the setting made by ethtool is restored. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18 03:07:55 +08:00
if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
struct enetc_pf *pf = enetc_si_priv(priv->si);
if (!!(features & NETIF_F_HW_VLAN_CTAG_FILTER))
enetc_disable_si_vlan_promisc(pf, 0);
else
enetc_enable_si_vlan_promisc(pf, 0);
}
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (changed & NETIF_F_LOOPBACK)
enetc_set_loopback(ndev, !!(features & NETIF_F_LOOPBACK));
return enetc_set_features(ndev, features);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
}
static const struct net_device_ops enetc_ndev_ops = {
.ndo_open = enetc_open,
.ndo_stop = enetc_close,
.ndo_start_xmit = enetc_xmit,
.ndo_get_stats = enetc_get_stats,
.ndo_set_mac_address = enetc_pf_set_mac_addr,
.ndo_set_rx_mode = enetc_pf_set_rx_mode,
.ndo_vlan_rx_add_vid = enetc_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = enetc_vlan_rx_del_vid,
.ndo_set_vf_mac = enetc_pf_set_vf_mac,
.ndo_set_vf_vlan = enetc_pf_set_vf_vlan,
.ndo_set_vf_spoofchk = enetc_pf_set_vf_spoofchk,
.ndo_set_features = enetc_pf_set_features,
.ndo_do_ioctl = enetc_ioctl,
.ndo_setup_tc = enetc_setup_tc,
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
};
static void enetc_pf_netdev_setup(struct enetc_si *si, struct net_device *ndev,
const struct net_device_ops *ndev_ops)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
SET_NETDEV_DEV(ndev, &si->pdev->dev);
priv->ndev = ndev;
priv->si = si;
priv->dev = &si->pdev->dev;
si->ndev = ndev;
priv->msg_enable = (NETIF_MSG_WOL << 1) - 1;
ndev->netdev_ops = ndev_ops;
enetc_set_ethtool_ops(ndev);
ndev->watchdog_timeo = 5 * HZ;
ndev->max_mtu = ENETC_MAX_MTU;
ndev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
enetc: permit configuration of rx-vlan-filter with ethtool Each ENETC station interface (SI) has a VLAN filter list and a port flag (PSIPVMR) by which it can be put in "VLAN promiscuous" mode, which enables the reception of VLAN-tagged traffic even if it is not in the VLAN filtering list. Currently the handling of this setting works like this: the port starts off as VLAN promiscuous, then it switches to enabling VLAN filtering as soon as the first VLAN is installed in its filter via .ndo_vlan_rx_add_vid. In practice that does not work out very well, because more often than not, the first VLAN to be installed is out of the control of the user: the 8021q module, if loaded, adds its rule for 802.1p (VID 0) traffic upon bringing the interface up. What the user is currently seeing in ethtool is this: ethtool -k eno2 rx-vlan-filter: on [fixed] which doesn't match the intention of the code, but the practical reality of having the 8021q module install its VID which has the side-effect of turning on VLAN filtering in this driver. All in all, a slightly confusing experience. So instead of letting this driver switch the VLAN filtering state by itself, just wire it up with the rx-vlan-filter feature from ethtool, and let it be user-configurable just through that knob, except for one case, see below. In promiscuous mode, it is more intuitive that all traffic is received, including VLAN tagged traffic. It appears that it is necessary to set the flag in PSIPVMR for that to be the case, so VLAN promiscuous mode is also temporarily enabled. On exit from promiscuous mode, the setting made by ethtool is restored. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18 03:07:55 +08:00
NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_LOOPBACK;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
ndev->features = NETIF_F_HIGHDMA | NETIF_F_SG |
NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_CTAG_TX |
enetc: permit configuration of rx-vlan-filter with ethtool Each ENETC station interface (SI) has a VLAN filter list and a port flag (PSIPVMR) by which it can be put in "VLAN promiscuous" mode, which enables the reception of VLAN-tagged traffic even if it is not in the VLAN filtering list. Currently the handling of this setting works like this: the port starts off as VLAN promiscuous, then it switches to enabling VLAN filtering as soon as the first VLAN is installed in its filter via .ndo_vlan_rx_add_vid. In practice that does not work out very well, because more often than not, the first VLAN to be installed is out of the control of the user: the 8021q module, if loaded, adds its rule for 802.1p (VID 0) traffic upon bringing the interface up. What the user is currently seeing in ethtool is this: ethtool -k eno2 rx-vlan-filter: on [fixed] which doesn't match the intention of the code, but the practical reality of having the 8021q module install its VID which has the side-effect of turning on VLAN filtering in this driver. All in all, a slightly confusing experience. So instead of letting this driver switch the VLAN filtering state by itself, just wire it up with the rx-vlan-filter feature from ethtool, and let it be user-configurable just through that knob, except for one case, see below. In promiscuous mode, it is more intuitive that all traffic is received, including VLAN tagged traffic. It appears that it is necessary to set the flag in PSIPVMR for that to be the case, so VLAN promiscuous mode is also temporarily enabled. On exit from promiscuous mode, the setting made by ethtool is restored. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-18 03:07:55 +08:00
NETIF_F_HW_VLAN_CTAG_RX;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (si->num_rss)
ndev->hw_features |= NETIF_F_RXHASH;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (si->errata & ENETC_ERR_TXCSUM) {
ndev->hw_features &= ~NETIF_F_HW_CSUM;
ndev->features &= ~NETIF_F_HW_CSUM;
}
ndev->priv_flags |= IFF_UNICAST_FLT;
if (si->hw_features & ENETC_SI_F_QBV)
priv->active_offloads |= ENETC_F_QBV;
net: enetc: add tc flower psfp offload driver This patch is to add tc flower offload for the enetc IEEE 802.1Qci(PSFP) function. There are four main feature parts to implement the flow policing and filtering for ingress flow with IEEE 802.1Qci features. They are stream identify(this is defined in the P802.1cb exactly but needed for 802.1Qci), stream filtering, stream gate and flow metering. Each function block includes many entries by index to assign parameters. So for one frame would be filtered by stream identify first, then flow into stream filter block by the same handle between stream identify and stream filtering. Then flow into stream gate control which assigned by the stream filtering entry. And then policing by the gate and limited by the max sdu in the filter block(optional). At last, policing by the flow metering block, index choosing at the fitering block. So you can see that each entry of block may link to many upper entries since they can be assigned same index means more streams want to share the same feature in the stream filtering or stream gate or flow metering. To implement such features, each stream filtered by source/destination mac address, some stream maybe also plus the vlan id value would be treated as one flow chain. This would be identified by the chain_index which already in the tc filter concept. Driver would maintain this chain and also with gate modules. The stream filter entry create by the gate index and flow meter(optional) entry id and also one priority value. Offloading only transfer the gate action and flow filtering parameters. Driver would create (or search same gate id and flow meter id and priority) one stream filter entry to set to the hardware. So stream filtering do not need transfer by the action offloading. This architecture is same with tc filter and actions relationship. tc filter maintain the list for each flow feature by keys. And actions maintain by the action list. Below showing a example commands by tc: > tc qdisc add dev eth0 ingress > ip link set eth0 address 10:00:80:00:00:00 > tc filter add dev eth0 parent ffff: protocol ip chain 11 \ flower skip_sw dst_mac 10:00:80:00:00:00 \ action gate index 10 \ sched-entry open 200000000 1 8000000 \ sched-entry close 100000000 -1 -1 Command means to set the dst_mac 10:00:80:00:00:00 to index 11 of stream identify module. Then setting the gate index 10 of stream gate module. Keep the gate open for 200ms and limit the traffic volume to 8MB in this sched-entry. Then direct the frames to the ingress queue 1. Signed-off-by: Po Liu <Po.Liu@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 08:53:18 +08:00
if (si->hw_features & ENETC_SI_F_PSFP && !enetc_psfp_enable(priv)) {
priv->active_offloads |= ENETC_F_QCI;
ndev->features |= NETIF_F_HW_TC;
ndev->hw_features |= NETIF_F_HW_TC;
}
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
/* pick up primary MAC address from SI */
enetc_get_primary_mac_addr(&si->hw, ndev->dev_addr);
}
static int enetc_mdio_probe(struct enetc_pf *pf)
{
struct device *dev = &pf->si->pdev->dev;
struct enetc_mdio_priv *mdio_priv;
struct device_node *np;
struct mii_bus *bus;
int err;
bus = devm_mdiobus_alloc_size(dev, sizeof(*mdio_priv));
if (!bus)
return -ENOMEM;
bus->name = "Freescale ENETC MDIO Bus";
bus->read = enetc_mdio_read;
bus->write = enetc_mdio_write;
bus->parent = dev;
mdio_priv = bus->priv;
mdio_priv->hw = &pf->si->hw;
mdio_priv->mdio_base = ENETC_EMDIO_BASE;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
np = of_get_child_by_name(dev->of_node, "mdio");
if (!np) {
dev_err(dev, "MDIO node missing\n");
return -EINVAL;
}
err = of_mdiobus_register(bus, np);
if (err) {
of_node_put(np);
dev_err(dev, "cannot register MDIO bus\n");
return err;
}
of_node_put(np);
pf->mdio = bus;
return 0;
}
static void enetc_mdio_remove(struct enetc_pf *pf)
{
if (pf->mdio)
mdiobus_unregister(pf->mdio);
}
static int enetc_of_get_phy(struct enetc_pf *pf)
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
{
struct device *dev = &pf->si->pdev->dev;
struct device_node *np = dev->of_node;
struct device_node *mdio_np;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
int err;
pf->phy_node = of_parse_phandle(np, "phy-handle", 0);
if (!pf->phy_node) {
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (!of_phy_is_fixed_link(np)) {
dev_err(dev, "PHY not specified\n");
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
return -ENODEV;
}
err = of_phy_register_fixed_link(np);
if (err < 0) {
dev_err(dev, "fixed link registration failed\n");
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
return err;
}
pf->phy_node = of_node_get(np);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
}
mdio_np = of_get_child_by_name(np, "mdio");
if (mdio_np) {
of_node_put(mdio_np);
err = enetc_mdio_probe(pf);
if (err) {
of_node_put(pf->phy_node);
return err;
}
}
err = of_get_phy_mode(np, &pf->if_mode);
if (err) {
dev_err(dev, "missing phy type\n");
of_node_put(pf->phy_node);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
else
enetc_mdio_remove(pf);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
return -EINVAL;
}
return 0;
}
static void enetc_of_put_phy(struct enetc_pf *pf)
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
{
struct device_node *np = pf->si->pdev->dev.of_node;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
if (np && of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
if (pf->phy_node)
of_node_put(pf->phy_node);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
}
static int enetc_imdio_init(struct enetc_pf *pf, bool is_c45)
{
struct device *dev = &pf->si->pdev->dev;
struct enetc_mdio_priv *mdio_priv;
struct phy_device *pcs;
struct mii_bus *bus;
int err;
bus = mdiobus_alloc_size(sizeof(*mdio_priv));
if (!bus)
return -ENOMEM;
bus->name = "Freescale ENETC internal MDIO Bus";
bus->read = enetc_mdio_read;
bus->write = enetc_mdio_write;
bus->parent = dev;
bus->phy_mask = ~0;
mdio_priv = bus->priv;
mdio_priv->hw = &pf->si->hw;
mdio_priv->mdio_base = ENETC_PM_IMDIO_BASE;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-imdio", dev_name(dev));
err = mdiobus_register(bus);
if (err) {
dev_err(dev, "cannot register internal MDIO bus (%d)\n", err);
goto free_mdio_bus;
}
pcs = get_phy_device(bus, 0, is_c45);
if (IS_ERR(pcs)) {
err = PTR_ERR(pcs);
dev_err(dev, "cannot get internal PCS PHY (%d)\n", err);
goto unregister_mdiobus;
}
pf->imdio = bus;
pf->pcs = pcs;
return 0;
unregister_mdiobus:
mdiobus_unregister(bus);
free_mdio_bus:
mdiobus_free(bus);
return err;
}
static void enetc_imdio_remove(struct enetc_pf *pf)
{
if (pf->pcs)
put_device(&pf->pcs->mdio.dev);
if (pf->imdio) {
mdiobus_unregister(pf->imdio);
mdiobus_free(pf->imdio);
}
}
static void enetc_configure_sgmii(struct phy_device *pcs)
{
/* SGMII spec requires tx_config_Reg[15:0] to be exactly 0x4001
* for the MAC PCS in order to acknowledge the AN.
*/
phy_write(pcs, MII_ADVERTISE, ADVERTISE_SGMII | ADVERTISE_LPACK);
phy_write(pcs, ENETC_PCS_IF_MODE,
ENETC_PCS_IF_MODE_SGMII_EN |
ENETC_PCS_IF_MODE_USE_SGMII_AN);
/* Adjust link timer for SGMII */
phy_write(pcs, ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
phy_write(pcs, ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
phy_write(pcs, MII_BMCR, BMCR_ANRESTART | BMCR_ANENABLE);
}
static void enetc_configure_2500basex(struct phy_device *pcs)
{
phy_write(pcs, ENETC_PCS_IF_MODE,
ENETC_PCS_IF_MODE_SGMII_EN |
ENETC_PCS_IF_MODE_SGMII_SPEED(ENETC_PCS_SPEED_2500));
phy_write(pcs, MII_BMCR, BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_RESET);
}
static void enetc_configure_usxgmii(struct phy_device *pcs)
{
/* Configure device ability for the USXGMII Replicator */
phy_write_mmd(pcs, MDIO_MMD_VEND2, MII_ADVERTISE,
ADVERTISE_SGMII | ADVERTISE_LPACK |
MDIO_USXGMII_FULL_DUPLEX);
/* Restart PCS AN */
phy_write_mmd(pcs, MDIO_MMD_VEND2, MII_BMCR,
BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
}
static int enetc_configure_serdes(struct enetc_ndev_priv *priv)
{
bool is_c45 = priv->if_mode == PHY_INTERFACE_MODE_USXGMII;
struct enetc_pf *pf = enetc_si_priv(priv->si);
int err;
if (priv->if_mode != PHY_INTERFACE_MODE_SGMII &&
priv->if_mode != PHY_INTERFACE_MODE_2500BASEX &&
priv->if_mode != PHY_INTERFACE_MODE_USXGMII)
return 0;
err = enetc_imdio_init(pf, is_c45);
if (err)
return err;
switch (priv->if_mode) {
case PHY_INTERFACE_MODE_SGMII:
enetc_configure_sgmii(pf->pcs);
break;
case PHY_INTERFACE_MODE_2500BASEX:
enetc_configure_2500basex(pf->pcs);
break;
case PHY_INTERFACE_MODE_USXGMII:
enetc_configure_usxgmii(pf->pcs);
break;
default:
dev_err(&pf->si->pdev->dev, "Unsupported link mode %s\n",
phy_modes(priv->if_mode));
}
return 0;
}
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
static int enetc_pf_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct enetc_ndev_priv *priv;
struct net_device *ndev;
struct enetc_si *si;
struct enetc_pf *pf;
int err;
if (pdev->dev.of_node && !of_device_is_available(pdev->dev.of_node)) {
dev_info(&pdev->dev, "device is disabled, skipping\n");
return -ENODEV;
}
err = enetc_pci_probe(pdev, KBUILD_MODNAME, sizeof(*pf));
if (err) {
dev_err(&pdev->dev, "PCI probing failed\n");
return err;
}
si = pci_get_drvdata(pdev);
if (!si->hw.port || !si->hw.global) {
err = -ENODEV;
dev_err(&pdev->dev, "could not map PF space, probing a VF?\n");
goto err_map_pf_space;
}
pf = enetc_si_priv(si);
pf->si = si;
pf->total_vfs = pci_sriov_get_totalvfs(pdev);
err = enetc_of_get_phy(pf);
if (err)
dev_warn(&pdev->dev, "Fallback to PHY-less operation\n");
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_configure_port(pf);
enetc_get_si_caps(si);
ndev = alloc_etherdev_mq(sizeof(*priv), ENETC_MAX_NUM_TXQS);
if (!ndev) {
err = -ENOMEM;
dev_err(&pdev->dev, "netdev creation failed\n");
goto err_alloc_netdev;
}
enetc_pf_netdev_setup(si, ndev, &enetc_ndev_ops);
priv = netdev_priv(ndev);
priv->phy_node = pf->phy_node;
priv->if_mode = pf->if_mode;
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_init_si_rings_params(priv);
err = enetc_alloc_si_resources(priv);
if (err) {
dev_err(&pdev->dev, "SI resource alloc failed\n");
goto err_alloc_si_res;
}
err = enetc_alloc_msix(priv);
if (err) {
dev_err(&pdev->dev, "MSIX alloc failed\n");
goto err_alloc_msix;
}
err = enetc_configure_serdes(priv);
if (err)
dev_warn(&pdev->dev, "Attempted SerDes config but failed\n");
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
err = register_netdev(ndev);
if (err)
goto err_reg_netdev;
netif_carrier_off(ndev);
return 0;
err_reg_netdev:
enetc_free_msix(priv);
err_alloc_msix:
enetc_free_si_resources(priv);
err_alloc_si_res:
si->ndev = NULL;
free_netdev(ndev);
err_alloc_netdev:
enetc_of_put_phy(pf);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
err_map_pf_space:
enetc_pci_remove(pdev);
return err;
}
static void enetc_pf_remove(struct pci_dev *pdev)
{
struct enetc_si *si = pci_get_drvdata(pdev);
struct enetc_pf *pf = enetc_si_priv(si);
struct enetc_ndev_priv *priv;
if (pf->num_vfs)
enetc_sriov_configure(pdev, 0);
priv = netdev_priv(si->ndev);
unregister_netdev(si->ndev);
enetc_imdio_remove(pf);
enetc_mdio_remove(pf);
enetc_of_put_phy(pf);
enetc: Introduce basic PF and VF ENETC ethernet drivers ENETC is a multi-port virtualized Ethernet controller supporting GbE designs and Time-Sensitive Networking (TSN) functionality. ENETC is operating as an SR-IOV multi-PF capable Root Complex Integrated Endpoint (RCIE). As such, it contains multiple physical (PF) and virtual (VF) PCIe functions, discoverable by standard PCI Express. Introduce basic PF and VF ENETC ethernet drivers. The PF has access to the ENETC Port registers and resources and makes the required privileged configurations for the underlying VF devices. Common functionality is controlled through so called System Interface (SI) register blocks, PFs and VFs own a SI each. Though SI register blocks are almost identical, there are a few privileged SI level controls that are accessible only to PFs, and so the distinction is made between PF SIs (PSI) and VF SIs (VSI). As such, the bulk of the code, including datapath processing, basic h/w offload support and generic pci related configuration, is shared between the 2 drivers and is factored out in common source files (i.e. enetc.c). Major functionalities included (for both drivers): MSI-X support for Rx and Tx processing, assignment of Rx/Tx BD ring pairs to MSI-X entries, multi-queue support, Rx S/G (Rx frame fragmentation) and jumbo frame (up to 9600B) support, Rx paged allocation and reuse, Tx S/G support (NETIF_F_SG), Rx and Tx checksum offload, PF MAC filtering and initial control ring support, VLAN extraction/ insertion, PF Rx VLAN CTAG filtering, VF mac address config support, VF VLAN isolation support, etc. Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 21:29:54 +08:00
enetc_free_msix(priv);
enetc_free_si_resources(priv);
free_netdev(si->ndev);
enetc_pci_remove(pdev);
}
static const struct pci_device_id enetc_pf_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, ENETC_DEV_ID_PF) },
{ 0, } /* End of table. */
};
MODULE_DEVICE_TABLE(pci, enetc_pf_id_table);
static struct pci_driver enetc_pf_driver = {
.name = KBUILD_MODNAME,
.id_table = enetc_pf_id_table,
.probe = enetc_pf_probe,
.remove = enetc_pf_remove,
#ifdef CONFIG_PCI_IOV
.sriov_configure = enetc_sriov_configure,
#endif
};
module_pci_driver(enetc_pf_driver);
MODULE_DESCRIPTION(ENETC_DRV_NAME_STR);
MODULE_LICENSE("Dual BSD/GPL");