OpenCloudOS-Kernel/drivers/crypto/caam/desc_constr.h

606 lines
19 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* caam descriptor construction helper functions
*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
* Copyright 2019 NXP
*/
#ifndef DESC_CONSTR_H
#define DESC_CONSTR_H
#include "desc.h"
#include "regs.h"
#define IMMEDIATE (1 << 23)
#define CAAM_CMD_SZ sizeof(u32)
#define CAAM_PTR_SZ caam_ptr_sz
#define CAAM_PTR_SZ_MAX sizeof(dma_addr_t)
#define CAAM_PTR_SZ_MIN sizeof(u32)
#define CAAM_DESC_BYTES_MAX (CAAM_CMD_SZ * MAX_CAAM_DESCSIZE)
#define __DESC_JOB_IO_LEN(n) (CAAM_CMD_SZ * 5 + (n) * 3)
#define DESC_JOB_IO_LEN __DESC_JOB_IO_LEN(CAAM_PTR_SZ)
#define DESC_JOB_IO_LEN_MAX __DESC_JOB_IO_LEN(CAAM_PTR_SZ_MAX)
#define DESC_JOB_IO_LEN_MIN __DESC_JOB_IO_LEN(CAAM_PTR_SZ_MIN)
/*
* The CAAM QI hardware constructs a job descriptor which points
* to shared descriptor (as pointed by context_a of FQ to CAAM).
* When the job descriptor is executed by deco, the whole job
* descriptor together with shared descriptor gets loaded in
* deco buffer which is 64 words long (each 32-bit).
*
* The job descriptor constructed by QI hardware has layout:
*
* HEADER (1 word)
* Shdesc ptr (1 or 2 words)
* SEQ_OUT_PTR (1 word)
* Out ptr (1 or 2 words)
* Out length (1 word)
* SEQ_IN_PTR (1 word)
* In ptr (1 or 2 words)
* In length (1 word)
*
* The shdesc ptr is used to fetch shared descriptor contents
* into deco buffer.
*
* Apart from shdesc contents, the total number of words that
* get loaded in deco buffer are '8' or '11'. The remaining words
* in deco buffer can be used for storing shared descriptor.
*/
#define MAX_SDLEN ((CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN_MIN) / CAAM_CMD_SZ)
#ifdef DEBUG
#define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\
&__func__[sizeof("append")]); } while (0)
#else
#define PRINT_POS
#endif
#define SET_OK_NO_PROP_ERRORS (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_CHG_SHARE_OK_NO_PROP << \
LDST_OFFSET_SHIFT))
#define DISABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_DISABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
#define ENABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_ENABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
extern bool caam_little_end;
extern size_t caam_ptr_sz;
/*
* HW fetches 4 S/G table entries at a time, irrespective of how many entries
* are in the table. It's SW's responsibility to make sure these accesses
* do not have side effects.
*/
static inline int pad_sg_nents(int sg_nents)
{
return ALIGN(sg_nents, 4);
}
static inline int desc_len(u32 * const desc)
{
return caam32_to_cpu(*desc) & HDR_DESCLEN_MASK;
}
static inline int desc_bytes(void * const desc)
{
return desc_len(desc) * CAAM_CMD_SZ;
}
static inline u32 *desc_end(u32 * const desc)
{
return desc + desc_len(desc);
}
static inline void *sh_desc_pdb(u32 * const desc)
{
return desc + 1;
}
static inline void init_desc(u32 * const desc, u32 options)
{
*desc = cpu_to_caam32((options | HDR_ONE) + 1);
}
static inline void init_sh_desc(u32 * const desc, u32 options)
{
PRINT_POS;
init_desc(desc, CMD_SHARED_DESC_HDR | options);
}
static inline void init_sh_desc_pdb(u32 * const desc, u32 options,
size_t pdb_bytes)
{
u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
init_sh_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT) + pdb_len) |
options);
}
static inline void init_job_desc(u32 * const desc, u32 options)
{
init_desc(desc, CMD_DESC_HDR | options);
}
static inline void init_job_desc_pdb(u32 * const desc, u32 options,
size_t pdb_bytes)
{
u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
init_job_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT)) | options);
}
static inline void append_ptr(u32 * const desc, dma_addr_t ptr)
{
if (caam_ptr_sz == sizeof(dma_addr_t)) {
dma_addr_t *offset = (dma_addr_t *)desc_end(desc);
*offset = cpu_to_caam_dma(ptr);
} else {
u32 *offset = (u32 *)desc_end(desc);
*offset = cpu_to_caam_dma(ptr);
}
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) +
CAAM_PTR_SZ / CAAM_CMD_SZ);
}
static inline void init_job_desc_shared(u32 * const desc, dma_addr_t ptr,
int len, u32 options)
{
PRINT_POS;
init_job_desc(desc, HDR_SHARED | options |
(len << HDR_START_IDX_SHIFT));
append_ptr(desc, ptr);
}
static inline void append_data(u32 * const desc, const void *data, int len)
{
u32 *offset = desc_end(desc);
if (len) /* avoid sparse warning: memcpy with byte count of 0 */
memcpy(offset, data, len);
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) +
(len + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ);
}
static inline void append_cmd(u32 * const desc, u32 command)
{
u32 *cmd = desc_end(desc);
*cmd = cpu_to_caam32(command);
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + 1);
}
#define append_u32 append_cmd
static inline void append_u64(u32 * const desc, u64 data)
{
u32 *offset = desc_end(desc);
/* Only 32-bit alignment is guaranteed in descriptor buffer */
if (caam_little_end) {
*offset = cpu_to_caam32(lower_32_bits(data));
*(++offset) = cpu_to_caam32(upper_32_bits(data));
} else {
*offset = cpu_to_caam32(upper_32_bits(data));
*(++offset) = cpu_to_caam32(lower_32_bits(data));
}
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + 2);
}
/* Write command without affecting header, and return pointer to next word */
static inline u32 *write_cmd(u32 * const desc, u32 command)
{
*desc = cpu_to_caam32(command);
return desc + 1;
}
static inline void append_cmd_ptr(u32 * const desc, dma_addr_t ptr, int len,
u32 command)
{
append_cmd(desc, command | len);
append_ptr(desc, ptr);
}
/* Write length after pointer, rather than inside command */
static inline void append_cmd_ptr_extlen(u32 * const desc, dma_addr_t ptr,
unsigned int len, u32 command)
{
append_cmd(desc, command);
if (!(command & (SQIN_RTO | SQIN_PRE)))
append_ptr(desc, ptr);
append_cmd(desc, len);
}
static inline void append_cmd_data(u32 * const desc, const void *data, int len,
u32 command)
{
append_cmd(desc, command | IMMEDIATE | len);
append_data(desc, data, len);
}
#define APPEND_CMD_RET(cmd, op) \
static inline u32 *append_##cmd(u32 * const desc, u32 options) \
{ \
u32 *cmd = desc_end(desc); \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
return cmd; \
}
APPEND_CMD_RET(jump, JUMP)
APPEND_CMD_RET(move, MOVE)
APPEND_CMD_RET(move_len, MOVE_LEN)
static inline void set_jump_tgt_here(u32 * const desc, u32 *jump_cmd)
{
*jump_cmd = cpu_to_caam32(caam32_to_cpu(*jump_cmd) |
(desc_len(desc) - (jump_cmd - desc)));
}
static inline void set_move_tgt_here(u32 * const desc, u32 *move_cmd)
{
u32 val = caam32_to_cpu(*move_cmd);
val &= ~MOVE_OFFSET_MASK;
val |= (desc_len(desc) << (MOVE_OFFSET_SHIFT + 2)) & MOVE_OFFSET_MASK;
*move_cmd = cpu_to_caam32(val);
}
#define APPEND_CMD(cmd, op) \
static inline void append_##cmd(u32 * const desc, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
}
APPEND_CMD(operation, OPERATION)
#define APPEND_CMD_LEN(cmd, op) \
static inline void append_##cmd(u32 * const desc, unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | len | options); \
}
APPEND_CMD_LEN(seq_load, SEQ_LOAD)
APPEND_CMD_LEN(seq_store, SEQ_STORE)
APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD)
APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE)
#define APPEND_CMD_PTR(cmd, op) \
static inline void append_##cmd(u32 * const desc, dma_addr_t ptr, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr(desc, ptr, len, CMD_##op | options); \
}
APPEND_CMD_PTR(key, KEY)
APPEND_CMD_PTR(load, LOAD)
APPEND_CMD_PTR(fifo_load, FIFO_LOAD)
APPEND_CMD_PTR(fifo_store, FIFO_STORE)
static inline void append_store(u32 * const desc, dma_addr_t ptr,
unsigned int len, u32 options)
{
u32 cmd_src;
cmd_src = options & LDST_SRCDST_MASK;
append_cmd(desc, CMD_STORE | options | len);
/* The following options do not require pointer */
if (!(cmd_src == LDST_SRCDST_WORD_DESCBUF_SHARED ||
cmd_src == LDST_SRCDST_WORD_DESCBUF_JOB ||
cmd_src == LDST_SRCDST_WORD_DESCBUF_JOB_WE ||
cmd_src == LDST_SRCDST_WORD_DESCBUF_SHARED_WE))
append_ptr(desc, ptr);
}
#define APPEND_SEQ_PTR_INTLEN(cmd, op) \
static inline void append_seq_##cmd##_ptr_intlen(u32 * const desc, \
dma_addr_t ptr, \
unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
if (options & (SQIN_RTO | SQIN_PRE)) \
append_cmd(desc, CMD_SEQ_##op##_PTR | len | options); \
else \
append_cmd_ptr(desc, ptr, len, CMD_SEQ_##op##_PTR | options); \
}
APPEND_SEQ_PTR_INTLEN(in, IN)
APPEND_SEQ_PTR_INTLEN(out, OUT)
#define APPEND_CMD_PTR_TO_IMM(cmd, op) \
static inline void append_##cmd##_as_imm(u32 * const desc, const void *data, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_data(desc, data, len, CMD_##op | options); \
}
APPEND_CMD_PTR_TO_IMM(load, LOAD);
APPEND_CMD_PTR_TO_IMM(fifo_load, FIFO_LOAD);
#define APPEND_CMD_PTR_EXTLEN(cmd, op) \
static inline void append_##cmd##_extlen(u32 * const desc, dma_addr_t ptr, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr_extlen(desc, ptr, len, CMD_##op | SQIN_EXT | options); \
}
APPEND_CMD_PTR_EXTLEN(seq_in_ptr, SEQ_IN_PTR)
APPEND_CMD_PTR_EXTLEN(seq_out_ptr, SEQ_OUT_PTR)
/*
* Determine whether to store length internally or externally depending on
* the size of its type
*/
#define APPEND_CMD_PTR_LEN(cmd, op, type) \
static inline void append_##cmd(u32 * const desc, dma_addr_t ptr, \
type len, u32 options) \
{ \
PRINT_POS; \
if (sizeof(type) > sizeof(u16)) \
append_##cmd##_extlen(desc, ptr, len, options); \
else \
append_##cmd##_intlen(desc, ptr, len, options); \
}
APPEND_CMD_PTR_LEN(seq_in_ptr, SEQ_IN_PTR, u32)
APPEND_CMD_PTR_LEN(seq_out_ptr, SEQ_OUT_PTR, u32)
/*
* 2nd variant for commands whose specified immediate length differs
* from length of immediate data provided, e.g., split keys
*/
#define APPEND_CMD_PTR_TO_IMM2(cmd, op) \
static inline void append_##cmd##_as_imm(u32 * const desc, const void *data, \
unsigned int data_len, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | len | options); \
append_data(desc, data, data_len); \
}
APPEND_CMD_PTR_TO_IMM2(key, KEY);
#define APPEND_CMD_RAW_IMM(cmd, op, type) \
static inline void append_##cmd##_imm_##type(u32 * const desc, type immediate, \
u32 options) \
{ \
PRINT_POS; \
if (options & LDST_LEN_MASK) \
append_cmd(desc, CMD_##op | IMMEDIATE | options); \
else \
append_cmd(desc, CMD_##op | IMMEDIATE | options | \
sizeof(type)); \
append_cmd(desc, immediate); \
}
APPEND_CMD_RAW_IMM(load, LOAD, u32);
/*
* ee - endianness
* size - size of immediate type in bytes
*/
#define APPEND_CMD_RAW_IMM2(cmd, op, ee, size) \
static inline void append_##cmd##_imm_##ee##size(u32 *desc, \
u##size immediate, \
u32 options) \
{ \
__##ee##size data = cpu_to_##ee##size(immediate); \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | options | sizeof(data)); \
append_data(desc, &data, sizeof(data)); \
}
APPEND_CMD_RAW_IMM2(load, LOAD, be, 32);
/*
* Append math command. Only the last part of destination and source need to
* be specified
*/
#define APPEND_MATH(op, desc, dest, src_0, src_1, len) \
append_cmd(desc, CMD_MATH | MATH_FUN_##op | MATH_DEST_##dest | \
MATH_SRC0_##src_0 | MATH_SRC1_##src_1 | (u32)len);
#define append_math_add(desc, dest, src0, src1, len) \
APPEND_MATH(ADD, desc, dest, src0, src1, len)
#define append_math_sub(desc, dest, src0, src1, len) \
APPEND_MATH(SUB, desc, dest, src0, src1, len)
#define append_math_add_c(desc, dest, src0, src1, len) \
APPEND_MATH(ADDC, desc, dest, src0, src1, len)
#define append_math_sub_b(desc, dest, src0, src1, len) \
APPEND_MATH(SUBB, desc, dest, src0, src1, len)
#define append_math_and(desc, dest, src0, src1, len) \
APPEND_MATH(AND, desc, dest, src0, src1, len)
#define append_math_or(desc, dest, src0, src1, len) \
APPEND_MATH(OR, desc, dest, src0, src1, len)
#define append_math_xor(desc, dest, src0, src1, len) \
APPEND_MATH(XOR, desc, dest, src0, src1, len)
#define append_math_lshift(desc, dest, src0, src1, len) \
APPEND_MATH(LSHIFT, desc, dest, src0, src1, len)
#define append_math_rshift(desc, dest, src0, src1, len) \
APPEND_MATH(RSHIFT, desc, dest, src0, src1, len)
#define append_math_ldshift(desc, dest, src0, src1, len) \
APPEND_MATH(SHLD, desc, dest, src0, src1, len)
/* Exactly one source is IMM. Data is passed in as u32 value */
#define APPEND_MATH_IMM_u32(op, desc, dest, src_0, src_1, data) \
do { \
APPEND_MATH(op, desc, dest, src_0, src_1, CAAM_CMD_SZ); \
append_cmd(desc, data); \
} while (0)
#define append_math_add_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(ADD, desc, dest, src0, src1, data)
#define append_math_sub_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(SUB, desc, dest, src0, src1, data)
#define append_math_add_c_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(ADDC, desc, dest, src0, src1, data)
#define append_math_sub_b_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(SUBB, desc, dest, src0, src1, data)
#define append_math_and_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(AND, desc, dest, src0, src1, data)
#define append_math_or_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(OR, desc, dest, src0, src1, data)
#define append_math_xor_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(XOR, desc, dest, src0, src1, data)
#define append_math_lshift_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(LSHIFT, desc, dest, src0, src1, data)
#define append_math_rshift_imm_u32(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u32(RSHIFT, desc, dest, src0, src1, data)
/* Exactly one source is IMM. Data is passed in as u64 value */
#define APPEND_MATH_IMM_u64(op, desc, dest, src_0, src_1, data) \
do { \
u32 upper = (data >> 16) >> 16; \
APPEND_MATH(op, desc, dest, src_0, src_1, CAAM_CMD_SZ * 2 | \
(upper ? 0 : MATH_IFB)); \
if (upper) \
append_u64(desc, data); \
else \
append_u32(desc, lower_32_bits(data)); \
} while (0)
#define append_math_add_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(ADD, desc, dest, src0, src1, data)
#define append_math_sub_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(SUB, desc, dest, src0, src1, data)
#define append_math_add_c_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(ADDC, desc, dest, src0, src1, data)
#define append_math_sub_b_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(SUBB, desc, dest, src0, src1, data)
#define append_math_and_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(AND, desc, dest, src0, src1, data)
#define append_math_or_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(OR, desc, dest, src0, src1, data)
#define append_math_xor_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(XOR, desc, dest, src0, src1, data)
#define append_math_lshift_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(LSHIFT, desc, dest, src0, src1, data)
#define append_math_rshift_imm_u64(desc, dest, src0, src1, data) \
APPEND_MATH_IMM_u64(RSHIFT, desc, dest, src0, src1, data)
/**
* struct alginfo - Container for algorithm details
* @algtype: algorithm selector; for valid values, see documentation of the
* functions where it is used.
* @keylen: length of the provided algorithm key, in bytes
* @keylen_pad: padded length of the provided algorithm key, in bytes
* @key_dma: dma (bus) address where algorithm key resides
* @key_virt: virtual address where algorithm key resides
* @key_inline: true - key can be inlined in the descriptor; false - key is
* referenced by the descriptor
*/
struct alginfo {
u32 algtype;
unsigned int keylen;
unsigned int keylen_pad;
dma_addr_t key_dma;
const void *key_virt;
bool key_inline;
};
/**
* desc_inline_query() - Provide indications on which data items can be inlined
* and which shall be referenced in a shared descriptor.
* @sd_base_len: Shared descriptor base length - bytes consumed by the commands,
* excluding the data items to be inlined (or corresponding
* pointer if an item is not inlined). Each cnstr_* function that
* generates descriptors should have a define mentioning
* corresponding length.
* @jd_len: Maximum length of the job descriptor(s) that will be used
* together with the shared descriptor.
* @data_len: Array of lengths of the data items trying to be inlined
* @inl_mask: 32bit mask with bit x = 1 if data item x can be inlined, 0
* otherwise.
* @count: Number of data items (size of @data_len array); must be <= 32
*
* Return: 0 if data can be inlined / referenced, negative value if not. If 0,
* check @inl_mask for details.
*/
static inline int desc_inline_query(unsigned int sd_base_len,
unsigned int jd_len, unsigned int *data_len,
u32 *inl_mask, unsigned int count)
{
int rem_bytes = (int)(CAAM_DESC_BYTES_MAX - sd_base_len - jd_len);
unsigned int i;
*inl_mask = 0;
for (i = 0; (i < count) && (rem_bytes > 0); i++) {
if (rem_bytes - (int)(data_len[i] +
(count - i - 1) * CAAM_PTR_SZ) >= 0) {
rem_bytes -= data_len[i];
*inl_mask |= (1 << i);
} else {
rem_bytes -= CAAM_PTR_SZ;
}
}
return (rem_bytes >= 0) ? 0 : -1;
}
/**
* append_proto_dkp - Derived Key Protocol (DKP): key -> split key
* @desc: pointer to buffer used for descriptor construction
* @adata: pointer to authentication transform definitions.
* keylen should be the length of initial key, while keylen_pad
* the length of the derived (split) key.
* Valid algorithm values - one of OP_ALG_ALGSEL_{MD5, SHA1, SHA224,
* SHA256, SHA384, SHA512}.
*/
static inline void append_proto_dkp(u32 * const desc, struct alginfo *adata)
{
u32 protid;
/*
* Quick & dirty translation from OP_ALG_ALGSEL_{MD5, SHA*}
* to OP_PCLID_DKP_{MD5, SHA*}
*/
protid = (adata->algtype & OP_ALG_ALGSEL_SUBMASK) |
(0x20 << OP_ALG_ALGSEL_SHIFT);
if (adata->key_inline) {
int words;
if (adata->keylen > adata->keylen_pad) {
append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid |
OP_PCL_DKP_SRC_PTR |
OP_PCL_DKP_DST_IMM | adata->keylen);
append_ptr(desc, adata->key_dma);
words = (ALIGN(adata->keylen_pad, CAAM_CMD_SZ) -
CAAM_PTR_SZ) / CAAM_CMD_SZ;
} else {
append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid |
OP_PCL_DKP_SRC_IMM |
OP_PCL_DKP_DST_IMM | adata->keylen);
append_data(desc, adata->key_virt, adata->keylen);
words = (ALIGN(adata->keylen_pad, CAAM_CMD_SZ) -
ALIGN(adata->keylen, CAAM_CMD_SZ)) /
CAAM_CMD_SZ;
}
/* Reserve space in descriptor buffer for the derived key */
if (words)
(*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + words);
} else {
append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid |
OP_PCL_DKP_SRC_PTR | OP_PCL_DKP_DST_PTR |
adata->keylen);
append_ptr(desc, adata->key_dma);
}
}
#endif /* DESC_CONSTR_H */