OpenCloudOS-Kernel/arch/sparc/mm/srmmu.c

1814 lines
49 KiB
C
Raw Normal View History

/*
* srmmu.c: SRMMU specific routines for memory management.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
* Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/bootmem.h>
#include <linux/pagemap.h>
#include <linux/vmalloc.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/io-unit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/bitext.h>
#include <asm/vaddrs.h>
#include <asm/cache.h>
#include <asm/traps.h>
#include <asm/oplib.h>
#include <asm/mbus.h>
#include <asm/page.h>
#include <asm/asi.h>
#include <asm/msi.h>
#include <asm/smp.h>
#include <asm/io.h>
/* Now the cpu specific definitions. */
#include <asm/turbosparc.h>
#include <asm/tsunami.h>
#include <asm/viking.h>
#include <asm/swift.h>
#include <asm/leon.h>
#include <asm/mxcc.h>
#include <asm/ross.h>
#include "srmmu.h"
enum mbus_module srmmu_modtype;
static unsigned int hwbug_bitmask;
int vac_cache_size;
int vac_line_size;
extern struct resource sparc_iomap;
extern unsigned long last_valid_pfn;
static pgd_t *srmmu_swapper_pg_dir;
const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
#ifdef CONFIG_SMP
const struct sparc32_cachetlb_ops *local_ops;
#define FLUSH_BEGIN(mm)
#define FLUSH_END
#else
#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
#define FLUSH_END }
#endif
int flush_page_for_dma_global = 1;
char *srmmu_name;
ctxd_t *srmmu_ctx_table_phys;
static ctxd_t *srmmu_context_table;
int viking_mxcc_present;
static DEFINE_SPINLOCK(srmmu_context_spinlock);
static int is_hypersparc;
static int srmmu_cache_pagetables;
/* these will be initialized in srmmu_nocache_calcsize() */
static unsigned long srmmu_nocache_size;
static unsigned long srmmu_nocache_end;
/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
/* The context table is a nocache user with the biggest alignment needs. */
#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
void *srmmu_nocache_pool;
void *srmmu_nocache_bitmap;
static struct bit_map srmmu_nocache_map;
static inline int srmmu_pmd_none(pmd_t pmd)
{ return !(pmd_val(pmd) & 0xFFFFFFF); }
/* XXX should we hyper_flush_whole_icache here - Anton */
static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
void pmd_set(pmd_t *pmdp, pte_t *ptep)
{
unsigned long ptp; /* Physical address, shifted right by 4 */
int i;
ptp = __nocache_pa((unsigned long) ptep) >> 4;
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
}
}
void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
{
unsigned long ptp; /* Physical address, shifted right by 4 */
int i;
ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
}
}
/* Find an entry in the third-level page table.. */
pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
{
void *pte;
pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
return (pte_t *) pte +
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* size: bytes to allocate in the nocache area.
* align: bytes, number to align at.
* Returns the virtual address of the allocated area.
*/
static void *__srmmu_get_nocache(int size, int align)
{
int offset;
unsigned long addr;
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
printk(KERN_ERR "Size 0x%x too small for nocache request\n",
size);
size = SRMMU_NOCACHE_BITMAP_SHIFT;
}
if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
size);
size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
}
BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
offset = bit_map_string_get(&srmmu_nocache_map,
size >> SRMMU_NOCACHE_BITMAP_SHIFT,
align >> SRMMU_NOCACHE_BITMAP_SHIFT);
if (offset == -1) {
printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
size, (int) srmmu_nocache_size,
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
return 0;
}
addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
return (void *)addr;
}
void *srmmu_get_nocache(int size, int align)
{
void *tmp;
tmp = __srmmu_get_nocache(size, align);
if (tmp)
memset(tmp, 0, size);
return tmp;
}
void srmmu_free_nocache(void *addr, int size)
{
unsigned long vaddr;
int offset;
vaddr = (unsigned long)addr;
if (vaddr < SRMMU_NOCACHE_VADDR) {
printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
BUG();
}
if (vaddr + size > srmmu_nocache_end) {
printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
vaddr, srmmu_nocache_end);
BUG();
}
if (!is_power_of_2(size)) {
printk("Size 0x%x is not a power of 2\n", size);
BUG();
}
if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
printk("Size 0x%x is too small\n", size);
BUG();
}
if (vaddr & (size - 1)) {
printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
BUG();
}
offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
bit_map_clear(&srmmu_nocache_map, offset, size);
}
static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
unsigned long end);
/* Return how much physical memory we have. */
static unsigned long __init probe_memory(void)
{
unsigned long total = 0;
int i;
for (i = 0; sp_banks[i].num_bytes; i++)
total += sp_banks[i].num_bytes;
return total;
}
/*
* Reserve nocache dynamically proportionally to the amount of
* system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
*/
static void __init srmmu_nocache_calcsize(void)
{
unsigned long sysmemavail = probe_memory() / 1024;
int srmmu_nocache_npages;
srmmu_nocache_npages =
sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
/* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
/* anything above 1280 blows up */
if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
}
static void __init srmmu_nocache_init(void)
{
unsigned int bitmap_bits;
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
unsigned long paddr, vaddr;
unsigned long pteval;
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
SRMMU_NOCACHE_ALIGN_MAX, 0UL);
memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
init_mm.pgd = srmmu_swapper_pg_dir;
srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
paddr = __pa((unsigned long)srmmu_nocache_pool);
vaddr = SRMMU_NOCACHE_VADDR;
while (vaddr < srmmu_nocache_end) {
pgd = pgd_offset_k(vaddr);
pmd = pmd_offset(__nocache_fix(pgd), vaddr);
pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
if (srmmu_cache_pagetables)
pteval |= SRMMU_CACHE;
set_pte(__nocache_fix(pte), __pte(pteval));
vaddr += PAGE_SIZE;
paddr += PAGE_SIZE;
}
flush_cache_all();
flush_tlb_all();
}
pgd_t *get_pgd_fast(void)
{
pgd_t *pgd = NULL;
pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
if (pgd) {
pgd_t *init = pgd_offset_k(0);
memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
}
return pgd;
}
/*
* Hardware needs alignment to 256 only, but we align to whole page size
* to reduce fragmentation problems due to the buddy principle.
* XXX Provide actual fragmentation statistics in /proc.
*
* Alignments up to the page size are the same for physical and virtual
* addresses of the nocache area.
*/
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
unsigned long pte;
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:22:04 +08:00
struct page *page;
if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
return NULL;
page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:22:04 +08:00
pgtable_page_ctor(page);
return page;
}
void pte_free(struct mm_struct *mm, pgtable_t pte)
{
unsigned long p;
CONFIG_HIGHPTE vs. sub-page page tables. Background: I've implemented 1K/2K page tables for s390. These sub-page page tables are required to properly support the s390 virtualization instruction with KVM. The SIE instruction requires that the page tables have 256 page table entries (pte) followed by 256 page status table entries (pgste). The pgstes are only required if the process is using the SIE instruction. The pgstes are updated by the hardware and by the hypervisor for a number of reasons, one of them is dirty and reference bit tracking. To avoid wasting memory the standard pte table allocation should return 1K/2K (31/64 bit) and 2K/4K if the process is using SIE. Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means the s390 version for pte_alloc_one cannot return a pointer to a struct page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one cannot return a pointer to a pte either, since that would require more than 32 bit for the return value of pte_alloc_one (and the pte * would not be accessible since its not kmapped). Solution: The only solution I found to this dilemma is a new typedef: a pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a later patch. For everybody else it will be a (struct page *). The additional problem with the initialization of the ptl lock and the NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and a destructor pgtable_page_dtor. The page table allocation and free functions need to call these two whenever a page table page is allocated or freed. pmd_populate will get a pgtable_t instead of a struct page pointer. To get the pgtable_t back from a pmd entry that has been installed with pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page call in free_pte_range and apply_to_pte_range. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:22:04 +08:00
pgtable_page_dtor(pte);
p = (unsigned long)page_address(pte); /* Cached address (for test) */
if (p == 0)
BUG();
p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
/* free non cached virtual address*/
srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
}
/* context handling - a dynamically sized pool is used */
#define NO_CONTEXT -1
struct ctx_list {
struct ctx_list *next;
struct ctx_list *prev;
unsigned int ctx_number;
struct mm_struct *ctx_mm;
};
static struct ctx_list *ctx_list_pool;
static struct ctx_list ctx_free;
static struct ctx_list ctx_used;
/* At boot time we determine the number of contexts */
static int num_contexts;
static inline void remove_from_ctx_list(struct ctx_list *entry)
{
entry->next->prev = entry->prev;
entry->prev->next = entry->next;
}
static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
{
entry->next = head;
(entry->prev = head->prev)->next = entry;
head->prev = entry;
}
#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
{
struct ctx_list *ctxp;
ctxp = ctx_free.next;
if (ctxp != &ctx_free) {
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
mm->context = ctxp->ctx_number;
ctxp->ctx_mm = mm;
return;
}
ctxp = ctx_used.next;
if (ctxp->ctx_mm == old_mm)
ctxp = ctxp->next;
if (ctxp == &ctx_used)
panic("out of mmu contexts");
flush_cache_mm(ctxp->ctx_mm);
flush_tlb_mm(ctxp->ctx_mm);
remove_from_ctx_list(ctxp);
add_to_used_ctxlist(ctxp);
ctxp->ctx_mm->context = NO_CONTEXT;
ctxp->ctx_mm = mm;
mm->context = ctxp->ctx_number;
}
static inline void free_context(int context)
{
struct ctx_list *ctx_old;
ctx_old = ctx_list_pool + context;
remove_from_ctx_list(ctx_old);
add_to_free_ctxlist(ctx_old);
}
static void __init sparc_context_init(int numctx)
{
int ctx;
unsigned long size;
size = numctx * sizeof(struct ctx_list);
ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
for (ctx = 0; ctx < numctx; ctx++) {
struct ctx_list *clist;
clist = (ctx_list_pool + ctx);
clist->ctx_number = ctx;
clist->ctx_mm = NULL;
}
ctx_free.next = ctx_free.prev = &ctx_free;
ctx_used.next = ctx_used.prev = &ctx_used;
for (ctx = 0; ctx < numctx; ctx++)
add_to_free_ctxlist(ctx_list_pool + ctx);
}
void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
struct task_struct *tsk)
{
if (mm->context == NO_CONTEXT) {
spin_lock(&srmmu_context_spinlock);
alloc_context(old_mm, mm);
spin_unlock(&srmmu_context_spinlock);
srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
}
if (sparc_cpu_model == sparc_leon)
leon_switch_mm();
if (is_hypersparc)
hyper_flush_whole_icache();
srmmu_set_context(mm->context);
}
/* Low level IO area allocation on the SRMMU. */
static inline void srmmu_mapioaddr(unsigned long physaddr,
unsigned long virt_addr, int bus_type)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
unsigned long tmp;
physaddr &= PAGE_MASK;
pgdp = pgd_offset_k(virt_addr);
pmdp = pmd_offset(pgdp, virt_addr);
ptep = pte_offset_kernel(pmdp, virt_addr);
tmp = (physaddr >> 4) | SRMMU_ET_PTE;
/* I need to test whether this is consistent over all
* sun4m's. The bus_type represents the upper 4 bits of
* 36-bit physical address on the I/O space lines...
*/
tmp |= (bus_type << 28);
tmp |= SRMMU_PRIV;
__flush_page_to_ram(virt_addr);
set_pte(ptep, __pte(tmp));
}
void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
unsigned long xva, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
srmmu_mapioaddr(xpa, xva, bus);
xva += PAGE_SIZE;
xpa += PAGE_SIZE;
}
flush_tlb_all();
}
static inline void srmmu_unmapioaddr(unsigned long virt_addr)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
pgdp = pgd_offset_k(virt_addr);
pmdp = pmd_offset(pgdp, virt_addr);
ptep = pte_offset_kernel(pmdp, virt_addr);
/* No need to flush uncacheable page. */
__pte_clear(ptep);
}
void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
{
while (len != 0) {
len -= PAGE_SIZE;
srmmu_unmapioaddr(virt_addr);
virt_addr += PAGE_SIZE;
}
flush_tlb_all();
}
/* tsunami.S */
extern void tsunami_flush_cache_all(void);
extern void tsunami_flush_cache_mm(struct mm_struct *mm);
extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_flush_page_to_ram(unsigned long page);
extern void tsunami_flush_page_for_dma(unsigned long page);
extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void tsunami_flush_tlb_all(void);
extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void tsunami_setup_blockops(void);
/* swift.S */
extern void swift_flush_cache_all(void);
extern void swift_flush_cache_mm(struct mm_struct *mm);
extern void swift_flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void swift_flush_page_to_ram(unsigned long page);
extern void swift_flush_page_for_dma(unsigned long page);
extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void swift_flush_tlb_all(void);
extern void swift_flush_tlb_mm(struct mm_struct *mm);
extern void swift_flush_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
#if 0 /* P3: deadwood to debug precise flushes on Swift. */
void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
int cctx, ctx1;
page &= PAGE_MASK;
if ((ctx1 = vma->vm_mm->context) != -1) {
cctx = srmmu_get_context();
/* Is context # ever different from current context? P3 */
if (cctx != ctx1) {
printk("flush ctx %02x curr %02x\n", ctx1, cctx);
srmmu_set_context(ctx1);
swift_flush_page(page);
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (page), "i" (ASI_M_FLUSH_PROBE));
srmmu_set_context(cctx);
} else {
/* Rm. prot. bits from virt. c. */
/* swift_flush_cache_all(); */
/* swift_flush_cache_page(vma, page); */
swift_flush_page(page);
__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
"r" (page), "i" (ASI_M_FLUSH_PROBE));
/* same as above: srmmu_flush_tlb_page() */
}
}
}
#endif
/*
* The following are all MBUS based SRMMU modules, and therefore could
* be found in a multiprocessor configuration. On the whole, these
* chips seems to be much more touchy about DVMA and page tables
* with respect to cache coherency.
*/
/* viking.S */
extern void viking_flush_cache_all(void);
extern void viking_flush_cache_mm(struct mm_struct *mm);
extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void viking_flush_page_to_ram(unsigned long page);
extern void viking_flush_page_for_dma(unsigned long page);
extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
extern void viking_flush_page(unsigned long page);
extern void viking_mxcc_flush_page(unsigned long page);
extern void viking_flush_tlb_all(void);
extern void viking_flush_tlb_mm(struct mm_struct *mm);
extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void viking_flush_tlb_page(struct vm_area_struct *vma,
unsigned long page);
extern void sun4dsmp_flush_tlb_all(void);
extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end);
extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
unsigned long page);
/* hypersparc.S */
extern void hypersparc_flush_cache_all(void);
extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_flush_page_to_ram(unsigned long page);
extern void hypersparc_flush_page_for_dma(unsigned long page);
extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
extern void hypersparc_flush_tlb_all(void);
extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
extern void hypersparc_setup_blockops(void);
/*
* NOTE: All of this startup code assumes the low 16mb (approx.) of
* kernel mappings are done with one single contiguous chunk of
* ram. On small ram machines (classics mainly) we only get
* around 8mb mapped for us.
*/
static void __init early_pgtable_allocfail(char *type)
{
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
prom_halt();
}
static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
while (start < end) {
pgdp = pgd_offset_k(start);
if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
pmdp = __srmmu_get_nocache(
SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
pgd_set(__nocache_fix(pgdp), pmdp);
}
pmdp = pmd_offset(__nocache_fix(pgdp), start);
if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(__nocache_fix(ptep), 0, PTE_SIZE);
pmd_set(__nocache_fix(pmdp), ptep);
}
if (start > (0xffffffffUL - PMD_SIZE))
break;
start = (start + PMD_SIZE) & PMD_MASK;
}
}
static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
unsigned long end)
{
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
while (start < end) {
pgdp = pgd_offset_k(start);
if (pgd_none(*pgdp)) {
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
pgd_set(pgdp, pmdp);
}
pmdp = pmd_offset(pgdp, start);
if (srmmu_pmd_none(*pmdp)) {
ptep = __srmmu_get_nocache(PTE_SIZE,
PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(ptep, 0, PTE_SIZE);
pmd_set(pmdp, ptep);
}
if (start > (0xffffffffUL - PMD_SIZE))
break;
start = (start + PMD_SIZE) & PMD_MASK;
}
}
/* These flush types are not available on all chips... */
static inline unsigned long srmmu_probe(unsigned long vaddr)
{
unsigned long retval;
if (sparc_cpu_model != sparc_leon) {
vaddr &= PAGE_MASK;
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
"=r" (retval) :
"r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
} else {
retval = leon_swprobe(vaddr, 0);
}
return retval;
}
/*
* This is much cleaner than poking around physical address space
* looking at the prom's page table directly which is what most
* other OS's do. Yuck... this is much better.
*/
static void __init srmmu_inherit_prom_mappings(unsigned long start,
unsigned long end)
{
unsigned long probed;
unsigned long addr;
pgd_t *pgdp;
pmd_t *pmdp;
pte_t *ptep;
int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
while (start <= end) {
if (start == 0)
break; /* probably wrap around */
if (start == 0xfef00000)
start = KADB_DEBUGGER_BEGVM;
probed = srmmu_probe(start);
if (!probed) {
/* continue probing until we find an entry */
start += PAGE_SIZE;
continue;
}
/* A red snapper, see what it really is. */
what = 0;
addr = start - PAGE_SIZE;
if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
what = 1;
}
if (!(start & ~(SRMMU_PGDIR_MASK))) {
if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
what = 2;
}
pgdp = pgd_offset_k(start);
if (what == 2) {
*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
start += SRMMU_PGDIR_SIZE;
continue;
}
if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
SRMMU_PMD_TABLE_SIZE);
if (pmdp == NULL)
early_pgtable_allocfail("pmd");
memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
pgd_set(__nocache_fix(pgdp), pmdp);
}
pmdp = pmd_offset(__nocache_fix(pgdp), start);
if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(__nocache_fix(ptep), 0, PTE_SIZE);
pmd_set(__nocache_fix(pmdp), ptep);
}
if (what == 1) {
/* We bend the rule where all 16 PTPs in a pmd_t point
* inside the same PTE page, and we leak a perfectly
* good hardware PTE piece. Alternatives seem worse.
*/
unsigned int x; /* Index of HW PMD in soft cluster */
unsigned long *val;
x = (start >> PMD_SHIFT) & 15;
val = &pmdp->pmdv[x];
*(unsigned long *)__nocache_fix(val) = probed;
start += SRMMU_REAL_PMD_SIZE;
continue;
}
ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
*(pte_t *)__nocache_fix(ptep) = __pte(probed);
start += PAGE_SIZE;
}
}
#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
/* Create a third-level SRMMU 16MB page mapping. */
static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
{
pgd_t *pgdp = pgd_offset_k(vaddr);
unsigned long big_pte;
big_pte = KERNEL_PTE(phys_base >> 4);
*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
}
/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
{
unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
/* Map "low" memory only */
const unsigned long min_vaddr = PAGE_OFFSET;
const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
if (vstart < min_vaddr || vstart >= max_vaddr)
return vstart;
if (vend > max_vaddr || vend < min_vaddr)
vend = max_vaddr;
while (vstart < vend) {
do_large_mapping(vstart, pstart);
vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
}
return vstart;
}
static void __init map_kernel(void)
{
int i;
if (phys_base > 0) {
do_large_mapping(PAGE_OFFSET, phys_base);
}
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
}
}
void (*poke_srmmu)(void) __cpuinitdata = NULL;
extern unsigned long bootmem_init(unsigned long *pages_avail);
void __init srmmu_paging_init(void)
{
int i;
phandle cpunode;
char node_str[128];
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
unsigned long pages_avail;
init_mm.context = (unsigned long) NO_CONTEXT;
sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
if (sparc_cpu_model == sun4d)
num_contexts = 65536; /* We know it is Viking */
else {
/* Find the number of contexts on the srmmu. */
cpunode = prom_getchild(prom_root_node);
num_contexts = 0;
while (cpunode != 0) {
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
if (!strcmp(node_str, "cpu")) {
num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
break;
}
cpunode = prom_getsibling(cpunode);
}
}
if (!num_contexts) {
prom_printf("Something wrong, can't find cpu node in paging_init.\n");
prom_halt();
}
pages_avail = 0;
last_valid_pfn = bootmem_init(&pages_avail);
srmmu_nocache_calcsize();
srmmu_nocache_init();
srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
map_kernel();
/* ctx table has to be physically aligned to its size */
srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
for (i = 0; i < num_contexts; i++)
srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
flush_cache_all();
srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
#ifdef CONFIG_SMP
/* Stop from hanging here... */
local_ops->tlb_all();
#else
flush_tlb_all();
#endif
poke_srmmu();
srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
srmmu_allocate_ptable_skeleton(
__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
pgd = pgd_offset_k(PKMAP_BASE);
pmd = pmd_offset(pgd, PKMAP_BASE);
pte = pte_offset_kernel(pmd, PKMAP_BASE);
pkmap_page_table = pte;
flush_cache_all();
flush_tlb_all();
sparc_context_init(num_contexts);
kmap_init();
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long npages;
int znum;
for (znum = 0; znum < MAX_NR_ZONES; znum++)
zones_size[znum] = zholes_size[znum] = 0;
npages = max_low_pfn - pfn_base;
zones_size[ZONE_DMA] = npages;
zholes_size[ZONE_DMA] = npages - pages_avail;
npages = highend_pfn - max_low_pfn;
zones_size[ZONE_HIGHMEM] = npages;
zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
free_area_init_node(0, zones_size, pfn_base, zholes_size);
}
}
void mmu_info(struct seq_file *m)
{
seq_printf(m,
"MMU type\t: %s\n"
"contexts\t: %d\n"
"nocache total\t: %ld\n"
"nocache used\t: %d\n",
srmmu_name,
num_contexts,
srmmu_nocache_size,
srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
}
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
{
mm->context = NO_CONTEXT;
return 0;
}
void destroy_context(struct mm_struct *mm)
{
if (mm->context != NO_CONTEXT) {
flush_cache_mm(mm);
srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
flush_tlb_mm(mm);
spin_lock(&srmmu_context_spinlock);
free_context(mm->context);
spin_unlock(&srmmu_context_spinlock);
mm->context = NO_CONTEXT;
}
}
/* Init various srmmu chip types. */
static void __init srmmu_is_bad(void)
{
prom_printf("Could not determine SRMMU chip type.\n");
prom_halt();
}
static void __init init_vac_layout(void)
{
phandle nd;
int cache_lines;
char node_str[128];
#ifdef CONFIG_SMP
int cpu = 0;
unsigned long max_size = 0;
unsigned long min_line_size = 0x10000000;
#endif
nd = prom_getchild(prom_root_node);
while ((nd = prom_getsibling(nd)) != 0) {
prom_getstring(nd, "device_type", node_str, sizeof(node_str));
if (!strcmp(node_str, "cpu")) {
vac_line_size = prom_getint(nd, "cache-line-size");
if (vac_line_size == -1) {
prom_printf("can't determine cache-line-size, halting.\n");
prom_halt();
}
cache_lines = prom_getint(nd, "cache-nlines");
if (cache_lines == -1) {
prom_printf("can't determine cache-nlines, halting.\n");
prom_halt();
}
vac_cache_size = cache_lines * vac_line_size;
#ifdef CONFIG_SMP
if (vac_cache_size > max_size)
max_size = vac_cache_size;
if (vac_line_size < min_line_size)
min_line_size = vac_line_size;
//FIXME: cpus not contiguous!!
cpu++;
if (cpu >= nr_cpu_ids || !cpu_online(cpu))
break;
#else
break;
#endif
}
}
if (nd == 0) {
prom_printf("No CPU nodes found, halting.\n");
prom_halt();
}
#ifdef CONFIG_SMP
vac_cache_size = max_size;
vac_line_size = min_line_size;
#endif
printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
(int)vac_cache_size, (int)vac_line_size);
}
static void __cpuinit poke_hypersparc(void)
{
volatile unsigned long clear;
unsigned long mreg = srmmu_get_mmureg();
hyper_flush_unconditional_combined();
mreg &= ~(HYPERSPARC_CWENABLE);
mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
mreg |= (HYPERSPARC_CMODE);
srmmu_set_mmureg(mreg);
#if 0 /* XXX I think this is bad news... -DaveM */
hyper_clear_all_tags();
#endif
put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
hyper_flush_whole_icache();
clear = srmmu_get_faddr();
clear = srmmu_get_fstatus();
}
static const struct sparc32_cachetlb_ops hypersparc_ops = {
.cache_all = hypersparc_flush_cache_all,
.cache_mm = hypersparc_flush_cache_mm,
.cache_page = hypersparc_flush_cache_page,
.cache_range = hypersparc_flush_cache_range,
.tlb_all = hypersparc_flush_tlb_all,
.tlb_mm = hypersparc_flush_tlb_mm,
.tlb_page = hypersparc_flush_tlb_page,
.tlb_range = hypersparc_flush_tlb_range,
.page_to_ram = hypersparc_flush_page_to_ram,
.sig_insns = hypersparc_flush_sig_insns,
.page_for_dma = hypersparc_flush_page_for_dma,
};
static void __init init_hypersparc(void)
{
srmmu_name = "ROSS HyperSparc";
srmmu_modtype = HyperSparc;
init_vac_layout();
is_hypersparc = 1;
sparc32_cachetlb_ops = &hypersparc_ops;
poke_srmmu = poke_hypersparc;
hypersparc_setup_blockops();
}
static void __cpuinit poke_swift(void)
{
unsigned long mreg;
/* Clear any crap from the cache or else... */
swift_flush_cache_all();
/* Enable I & D caches */
mreg = srmmu_get_mmureg();
mreg |= (SWIFT_IE | SWIFT_DE);
/*
* The Swift branch folding logic is completely broken. At
* trap time, if things are just right, if can mistakenly
* think that a trap is coming from kernel mode when in fact
* it is coming from user mode (it mis-executes the branch in
* the trap code). So you see things like crashme completely
* hosing your machine which is completely unacceptable. Turn
* this shit off... nice job Fujitsu.
*/
mreg &= ~(SWIFT_BF);
srmmu_set_mmureg(mreg);
}
static const struct sparc32_cachetlb_ops swift_ops = {
.cache_all = swift_flush_cache_all,
.cache_mm = swift_flush_cache_mm,
.cache_page = swift_flush_cache_page,
.cache_range = swift_flush_cache_range,
.tlb_all = swift_flush_tlb_all,
.tlb_mm = swift_flush_tlb_mm,
.tlb_page = swift_flush_tlb_page,
.tlb_range = swift_flush_tlb_range,
.page_to_ram = swift_flush_page_to_ram,
.sig_insns = swift_flush_sig_insns,
.page_for_dma = swift_flush_page_for_dma,
};
#define SWIFT_MASKID_ADDR 0x10003018
static void __init init_swift(void)
{
unsigned long swift_rev;
__asm__ __volatile__("lda [%1] %2, %0\n\t"
"srl %0, 0x18, %0\n\t" :
"=r" (swift_rev) :
"r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
srmmu_name = "Fujitsu Swift";
switch (swift_rev) {
case 0x11:
case 0x20:
case 0x23:
case 0x30:
srmmu_modtype = Swift_lots_o_bugs;
hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
/*
* Gee george, I wonder why Sun is so hush hush about
* this hardware bug... really braindamage stuff going
* on here. However I think we can find a way to avoid
* all of the workaround overhead under Linux. Basically,
* any page fault can cause kernel pages to become user
* accessible (the mmu gets confused and clears some of
* the ACC bits in kernel ptes). Aha, sounds pretty
* horrible eh? But wait, after extensive testing it appears
* that if you use pgd_t level large kernel pte's (like the
* 4MB pages on the Pentium) the bug does not get tripped
* at all. This avoids almost all of the major overhead.
* Welcome to a world where your vendor tells you to,
* "apply this kernel patch" instead of "sorry for the
* broken hardware, send it back and we'll give you
* properly functioning parts"
*/
break;
case 0x25:
case 0x31:
srmmu_modtype = Swift_bad_c;
hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
/*
* You see Sun allude to this hardware bug but never
* admit things directly, they'll say things like,
* "the Swift chip cache problems" or similar.
*/
break;
default:
srmmu_modtype = Swift_ok;
break;
}
sparc32_cachetlb_ops = &swift_ops;
flush_page_for_dma_global = 0;
/*
* Are you now convinced that the Swift is one of the
* biggest VLSI abortions of all time? Bravo Fujitsu!
* Fujitsu, the !#?!%$'d up processor people. I bet if
* you examined the microcode of the Swift you'd find
* XXX's all over the place.
*/
poke_srmmu = poke_swift;
}
static void turbosparc_flush_cache_all(void)
{
flush_user_windows();
turbosparc_idflash_clear();
}
static void turbosparc_flush_cache_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
flush_user_windows();
turbosparc_idflash_clear();
FLUSH_END
}
static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
FLUSH_BEGIN(vma->vm_mm)
flush_user_windows();
turbosparc_idflash_clear();
FLUSH_END
}
static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
FLUSH_BEGIN(vma->vm_mm)
flush_user_windows();
if (vma->vm_flags & VM_EXEC)
turbosparc_flush_icache();
turbosparc_flush_dcache();
FLUSH_END
}
/* TurboSparc is copy-back, if we turn it on, but this does not work. */
static void turbosparc_flush_page_to_ram(unsigned long page)
{
#ifdef TURBOSPARC_WRITEBACK
volatile unsigned long clear;
if (srmmu_probe(page))
turbosparc_flush_page_cache(page);
clear = srmmu_get_fstatus();
#endif
}
static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
}
static void turbosparc_flush_page_for_dma(unsigned long page)
{
turbosparc_flush_dcache();
}
static void turbosparc_flush_tlb_all(void)
{
srmmu_flush_whole_tlb();
}
static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
{
FLUSH_BEGIN(mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
FLUSH_BEGIN(vma->vm_mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
FLUSH_BEGIN(vma->vm_mm)
srmmu_flush_whole_tlb();
FLUSH_END
}
static void __cpuinit poke_turbosparc(void)
{
unsigned long mreg = srmmu_get_mmureg();
unsigned long ccreg;
/* Clear any crap from the cache or else... */
turbosparc_flush_cache_all();
/* Temporarily disable I & D caches */
mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
srmmu_set_mmureg(mreg);
ccreg = turbosparc_get_ccreg();
#ifdef TURBOSPARC_WRITEBACK
ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
/* Write-back D-cache, emulate VLSI
* abortion number three, not number one */
#else
/* For now let's play safe, optimize later */
ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
/* Do DVMA snooping in Dcache, Write-thru D-cache */
ccreg &= ~(TURBOSPARC_uS2);
/* Emulate VLSI abortion number three, not number one */
#endif
switch (ccreg & 7) {
case 0: /* No SE cache */
case 7: /* Test mode */
break;
default:
ccreg |= (TURBOSPARC_SCENABLE);
}
turbosparc_set_ccreg(ccreg);
mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
srmmu_set_mmureg(mreg);
}
static const struct sparc32_cachetlb_ops turbosparc_ops = {
.cache_all = turbosparc_flush_cache_all,
.cache_mm = turbosparc_flush_cache_mm,
.cache_page = turbosparc_flush_cache_page,
.cache_range = turbosparc_flush_cache_range,
.tlb_all = turbosparc_flush_tlb_all,
.tlb_mm = turbosparc_flush_tlb_mm,
.tlb_page = turbosparc_flush_tlb_page,
.tlb_range = turbosparc_flush_tlb_range,
.page_to_ram = turbosparc_flush_page_to_ram,
.sig_insns = turbosparc_flush_sig_insns,
.page_for_dma = turbosparc_flush_page_for_dma,
};
static void __init init_turbosparc(void)
{
srmmu_name = "Fujitsu TurboSparc";
srmmu_modtype = TurboSparc;
sparc32_cachetlb_ops = &turbosparc_ops;
poke_srmmu = poke_turbosparc;
}
static void __cpuinit poke_tsunami(void)
{
unsigned long mreg = srmmu_get_mmureg();
tsunami_flush_icache();
tsunami_flush_dcache();
mreg &= ~TSUNAMI_ITD;
mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
srmmu_set_mmureg(mreg);
}
static const struct sparc32_cachetlb_ops tsunami_ops = {
.cache_all = tsunami_flush_cache_all,
.cache_mm = tsunami_flush_cache_mm,
.cache_page = tsunami_flush_cache_page,
.cache_range = tsunami_flush_cache_range,
.tlb_all = tsunami_flush_tlb_all,
.tlb_mm = tsunami_flush_tlb_mm,
.tlb_page = tsunami_flush_tlb_page,
.tlb_range = tsunami_flush_tlb_range,
.page_to_ram = tsunami_flush_page_to_ram,
.sig_insns = tsunami_flush_sig_insns,
.page_for_dma = tsunami_flush_page_for_dma,
};
static void __init init_tsunami(void)
{
/*
* Tsunami's pretty sane, Sun and TI actually got it
* somewhat right this time. Fujitsu should have
* taken some lessons from them.
*/
srmmu_name = "TI Tsunami";
srmmu_modtype = Tsunami;
sparc32_cachetlb_ops = &tsunami_ops;
poke_srmmu = poke_tsunami;
tsunami_setup_blockops();
}
static void __cpuinit poke_viking(void)
{
unsigned long mreg = srmmu_get_mmureg();
static int smp_catch;
if (viking_mxcc_present) {
unsigned long mxcc_control = mxcc_get_creg();
mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
mxcc_control &= ~(MXCC_CTL_RRC);
mxcc_set_creg(mxcc_control);
/*
* We don't need memory parity checks.
* XXX This is a mess, have to dig out later. ecd.
viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
*/
/* We do cache ptables on MXCC. */
mreg |= VIKING_TCENABLE;
} else {
unsigned long bpreg;
mreg &= ~(VIKING_TCENABLE);
if (smp_catch++) {
/* Must disable mixed-cmd mode here for other cpu's. */
bpreg = viking_get_bpreg();
bpreg &= ~(VIKING_ACTION_MIX);
viking_set_bpreg(bpreg);
/* Just in case PROM does something funny. */
msi_set_sync();
}
}
mreg |= VIKING_SPENABLE;
mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
mreg |= VIKING_SBENABLE;
mreg &= ~(VIKING_ACENABLE);
srmmu_set_mmureg(mreg);
}
static struct sparc32_cachetlb_ops viking_ops = {
.cache_all = viking_flush_cache_all,
.cache_mm = viking_flush_cache_mm,
.cache_page = viking_flush_cache_page,
.cache_range = viking_flush_cache_range,
.tlb_all = viking_flush_tlb_all,
.tlb_mm = viking_flush_tlb_mm,
.tlb_page = viking_flush_tlb_page,
.tlb_range = viking_flush_tlb_range,
.page_to_ram = viking_flush_page_to_ram,
.sig_insns = viking_flush_sig_insns,
.page_for_dma = viking_flush_page_for_dma,
};
#ifdef CONFIG_SMP
/* On sun4d the cpu broadcasts local TLB flushes, so we can just
* perform the local TLB flush and all the other cpus will see it.
* But, unfortunately, there is a bug in the sun4d XBUS backplane
* that requires that we add some synchronization to these flushes.
*
* The bug is that the fifo which keeps track of all the pending TLB
* broadcasts in the system is an entry or two too small, so if we
* have too many going at once we'll overflow that fifo and lose a TLB
* flush resulting in corruption.
*
* Our workaround is to take a global spinlock around the TLB flushes,
* which guarentees we won't ever have too many pending. It's a big
* hammer, but a semaphore like system to make sure we only have N TLB
* flushes going at once will require SMP locking anyways so there's
* no real value in trying any harder than this.
*/
static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
.cache_all = viking_flush_cache_all,
.cache_mm = viking_flush_cache_mm,
.cache_page = viking_flush_cache_page,
.cache_range = viking_flush_cache_range,
.tlb_all = sun4dsmp_flush_tlb_all,
.tlb_mm = sun4dsmp_flush_tlb_mm,
.tlb_page = sun4dsmp_flush_tlb_page,
.tlb_range = sun4dsmp_flush_tlb_range,
.page_to_ram = viking_flush_page_to_ram,
.sig_insns = viking_flush_sig_insns,
.page_for_dma = viking_flush_page_for_dma,
};
#endif
static void __init init_viking(void)
{
unsigned long mreg = srmmu_get_mmureg();
/* Ahhh, the viking. SRMMU VLSI abortion number two... */
if (mreg & VIKING_MMODE) {
srmmu_name = "TI Viking";
viking_mxcc_present = 0;
msi_set_sync();
/*
* We need this to make sure old viking takes no hits
* on it's cache for dma snoops to workaround the
* "load from non-cacheable memory" interrupt bug.
* This is only necessary because of the new way in
* which we use the IOMMU.
*/
viking_ops.page_for_dma = viking_flush_page;
#ifdef CONFIG_SMP
viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
#endif
flush_page_for_dma_global = 0;
} else {
srmmu_name = "TI Viking/MXCC";
viking_mxcc_present = 1;
srmmu_cache_pagetables = 1;
}
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
&viking_ops;
#ifdef CONFIG_SMP
if (sparc_cpu_model == sun4d)
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
&viking_sun4d_smp_ops;
#endif
poke_srmmu = poke_viking;
}
/* Probe for the srmmu chip version. */
static void __init get_srmmu_type(void)
{
unsigned long mreg, psr;
unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
srmmu_modtype = SRMMU_INVAL_MOD;
hwbug_bitmask = 0;
mreg = srmmu_get_mmureg(); psr = get_psr();
mod_typ = (mreg & 0xf0000000) >> 28;
mod_rev = (mreg & 0x0f000000) >> 24;
psr_typ = (psr >> 28) & 0xf;
psr_vers = (psr >> 24) & 0xf;
/* First, check for sparc-leon. */
if (sparc_cpu_model == sparc_leon) {
init_leon();
return;
}
/* Second, check for HyperSparc or Cypress. */
if (mod_typ == 1) {
switch (mod_rev) {
case 7:
/* UP or MP Hypersparc */
init_hypersparc();
break;
case 0:
case 2:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
default:
prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
prom_halt();
break;
}
return;
}
/* Now Fujitsu TurboSparc. It might happen that it is
* in Swift emulation mode, so we will check later...
*/
if (psr_typ == 0 && psr_vers == 5) {
init_turbosparc();
return;
}
/* Next check for Fujitsu Swift. */
if (psr_typ == 0 && psr_vers == 4) {
phandle cpunode;
char node_str[128];
/* Look if it is not a TurboSparc emulating Swift... */
cpunode = prom_getchild(prom_root_node);
while ((cpunode = prom_getsibling(cpunode)) != 0) {
prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
if (!strcmp(node_str, "cpu")) {
if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
prom_getintdefault(cpunode, "psr-version", 1) == 5) {
init_turbosparc();
return;
}
break;
}
}
init_swift();
return;
}
/* Now the Viking family of srmmu. */
if (psr_typ == 4 &&
((psr_vers == 0) ||
((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
init_viking();
return;
}
/* Finally the Tsunami. */
if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
init_tsunami();
return;
}
/* Oh well */
srmmu_is_bad();
}
#ifdef CONFIG_SMP
/* Local cross-calls. */
static void smp_flush_page_for_dma(unsigned long page)
{
xc1((smpfunc_t) local_ops->page_for_dma, page);
local_ops->page_for_dma(page);
}
static void smp_flush_cache_all(void)
{
xc0((smpfunc_t) local_ops->cache_all);
local_ops->cache_all();
}
static void smp_flush_tlb_all(void)
{
xc0((smpfunc_t) local_ops->tlb_all);
local_ops->tlb_all();
}
static void smp_flush_cache_mm(struct mm_struct *mm)
{
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
local_ops->cache_mm(mm);
}
}
static void smp_flush_tlb_mm(struct mm_struct *mm)
{
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask)) {
xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
cpumask_copy(mm_cpumask(mm),
cpumask_of(smp_processor_id()));
}
local_ops->tlb_mm(mm);
}
}
static void smp_flush_cache_range(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc3((smpfunc_t) local_ops->cache_range,
(unsigned long) vma, start, end);
local_ops->cache_range(vma, start, end);
}
}
static void smp_flush_tlb_range(struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc3((smpfunc_t) local_ops->tlb_range,
(unsigned long) vma, start, end);
local_ops->tlb_range(vma, start, end);
}
}
static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2((smpfunc_t) local_ops->cache_page,
(unsigned long) vma, page);
local_ops->cache_page(vma, page);
}
}
static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
struct mm_struct *mm = vma->vm_mm;
if (mm->context != NO_CONTEXT) {
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2((smpfunc_t) local_ops->tlb_page,
(unsigned long) vma, page);
local_ops->tlb_page(vma, page);
}
}
static void smp_flush_page_to_ram(unsigned long page)
{
/* Current theory is that those who call this are the one's
* who have just dirtied their cache with the pages contents
* in kernel space, therefore we only run this on local cpu.
*
* XXX This experiment failed, research further... -DaveM
*/
#if 1
xc1((smpfunc_t) local_ops->page_to_ram, page);
#endif
local_ops->page_to_ram(page);
}
static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
{
cpumask_t cpu_mask;
cpumask_copy(&cpu_mask, mm_cpumask(mm));
cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
if (!cpumask_empty(&cpu_mask))
xc2((smpfunc_t) local_ops->sig_insns,
(unsigned long) mm, insn_addr);
local_ops->sig_insns(mm, insn_addr);
}
static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
.cache_all = smp_flush_cache_all,
.cache_mm = smp_flush_cache_mm,
.cache_page = smp_flush_cache_page,
.cache_range = smp_flush_cache_range,
.tlb_all = smp_flush_tlb_all,
.tlb_mm = smp_flush_tlb_mm,
.tlb_page = smp_flush_tlb_page,
.tlb_range = smp_flush_tlb_range,
.page_to_ram = smp_flush_page_to_ram,
.sig_insns = smp_flush_sig_insns,
.page_for_dma = smp_flush_page_for_dma,
};
#endif
/* Load up routines and constants for sun4m and sun4d mmu */
void __init load_mmu(void)
{
extern void ld_mmu_iommu(void);
extern void ld_mmu_iounit(void);
/* Functions */
get_srmmu_type();
#ifdef CONFIG_SMP
/* El switcheroo... */
local_ops = sparc32_cachetlb_ops;
if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
}
if (poke_srmmu == poke_viking) {
/* Avoid unnecessary cross calls. */
smp_cachetlb_ops.cache_all = local_ops->cache_all;
smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
smp_cachetlb_ops.cache_range = local_ops->cache_range;
smp_cachetlb_ops.cache_page = local_ops->cache_page;
smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
}
/* It really is const after this point. */
sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
&smp_cachetlb_ops;
#endif
if (sparc_cpu_model == sun4d)
ld_mmu_iounit();
else
ld_mmu_iommu();
#ifdef CONFIG_SMP
if (sparc_cpu_model == sun4d)
sun4d_init_smp();
else if (sparc_cpu_model == sparc_leon)
leon_init_smp();
else
sun4m_init_smp();
#endif
}