OpenCloudOS-Kernel/arch/x86/events/intel/uncore.c

1758 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
x86: Audit and remove any remaining unnecessary uses of module.h Historically a lot of these existed because we did not have a distinction between what was modular code and what was providing support to modules via EXPORT_SYMBOL and friends. That changed when we forked out support for the latter into the export.h file. This means we should be able to reduce the usage of module.h in code that is obj-y Makefile or bool Kconfig. In the case of some of these which are modular, we can extend that to also include files that are building basic support functionality but not related to loading or registering the final module; such files also have no need whatsoever for module.h The advantage in removing such instances is that module.h itself sources about 15 other headers; adding significantly to what we feed cpp, and it can obscure what headers we are effectively using. Since module.h was the source for init.h (for __init) and for export.h (for EXPORT_SYMBOL) we consider each instance for the presence of either and replace as needed. In the case of crypto/glue_helper.c we delete a redundant instance of MODULE_LICENSE in order to delete module.h -- the license info is already present at the top of the file. The uncore change warrants a mention too; it is uncore.c that uses module.h and not uncore.h; hence the relocation done there. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20160714001901.31603-9-paul.gortmaker@windriver.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-14 08:19:01 +08:00
#include <linux/module.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include "uncore.h"
static struct intel_uncore_type *empty_uncore[] = { NULL, };
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
struct intel_uncore_type **uncore_mmio_uncores = empty_uncore;
static bool pcidrv_registered;
struct pci_driver *uncore_pci_driver;
/* The PCI driver for the device which the uncore doesn't own. */
struct pci_driver *uncore_pci_sub_driver;
/* pci bus to socket mapping */
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
struct pci_extra_dev *uncore_extra_pci_dev;
int __uncore_max_dies;
/* mask of cpus that collect uncore events */
static cpumask_t uncore_cpu_mask;
/* constraint for the fixed counter */
static struct event_constraint uncore_constraint_fixed =
EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
struct event_constraint uncore_constraint_empty =
EVENT_CONSTRAINT(0, 0, 0);
MODULE_LICENSE("GPL");
int uncore_pcibus_to_physid(struct pci_bus *bus)
{
struct pci2phy_map *map;
int phys_id = -1;
raw_spin_lock(&pci2phy_map_lock);
list_for_each_entry(map, &pci2phy_map_head, list) {
if (map->segment == pci_domain_nr(bus)) {
phys_id = map->pbus_to_physid[bus->number];
break;
}
}
raw_spin_unlock(&pci2phy_map_lock);
return phys_id;
}
static void uncore_free_pcibus_map(void)
{
struct pci2phy_map *map, *tmp;
list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
list_del(&map->list);
kfree(map);
}
}
struct pci2phy_map *__find_pci2phy_map(int segment)
{
struct pci2phy_map *map, *alloc = NULL;
int i;
lockdep_assert_held(&pci2phy_map_lock);
lookup:
list_for_each_entry(map, &pci2phy_map_head, list) {
if (map->segment == segment)
goto end;
}
if (!alloc) {
raw_spin_unlock(&pci2phy_map_lock);
alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
raw_spin_lock(&pci2phy_map_lock);
if (!alloc)
return NULL;
goto lookup;
}
map = alloc;
alloc = NULL;
map->segment = segment;
for (i = 0; i < 256; i++)
map->pbus_to_physid[i] = -1;
list_add_tail(&map->list, &pci2phy_map_head);
end:
kfree(alloc);
return map;
}
ssize_t uncore_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct uncore_event_desc *event =
container_of(attr, struct uncore_event_desc, attr);
return sprintf(buf, "%s", event->config);
}
struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
{
unsigned int dieid = topology_logical_die_id(cpu);
/*
* The unsigned check also catches the '-1' return value for non
* existent mappings in the topology map.
*/
return dieid < uncore_max_dies() ? pmu->boxes[dieid] : NULL;
}
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
{
u64 count;
rdmsrl(event->hw.event_base, count);
return count;
}
void uncore_mmio_exit_box(struct intel_uncore_box *box)
{
if (box->io_addr)
iounmap(box->io_addr);
}
u64 uncore_mmio_read_counter(struct intel_uncore_box *box,
struct perf_event *event)
{
if (!box->io_addr)
return 0;
if (!uncore_mmio_is_valid_offset(box, event->hw.event_base))
return 0;
return readq(box->io_addr + event->hw.event_base);
}
/*
* generic get constraint function for shared match/mask registers.
*/
struct event_constraint *
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_extra_reg *er;
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
unsigned long flags;
bool ok = false;
/*
* reg->alloc can be set due to existing state, so for fake box we
* need to ignore this, otherwise we might fail to allocate proper
* fake state for this extra reg constraint.
*/
if (reg1->idx == EXTRA_REG_NONE ||
(!uncore_box_is_fake(box) && reg1->alloc))
return NULL;
er = &box->shared_regs[reg1->idx];
raw_spin_lock_irqsave(&er->lock, flags);
if (!atomic_read(&er->ref) ||
(er->config1 == reg1->config && er->config2 == reg2->config)) {
atomic_inc(&er->ref);
er->config1 = reg1->config;
er->config2 = reg2->config;
ok = true;
}
raw_spin_unlock_irqrestore(&er->lock, flags);
if (ok) {
if (!uncore_box_is_fake(box))
reg1->alloc = 1;
return NULL;
}
return &uncore_constraint_empty;
}
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_extra_reg *er;
struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
/*
* Only put constraint if extra reg was actually allocated. Also
* takes care of event which do not use an extra shared reg.
*
* Also, if this is a fake box we shouldn't touch any event state
* (reg->alloc) and we don't care about leaving inconsistent box
* state either since it will be thrown out.
*/
if (uncore_box_is_fake(box) || !reg1->alloc)
return;
er = &box->shared_regs[reg1->idx];
atomic_dec(&er->ref);
reg1->alloc = 0;
}
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
{
struct intel_uncore_extra_reg *er;
unsigned long flags;
u64 config;
er = &box->shared_regs[idx];
raw_spin_lock_irqsave(&er->lock, flags);
config = er->config;
raw_spin_unlock_irqrestore(&er->lock, flags);
return config;
}
static void uncore_assign_hw_event(struct intel_uncore_box *box,
struct perf_event *event, int idx)
{
struct hw_perf_event *hwc = &event->hw;
hwc->idx = idx;
hwc->last_tag = ++box->tags[idx];
if (uncore_pmc_fixed(hwc->idx)) {
hwc->event_base = uncore_fixed_ctr(box);
hwc->config_base = uncore_fixed_ctl(box);
return;
}
hwc->config_base = uncore_event_ctl(box, hwc->idx);
hwc->event_base = uncore_perf_ctr(box, hwc->idx);
}
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
{
u64 prev_count, new_count, delta;
int shift;
if (uncore_pmc_freerunning(event->hw.idx))
shift = 64 - uncore_freerunning_bits(box, event);
else if (uncore_pmc_fixed(event->hw.idx))
shift = 64 - uncore_fixed_ctr_bits(box);
else
shift = 64 - uncore_perf_ctr_bits(box);
/* the hrtimer might modify the previous event value */
again:
prev_count = local64_read(&event->hw.prev_count);
new_count = uncore_read_counter(box, event);
if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
goto again;
delta = (new_count << shift) - (prev_count << shift);
delta >>= shift;
local64_add(delta, &event->count);
}
/*
* The overflow interrupt is unavailable for SandyBridge-EP, is broken
* for SandyBridge. So we use hrtimer to periodically poll the counter
* to avoid overflow.
*/
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
{
struct intel_uncore_box *box;
struct perf_event *event;
unsigned long flags;
int bit;
box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
if (!box->n_active || box->cpu != smp_processor_id())
return HRTIMER_NORESTART;
/*
* disable local interrupt to prevent uncore_pmu_event_start/stop
* to interrupt the update process
*/
local_irq_save(flags);
/*
* handle boxes with an active event list as opposed to active
* counters
*/
list_for_each_entry(event, &box->active_list, active_entry) {
uncore_perf_event_update(box, event);
}
for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
uncore_perf_event_update(box, box->events[bit]);
local_irq_restore(flags);
hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
return HRTIMER_RESTART;
}
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
{
hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
HRTIMER_MODE_REL_PINNED);
}
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
{
hrtimer_cancel(&box->hrtimer);
}
static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
{
hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
box->hrtimer.function = uncore_pmu_hrtimer;
}
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type,
int node)
{
int i, size, numshared = type->num_shared_regs ;
struct intel_uncore_box *box;
size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg);
box = kzalloc_node(size, GFP_KERNEL, node);
if (!box)
return NULL;
for (i = 0; i < numshared; i++)
raw_spin_lock_init(&box->shared_regs[i].lock);
uncore_pmu_init_hrtimer(box);
box->cpu = -1;
box->pci_phys_id = -1;
box->dieid = -1;
/* set default hrtimer timeout */
box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
INIT_LIST_HEAD(&box->active_list);
return box;
}
/*
* Using uncore_pmu_event_init pmu event_init callback
* as a detection point for uncore events.
*/
static int uncore_pmu_event_init(struct perf_event *event);
static bool is_box_event(struct intel_uncore_box *box, struct perf_event *event)
{
return &box->pmu->pmu == event->pmu;
}
static int
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader,
bool dogrp)
{
struct perf_event *event;
int n, max_count;
max_count = box->pmu->type->num_counters;
if (box->pmu->type->fixed_ctl)
max_count++;
if (box->n_events >= max_count)
return -EINVAL;
n = box->n_events;
if (is_box_event(box, leader)) {
box->event_list[n] = leader;
n++;
}
if (!dogrp)
return n;
for_each_sibling_event(event, leader) {
if (!is_box_event(box, event) ||
event->state <= PERF_EVENT_STATE_OFF)
continue;
if (n >= max_count)
return -EINVAL;
box->event_list[n] = event;
n++;
}
return n;
}
static struct event_constraint *
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
struct intel_uncore_type *type = box->pmu->type;
struct event_constraint *c;
if (type->ops->get_constraint) {
c = type->ops->get_constraint(box, event);
if (c)
return c;
}
if (event->attr.config == UNCORE_FIXED_EVENT)
return &uncore_constraint_fixed;
if (type->constraints) {
for_each_event_constraint(c, type->constraints) {
if ((event->hw.config & c->cmask) == c->code)
return c;
}
}
return &type->unconstrainted;
}
static void uncore_put_event_constraint(struct intel_uncore_box *box,
struct perf_event *event)
{
if (box->pmu->type->ops->put_constraint)
box->pmu->type->ops->put_constraint(box, event);
}
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
{
unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
struct event_constraint *c;
int i, wmin, wmax, ret = 0;
struct hw_perf_event *hwc;
bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);
for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
c = uncore_get_event_constraint(box, box->event_list[i]);
perf/x86: Fix event/group validation Commit 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") violated the rule that 'fake' scheduling; as used for event/group validation; should not change the event state. This went mostly un-noticed because repeated calls of x86_pmu::get_event_constraints() would give the same result. And x86_pmu::put_event_constraints() would mostly not do anything. Commit e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") made the situation much worse by actually setting the event->hw.constraint value to NULL, so when validation and actual scheduling interact we get NULL ptr derefs. Fix it by removing the constraint pointer from the event and move it back to an array, this time in cpuc instead of on the stack. validate_group() x86_schedule_events() event->hw.constraint = c; # store <context switch> perf_task_event_sched_in() ... x86_schedule_events(); event->hw.constraint = c2; # store ... put_event_constraints(event); # assume failure to schedule intel_put_event_constraints() event->hw.constraint = NULL; <context switch end> c = event->hw.constraint; # read -> NULL if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref This in particular is possible when the event in question is a cpu-wide event and group-leader, where the validate_group() tries to add an event to the group. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Hunter <ahh@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") Fixes: e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-21 16:57:13 +08:00
box->event_constraint[i] = c;
wmin = min(wmin, c->weight);
wmax = max(wmax, c->weight);
}
/* fastpath, try to reuse previous register */
for (i = 0; i < n; i++) {
hwc = &box->event_list[i]->hw;
perf/x86: Fix event/group validation Commit 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") violated the rule that 'fake' scheduling; as used for event/group validation; should not change the event state. This went mostly un-noticed because repeated calls of x86_pmu::get_event_constraints() would give the same result. And x86_pmu::put_event_constraints() would mostly not do anything. Commit e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") made the situation much worse by actually setting the event->hw.constraint value to NULL, so when validation and actual scheduling interact we get NULL ptr derefs. Fix it by removing the constraint pointer from the event and move it back to an array, this time in cpuc instead of on the stack. validate_group() x86_schedule_events() event->hw.constraint = c; # store <context switch> perf_task_event_sched_in() ... x86_schedule_events(); event->hw.constraint = c2; # store ... put_event_constraints(event); # assume failure to schedule intel_put_event_constraints() event->hw.constraint = NULL; <context switch end> c = event->hw.constraint; # read -> NULL if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref This in particular is possible when the event in question is a cpu-wide event and group-leader, where the validate_group() tries to add an event to the group. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Hunter <ahh@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") Fixes: e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-21 16:57:13 +08:00
c = box->event_constraint[i];
/* never assigned */
if (hwc->idx == -1)
break;
/* constraint still honored */
if (!test_bit(hwc->idx, c->idxmsk))
break;
/* not already used */
if (test_bit(hwc->idx, used_mask))
break;
__set_bit(hwc->idx, used_mask);
if (assign)
assign[i] = hwc->idx;
}
/* slow path */
if (i != n)
perf/x86: Fix event/group validation Commit 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") violated the rule that 'fake' scheduling; as used for event/group validation; should not change the event state. This went mostly un-noticed because repeated calls of x86_pmu::get_event_constraints() would give the same result. And x86_pmu::put_event_constraints() would mostly not do anything. Commit e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") made the situation much worse by actually setting the event->hw.constraint value to NULL, so when validation and actual scheduling interact we get NULL ptr derefs. Fix it by removing the constraint pointer from the event and move it back to an array, this time in cpuc instead of on the stack. validate_group() x86_schedule_events() event->hw.constraint = c; # store <context switch> perf_task_event_sched_in() ... x86_schedule_events(); event->hw.constraint = c2; # store ... put_event_constraints(event); # assume failure to schedule intel_put_event_constraints() event->hw.constraint = NULL; <context switch end> c = event->hw.constraint; # read -> NULL if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref This in particular is possible when the event in question is a cpu-wide event and group-leader, where the validate_group() tries to add an event to the group. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Hunter <ahh@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 43b4578071c0 ("perf/x86: Reduce stack usage of x86_schedule_events()") Fixes: e979121b1b15 ("perf/x86/intel: Implement cross-HT corruption bug workaround") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-21 16:57:13 +08:00
ret = perf_assign_events(box->event_constraint, n,
wmin, wmax, n, assign);
if (!assign || ret) {
for (i = 0; i < n; i++)
uncore_put_event_constraint(box, box->event_list[i]);
}
return ret ? -EINVAL : 0;
}
void uncore_pmu_event_start(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
int idx = event->hw.idx;
if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
return;
/*
* Free running counter is read-only and always active.
* Use the current counter value as start point.
* There is no overflow interrupt for free running counter.
* Use hrtimer to periodically poll the counter to avoid overflow.
*/
if (uncore_pmc_freerunning(event->hw.idx)) {
list_add_tail(&event->active_entry, &box->active_list);
local64_set(&event->hw.prev_count,
uncore_read_counter(box, event));
if (box->n_active++ == 0)
uncore_pmu_start_hrtimer(box);
return;
}
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
return;
event->hw.state = 0;
box->events[idx] = event;
box->n_active++;
__set_bit(idx, box->active_mask);
local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
uncore_enable_event(box, event);
perf/x86/uncore: Fix event group support The events in the same group don't start or stop simultaneously. Here is the ftrace when enabling event group for uncore_iio_0: # perf stat -e "{uncore_iio_0/event=0x1/,uncore_iio_0/event=0xe/}" <idle>-0 [000] d.h. 8959.064832: read_msr: a41, value b2b0b030 //Read counter reg of IIO unit0 counter0 <idle>-0 [000] d.h. 8959.064835: write_msr: a48, value 400001 //Write Ctrl reg of IIO unit0 counter0 to enable counter0. <------ Although counter0 is enabled, Unit Ctrl is still freezed. Nothing will count. We are still good here. <idle>-0 [000] d.h. 8959.064836: read_msr: a40, value 30100 //Read Unit Ctrl reg of IIO unit0 <idle>-0 [000] d.h. 8959.064838: write_msr: a40, value 30000 //Write Unit Ctrl reg of IIO unit0 to enable all counters in the unit by clear Freeze bit <------Unit0 is un-freezed. Counter0 has been enabled. Now it starts counting. But counter1 has not been enabled yet. The issue starts here. <idle>-0 [000] d.h. 8959.064846: read_msr: a42, value 0 //Read counter reg of IIO unit0 counter1 <idle>-0 [000] d.h. 8959.064847: write_msr: a49, value 40000e //Write Ctrl reg of IIO unit0 counter1 to enable counter1. <------ Now, counter1 just starts to count. Counter0 has been running for a while. Current code un-freezes the Unit Ctrl right after the first counter is enabled. The subsequent group events always loses some counter values. Implement pmu_enable and pmu_disable support for uncore, which can help to batch hardware accesses. No one uses uncore_enable_box and uncore_disable_box. Remove them. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-drivers-review@eclists.intel.com Cc: linux-perf@eclists.intel.com Fixes: 087bfbb03269 ("perf/x86: Add generic Intel uncore PMU support") Link: https://lkml.kernel.org/r/1572014593-31591-1-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 22:43:13 +08:00
if (box->n_active == 1)
uncore_pmu_start_hrtimer(box);
}
void uncore_pmu_event_stop(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
struct hw_perf_event *hwc = &event->hw;
/* Cannot disable free running counter which is read-only */
if (uncore_pmc_freerunning(hwc->idx)) {
list_del(&event->active_entry);
if (--box->n_active == 0)
uncore_pmu_cancel_hrtimer(box);
uncore_perf_event_update(box, event);
return;
}
if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
uncore_disable_event(box, event);
box->n_active--;
box->events[hwc->idx] = NULL;
WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
hwc->state |= PERF_HES_STOPPED;
perf/x86/uncore: Fix event group support The events in the same group don't start or stop simultaneously. Here is the ftrace when enabling event group for uncore_iio_0: # perf stat -e "{uncore_iio_0/event=0x1/,uncore_iio_0/event=0xe/}" <idle>-0 [000] d.h. 8959.064832: read_msr: a41, value b2b0b030 //Read counter reg of IIO unit0 counter0 <idle>-0 [000] d.h. 8959.064835: write_msr: a48, value 400001 //Write Ctrl reg of IIO unit0 counter0 to enable counter0. <------ Although counter0 is enabled, Unit Ctrl is still freezed. Nothing will count. We are still good here. <idle>-0 [000] d.h. 8959.064836: read_msr: a40, value 30100 //Read Unit Ctrl reg of IIO unit0 <idle>-0 [000] d.h. 8959.064838: write_msr: a40, value 30000 //Write Unit Ctrl reg of IIO unit0 to enable all counters in the unit by clear Freeze bit <------Unit0 is un-freezed. Counter0 has been enabled. Now it starts counting. But counter1 has not been enabled yet. The issue starts here. <idle>-0 [000] d.h. 8959.064846: read_msr: a42, value 0 //Read counter reg of IIO unit0 counter1 <idle>-0 [000] d.h. 8959.064847: write_msr: a49, value 40000e //Write Ctrl reg of IIO unit0 counter1 to enable counter1. <------ Now, counter1 just starts to count. Counter0 has been running for a while. Current code un-freezes the Unit Ctrl right after the first counter is enabled. The subsequent group events always loses some counter values. Implement pmu_enable and pmu_disable support for uncore, which can help to batch hardware accesses. No one uses uncore_enable_box and uncore_disable_box. Remove them. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-drivers-review@eclists.intel.com Cc: linux-perf@eclists.intel.com Fixes: 087bfbb03269 ("perf/x86: Add generic Intel uncore PMU support") Link: https://lkml.kernel.org/r/1572014593-31591-1-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 22:43:13 +08:00
if (box->n_active == 0)
uncore_pmu_cancel_hrtimer(box);
}
if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
/*
* Drain the remaining delta count out of a event
* that we are disabling:
*/
uncore_perf_event_update(box, event);
hwc->state |= PERF_HES_UPTODATE;
}
}
int uncore_pmu_event_add(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
struct hw_perf_event *hwc = &event->hw;
int assign[UNCORE_PMC_IDX_MAX];
int i, n, ret;
if (!box)
return -ENODEV;
/*
* The free funning counter is assigned in event_init().
* The free running counter event and free running counter
* are 1:1 mapped. It doesn't need to be tracked in event_list.
*/
if (uncore_pmc_freerunning(hwc->idx)) {
if (flags & PERF_EF_START)
uncore_pmu_event_start(event, 0);
return 0;
}
ret = n = uncore_collect_events(box, event, false);
if (ret < 0)
return ret;
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
if (!(flags & PERF_EF_START))
hwc->state |= PERF_HES_ARCH;
ret = uncore_assign_events(box, assign, n);
if (ret)
return ret;
/* save events moving to new counters */
for (i = 0; i < box->n_events; i++) {
event = box->event_list[i];
hwc = &event->hw;
if (hwc->idx == assign[i] &&
hwc->last_tag == box->tags[assign[i]])
continue;
/*
* Ensure we don't accidentally enable a stopped
* counter simply because we rescheduled.
*/
if (hwc->state & PERF_HES_STOPPED)
hwc->state |= PERF_HES_ARCH;
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
}
/* reprogram moved events into new counters */
for (i = 0; i < n; i++) {
event = box->event_list[i];
hwc = &event->hw;
if (hwc->idx != assign[i] ||
hwc->last_tag != box->tags[assign[i]])
uncore_assign_hw_event(box, event, assign[i]);
else if (i < box->n_events)
continue;
if (hwc->state & PERF_HES_ARCH)
continue;
uncore_pmu_event_start(event, 0);
}
box->n_events = n;
return 0;
}
void uncore_pmu_event_del(struct perf_event *event, int flags)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
int i;
uncore_pmu_event_stop(event, PERF_EF_UPDATE);
/*
* The event for free running counter is not tracked by event_list.
* It doesn't need to force event->hw.idx = -1 to reassign the counter.
* Because the event and the free running counter are 1:1 mapped.
*/
if (uncore_pmc_freerunning(event->hw.idx))
return;
for (i = 0; i < box->n_events; i++) {
if (event == box->event_list[i]) {
uncore_put_event_constraint(box, event);
for (++i; i < box->n_events; i++)
box->event_list[i - 1] = box->event_list[i];
--box->n_events;
break;
}
}
event->hw.idx = -1;
event->hw.last_tag = ~0ULL;
}
void uncore_pmu_event_read(struct perf_event *event)
{
struct intel_uncore_box *box = uncore_event_to_box(event);
uncore_perf_event_update(box, event);
}
/*
* validation ensures the group can be loaded onto the
* PMU if it was the only group available.
*/
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
struct perf_event *event)
{
struct perf_event *leader = event->group_leader;
struct intel_uncore_box *fake_box;
int ret = -EINVAL, n;
/* The free running counter is always active. */
if (uncore_pmc_freerunning(event->hw.idx))
return 0;
fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
if (!fake_box)
return -ENOMEM;
fake_box->pmu = pmu;
/*
* the event is not yet connected with its
* siblings therefore we must first collect
* existing siblings, then add the new event
* before we can simulate the scheduling
*/
n = uncore_collect_events(fake_box, leader, true);
if (n < 0)
goto out;
fake_box->n_events = n;
n = uncore_collect_events(fake_box, event, false);
if (n < 0)
goto out;
fake_box->n_events = n;
ret = uncore_assign_events(fake_box, NULL, n);
out:
kfree(fake_box);
return ret;
}
static int uncore_pmu_event_init(struct perf_event *event)
{
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
struct hw_perf_event *hwc = &event->hw;
int ret;
if (event->attr.type != event->pmu->type)
return -ENOENT;
pmu = uncore_event_to_pmu(event);
/* no device found for this pmu */
if (pmu->func_id < 0)
return -ENOENT;
/* Sampling not supported yet */
if (hwc->sample_period)
return -EINVAL;
/*
* Place all uncore events for a particular physical package
* onto a single cpu
*/
if (event->cpu < 0)
return -EINVAL;
box = uncore_pmu_to_box(pmu, event->cpu);
if (!box || box->cpu < 0)
return -EINVAL;
event->cpu = box->cpu;
event->pmu_private = box;
event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
event->hw.idx = -1;
event->hw.last_tag = ~0ULL;
event->hw.extra_reg.idx = EXTRA_REG_NONE;
event->hw.branch_reg.idx = EXTRA_REG_NONE;
if (event->attr.config == UNCORE_FIXED_EVENT) {
/* no fixed counter */
if (!pmu->type->fixed_ctl)
return -EINVAL;
/*
* if there is only one fixed counter, only the first pmu
* can access the fixed counter
*/
if (pmu->type->single_fixed && pmu->pmu_idx > 0)
return -EINVAL;
/* fixed counters have event field hardcoded to zero */
hwc->config = 0ULL;
} else if (is_freerunning_event(event)) {
perf/x86/intel/uncore: Fix client IMC events return huge result The client IMC bandwidth events currently return very large values: $ perf stat -e uncore_imc/data_reads/ -e uncore_imc/data_writes/ -I 10000 -a 10.000117222 34,788.76 MiB uncore_imc/data_reads/ 10.000117222 8.26 MiB uncore_imc/data_writes/ 20.000374584 34,842.89 MiB uncore_imc/data_reads/ 20.000374584 10.45 MiB uncore_imc/data_writes/ 30.000633299 37,965.29 MiB uncore_imc/data_reads/ 30.000633299 323.62 MiB uncore_imc/data_writes/ 40.000891548 41,012.88 MiB uncore_imc/data_reads/ 40.000891548 6.98 MiB uncore_imc/data_writes/ 50.001142480 1,125,899,906,621,494.75 MiB uncore_imc/data_reads/ 50.001142480 6.97 MiB uncore_imc/data_writes/ The client IMC events are freerunning counters. They still use the old event encoding format (0x1 for data_read and 0x2 for data write). The counter bit width is calculated by common code, which assume that the standard encoding format is used for the freerunning counters. Error bit width information is calculated. The patch intends to convert the old client IMC event encoding to the standard encoding format. Current common code uses event->attr.config which directly copy from user space. We should not implicitly modify it for a converted event. The event->hw.config is used to replace the event->attr.config in common code. For client IMC events, the event->attr.config is used to calculate a converted event with standard encoding format in the custom event_init(). The converted event is stored in event->hw.config. For other events of freerunning counters, they already use the standard encoding format. The same value as event->attr.config is assigned to event->hw.config in common event_init(). Reported-by: Jin Yao <yao.jin@linux.intel.com> Tested-by: Jin Yao <yao.jin@linux.intel.com> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: stable@kernel.org # v4.18+ Fixes: 9aae1780e7e8 ("perf/x86/intel/uncore: Clean up client IMC uncore") Link: https://lkml.kernel.org/r/20190227165729.1861-1-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-28 00:57:29 +08:00
hwc->config = event->attr.config;
if (!check_valid_freerunning_event(box, event))
return -EINVAL;
event->hw.idx = UNCORE_PMC_IDX_FREERUNNING;
/*
* The free running counter event and free running counter
* are always 1:1 mapped.
* The free running counter is always active.
* Assign the free running counter here.
*/
event->hw.event_base = uncore_freerunning_counter(box, event);
} else {
hwc->config = event->attr.config &
(pmu->type->event_mask | ((u64)pmu->type->event_mask_ext << 32));
if (pmu->type->ops->hw_config) {
ret = pmu->type->ops->hw_config(box, event);
if (ret)
return ret;
}
}
if (event->group_leader != event)
ret = uncore_validate_group(pmu, event);
else
ret = 0;
return ret;
}
perf/x86/uncore: Fix event group support The events in the same group don't start or stop simultaneously. Here is the ftrace when enabling event group for uncore_iio_0: # perf stat -e "{uncore_iio_0/event=0x1/,uncore_iio_0/event=0xe/}" <idle>-0 [000] d.h. 8959.064832: read_msr: a41, value b2b0b030 //Read counter reg of IIO unit0 counter0 <idle>-0 [000] d.h. 8959.064835: write_msr: a48, value 400001 //Write Ctrl reg of IIO unit0 counter0 to enable counter0. <------ Although counter0 is enabled, Unit Ctrl is still freezed. Nothing will count. We are still good here. <idle>-0 [000] d.h. 8959.064836: read_msr: a40, value 30100 //Read Unit Ctrl reg of IIO unit0 <idle>-0 [000] d.h. 8959.064838: write_msr: a40, value 30000 //Write Unit Ctrl reg of IIO unit0 to enable all counters in the unit by clear Freeze bit <------Unit0 is un-freezed. Counter0 has been enabled. Now it starts counting. But counter1 has not been enabled yet. The issue starts here. <idle>-0 [000] d.h. 8959.064846: read_msr: a42, value 0 //Read counter reg of IIO unit0 counter1 <idle>-0 [000] d.h. 8959.064847: write_msr: a49, value 40000e //Write Ctrl reg of IIO unit0 counter1 to enable counter1. <------ Now, counter1 just starts to count. Counter0 has been running for a while. Current code un-freezes the Unit Ctrl right after the first counter is enabled. The subsequent group events always loses some counter values. Implement pmu_enable and pmu_disable support for uncore, which can help to batch hardware accesses. No one uses uncore_enable_box and uncore_disable_box. Remove them. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-drivers-review@eclists.intel.com Cc: linux-perf@eclists.intel.com Fixes: 087bfbb03269 ("perf/x86: Add generic Intel uncore PMU support") Link: https://lkml.kernel.org/r/1572014593-31591-1-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 22:43:13 +08:00
static void uncore_pmu_enable(struct pmu *pmu)
{
struct intel_uncore_pmu *uncore_pmu;
struct intel_uncore_box *box;
uncore_pmu = container_of(pmu, struct intel_uncore_pmu, pmu);
if (!uncore_pmu)
return;
box = uncore_pmu_to_box(uncore_pmu, smp_processor_id());
if (!box)
return;
if (uncore_pmu->type->ops->enable_box)
uncore_pmu->type->ops->enable_box(box);
}
static void uncore_pmu_disable(struct pmu *pmu)
{
struct intel_uncore_pmu *uncore_pmu;
struct intel_uncore_box *box;
uncore_pmu = container_of(pmu, struct intel_uncore_pmu, pmu);
if (!uncore_pmu)
return;
box = uncore_pmu_to_box(uncore_pmu, smp_processor_id());
if (!box)
return;
if (uncore_pmu->type->ops->disable_box)
uncore_pmu->type->ops->disable_box(box);
}
static ssize_t uncore_get_attr_cpumask(struct device *dev,
struct device_attribute *attr, char *buf)
{
return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
}
static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);
static struct attribute *uncore_pmu_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static const struct attribute_group uncore_pmu_attr_group = {
.attrs = uncore_pmu_attrs,
};
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
{
int ret;
if (!pmu->type->pmu) {
pmu->pmu = (struct pmu) {
.attr_groups = pmu->type->attr_groups,
.task_ctx_nr = perf_invalid_context,
perf/x86/uncore: Fix event group support The events in the same group don't start or stop simultaneously. Here is the ftrace when enabling event group for uncore_iio_0: # perf stat -e "{uncore_iio_0/event=0x1/,uncore_iio_0/event=0xe/}" <idle>-0 [000] d.h. 8959.064832: read_msr: a41, value b2b0b030 //Read counter reg of IIO unit0 counter0 <idle>-0 [000] d.h. 8959.064835: write_msr: a48, value 400001 //Write Ctrl reg of IIO unit0 counter0 to enable counter0. <------ Although counter0 is enabled, Unit Ctrl is still freezed. Nothing will count. We are still good here. <idle>-0 [000] d.h. 8959.064836: read_msr: a40, value 30100 //Read Unit Ctrl reg of IIO unit0 <idle>-0 [000] d.h. 8959.064838: write_msr: a40, value 30000 //Write Unit Ctrl reg of IIO unit0 to enable all counters in the unit by clear Freeze bit <------Unit0 is un-freezed. Counter0 has been enabled. Now it starts counting. But counter1 has not been enabled yet. The issue starts here. <idle>-0 [000] d.h. 8959.064846: read_msr: a42, value 0 //Read counter reg of IIO unit0 counter1 <idle>-0 [000] d.h. 8959.064847: write_msr: a49, value 40000e //Write Ctrl reg of IIO unit0 counter1 to enable counter1. <------ Now, counter1 just starts to count. Counter0 has been running for a while. Current code un-freezes the Unit Ctrl right after the first counter is enabled. The subsequent group events always loses some counter values. Implement pmu_enable and pmu_disable support for uncore, which can help to batch hardware accesses. No one uses uncore_enable_box and uncore_disable_box. Remove them. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: linux-drivers-review@eclists.intel.com Cc: linux-perf@eclists.intel.com Fixes: 087bfbb03269 ("perf/x86: Add generic Intel uncore PMU support") Link: https://lkml.kernel.org/r/1572014593-31591-1-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-25 22:43:13 +08:00
.pmu_enable = uncore_pmu_enable,
.pmu_disable = uncore_pmu_disable,
.event_init = uncore_pmu_event_init,
.add = uncore_pmu_event_add,
.del = uncore_pmu_event_del,
.start = uncore_pmu_event_start,
.stop = uncore_pmu_event_stop,
.read = uncore_pmu_event_read,
.module = THIS_MODULE,
perf/core, arch/x86: Strengthen exclusion checks with PERF_PMU_CAP_NO_EXCLUDE For x86 PMUs that do not support context exclusion let's advertise the PERF_PMU_CAP_NO_EXCLUDE capability. This ensures that perf will prevent us from handling events where any exclusion flags are set. Let's also remove the now unnecessary check for exclusion flags. This change means that amd/iommu and amd/uncore will now also indicate that they do not support exclude_{hv|idle} and intel/uncore that it does not support exclude_{guest|host}. Signed-off-by: Andrew Murray <andrew.murray@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Russell King <linux@armlinux.org.uk> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linuxppc-dev@lists.ozlabs.org Cc: robin.murphy@arm.com Cc: suzuki.poulose@arm.com Link: https://lkml.kernel.org/r/1547128414-50693-12-git-send-email-andrew.murray@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-10 21:53:33 +08:00
.capabilities = PERF_PMU_CAP_NO_EXCLUDE,
perf/x86/intel/uncore: Expose an Uncore unit to PMON mapping Each Uncore unit type, by its nature, can be mapped to its own context - which platform component each PMON block of that type is supposed to monitor. Intel® Xeon® Scalable processor family (code name Skylake-SP) makes significant changes in the integrated I/O (IIO) architecture. The new solution introduces IIO stacks which are responsible for managing traffic between the PCIe domain and the Mesh domain. Each IIO stack has its own PMON block and can handle either DMI port, x16 PCIe root port, MCP-Link or various built-in accelerators. IIO PMON blocks allow concurrent monitoring of I/O flows up to 4 x4 bifurcation within each IIO stack. Software is supposed to program required perf counters within each IIO stack and gather performance data. The tricky thing here is that IIO PMON reports data per IIO stack but users have no idea what IIO stacks are - they only know devices which are connected to the platform. Understanding IIO stack concept to find which IIO stack that particular IO device is connected to, or to identify an IIO PMON block to program for monitoring specific IIO stack assumes a lot of implicit knowledge about given Intel server platform architecture. Usage example: ls /sys/devices/uncore_<type>_<pmu_idx>/die* Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com> Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Link: https://lkml.kernel.org/r/20200601083543.30011-2-alexander.antonov@linux.intel.com
2020-06-01 16:35:41 +08:00
.attr_update = pmu->type->attr_update,
};
} else {
pmu->pmu = *pmu->type->pmu;
pmu->pmu.attr_groups = pmu->type->attr_groups;
perf/x86/intel/uncore: Expose an Uncore unit to PMON mapping Each Uncore unit type, by its nature, can be mapped to its own context - which platform component each PMON block of that type is supposed to monitor. Intel® Xeon® Scalable processor family (code name Skylake-SP) makes significant changes in the integrated I/O (IIO) architecture. The new solution introduces IIO stacks which are responsible for managing traffic between the PCIe domain and the Mesh domain. Each IIO stack has its own PMON block and can handle either DMI port, x16 PCIe root port, MCP-Link or various built-in accelerators. IIO PMON blocks allow concurrent monitoring of I/O flows up to 4 x4 bifurcation within each IIO stack. Software is supposed to program required perf counters within each IIO stack and gather performance data. The tricky thing here is that IIO PMON reports data per IIO stack but users have no idea what IIO stacks are - they only know devices which are connected to the platform. Understanding IIO stack concept to find which IIO stack that particular IO device is connected to, or to identify an IIO PMON block to program for monitoring specific IIO stack assumes a lot of implicit knowledge about given Intel server platform architecture. Usage example: ls /sys/devices/uncore_<type>_<pmu_idx>/die* Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com> Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Link: https://lkml.kernel.org/r/20200601083543.30011-2-alexander.antonov@linux.intel.com
2020-06-01 16:35:41 +08:00
pmu->pmu.attr_update = pmu->type->attr_update;
}
if (pmu->type->num_boxes == 1) {
if (strlen(pmu->type->name) > 0)
sprintf(pmu->name, "uncore_%s", pmu->type->name);
else
sprintf(pmu->name, "uncore");
} else {
sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
pmu->pmu_idx);
}
ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
if (!ret)
pmu->registered = true;
return ret;
}
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
{
if (!pmu->registered)
return;
perf_pmu_unregister(&pmu->pmu);
pmu->registered = false;
}
static void uncore_free_boxes(struct intel_uncore_pmu *pmu)
{
int die;
for (die = 0; die < uncore_max_dies(); die++)
kfree(pmu->boxes[die]);
kfree(pmu->boxes);
}
static void uncore_type_exit(struct intel_uncore_type *type)
{
struct intel_uncore_pmu *pmu = type->pmus;
int i;
perf/x86/intel/uncore: Expose an Uncore unit to PMON mapping Each Uncore unit type, by its nature, can be mapped to its own context - which platform component each PMON block of that type is supposed to monitor. Intel® Xeon® Scalable processor family (code name Skylake-SP) makes significant changes in the integrated I/O (IIO) architecture. The new solution introduces IIO stacks which are responsible for managing traffic between the PCIe domain and the Mesh domain. Each IIO stack has its own PMON block and can handle either DMI port, x16 PCIe root port, MCP-Link or various built-in accelerators. IIO PMON blocks allow concurrent monitoring of I/O flows up to 4 x4 bifurcation within each IIO stack. Software is supposed to program required perf counters within each IIO stack and gather performance data. The tricky thing here is that IIO PMON reports data per IIO stack but users have no idea what IIO stacks are - they only know devices which are connected to the platform. Understanding IIO stack concept to find which IIO stack that particular IO device is connected to, or to identify an IIO PMON block to program for monitoring specific IIO stack assumes a lot of implicit knowledge about given Intel server platform architecture. Usage example: ls /sys/devices/uncore_<type>_<pmu_idx>/die* Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com> Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Link: https://lkml.kernel.org/r/20200601083543.30011-2-alexander.antonov@linux.intel.com
2020-06-01 16:35:41 +08:00
if (type->cleanup_mapping)
type->cleanup_mapping(type);
if (pmu) {
for (i = 0; i < type->num_boxes; i++, pmu++) {
uncore_pmu_unregister(pmu);
uncore_free_boxes(pmu);
}
kfree(type->pmus);
type->pmus = NULL;
}
kfree(type->events_group);
type->events_group = NULL;
}
static void uncore_types_exit(struct intel_uncore_type **types)
{
for (; *types; types++)
uncore_type_exit(*types);
}
static int __init uncore_type_init(struct intel_uncore_type *type, bool setid)
{
struct intel_uncore_pmu *pmus;
size_t size;
int i, j;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 05:03:40 +08:00
pmus = kcalloc(type->num_boxes, sizeof(*pmus), GFP_KERNEL);
if (!pmus)
return -ENOMEM;
size = uncore_max_dies() * sizeof(struct intel_uncore_box *);
for (i = 0; i < type->num_boxes; i++) {
pmus[i].func_id = setid ? i : -1;
pmus[i].pmu_idx = i;
pmus[i].type = type;
pmus[i].boxes = kzalloc(size, GFP_KERNEL);
if (!pmus[i].boxes)
goto err;
}
type->pmus = pmus;
type->unconstrainted = (struct event_constraint)
__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
0, type->num_counters, 0, 0);
if (type->event_descs) {
struct {
struct attribute_group group;
struct attribute *attrs[];
} *attr_group;
for (i = 0; type->event_descs[i].attr.attr.name; i++);
attr_group = kzalloc(struct_size(attr_group, attrs, i + 1),
GFP_KERNEL);
if (!attr_group)
goto err;
attr_group->group.name = "events";
attr_group->group.attrs = attr_group->attrs;
for (j = 0; j < i; j++)
attr_group->attrs[j] = &type->event_descs[j].attr.attr;
type->events_group = &attr_group->group;
}
type->pmu_group = &uncore_pmu_attr_group;
perf/x86/intel/uncore: Expose an Uncore unit to PMON mapping Each Uncore unit type, by its nature, can be mapped to its own context - which platform component each PMON block of that type is supposed to monitor. Intel® Xeon® Scalable processor family (code name Skylake-SP) makes significant changes in the integrated I/O (IIO) architecture. The new solution introduces IIO stacks which are responsible for managing traffic between the PCIe domain and the Mesh domain. Each IIO stack has its own PMON block and can handle either DMI port, x16 PCIe root port, MCP-Link or various built-in accelerators. IIO PMON blocks allow concurrent monitoring of I/O flows up to 4 x4 bifurcation within each IIO stack. Software is supposed to program required perf counters within each IIO stack and gather performance data. The tricky thing here is that IIO PMON reports data per IIO stack but users have no idea what IIO stacks are - they only know devices which are connected to the platform. Understanding IIO stack concept to find which IIO stack that particular IO device is connected to, or to identify an IIO PMON block to program for monitoring specific IIO stack assumes a lot of implicit knowledge about given Intel server platform architecture. Usage example: ls /sys/devices/uncore_<type>_<pmu_idx>/die* Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com> Signed-off-by: Roman Sudarikov <roman.sudarikov@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kan Liang <kan.liang@linux.intel.com> Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Link: https://lkml.kernel.org/r/20200601083543.30011-2-alexander.antonov@linux.intel.com
2020-06-01 16:35:41 +08:00
if (type->set_mapping)
type->set_mapping(type);
return 0;
err:
for (i = 0; i < type->num_boxes; i++)
kfree(pmus[i].boxes);
kfree(pmus);
return -ENOMEM;
}
static int __init
uncore_types_init(struct intel_uncore_type **types, bool setid)
{
int ret;
for (; *types; types++) {
ret = uncore_type_init(*types, setid);
if (ret)
return ret;
}
return 0;
}
/*
* Get the die information of a PCI device.
* @pdev: The PCI device.
* @phys_id: The physical socket id which the device maps to.
* @die: The die id which the device maps to.
*/
static int uncore_pci_get_dev_die_info(struct pci_dev *pdev,
int *phys_id, int *die)
{
*phys_id = uncore_pcibus_to_physid(pdev->bus);
if (*phys_id < 0)
return -ENODEV;
*die = (topology_max_die_per_package() > 1) ? *phys_id :
topology_phys_to_logical_pkg(*phys_id);
if (*die < 0)
return -EINVAL;
return 0;
}
/*
* Find the PMU of a PCI device.
* @pdev: The PCI device.
* @ids: The ID table of the available PCI devices with a PMU.
*/
static struct intel_uncore_pmu *
uncore_pci_find_dev_pmu(struct pci_dev *pdev, const struct pci_device_id *ids)
{
struct intel_uncore_pmu *pmu = NULL;
struct intel_uncore_type *type;
kernel_ulong_t data;
unsigned int devfn;
while (ids && ids->vendor) {
if ((ids->vendor == pdev->vendor) &&
(ids->device == pdev->device)) {
data = ids->driver_data;
devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(data),
UNCORE_PCI_DEV_FUNC(data));
if (devfn == pdev->devfn) {
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(data)];
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(data)];
break;
}
}
ids++;
}
return pmu;
}
/*
* Register the PMU for a PCI device
* @pdev: The PCI device.
* @type: The corresponding PMU type of the device.
* @pmu: The corresponding PMU of the device.
* @phys_id: The physical socket id which the device maps to.
* @die: The die id which the device maps to.
*/
static int uncore_pci_pmu_register(struct pci_dev *pdev,
struct intel_uncore_type *type,
struct intel_uncore_pmu *pmu,
int phys_id, int die)
{
struct intel_uncore_box *box;
int ret;
if (WARN_ON_ONCE(pmu->boxes[die] != NULL))
return -EINVAL;
box = uncore_alloc_box(type, NUMA_NO_NODE);
if (!box)
return -ENOMEM;
if (pmu->func_id < 0)
pmu->func_id = pdev->devfn;
else
WARN_ON_ONCE(pmu->func_id != pdev->devfn);
atomic_inc(&box->refcnt);
box->pci_phys_id = phys_id;
box->dieid = die;
box->pci_dev = pdev;
box->pmu = pmu;
uncore_box_init(box);
pmu->boxes[die] = box;
if (atomic_inc_return(&pmu->activeboxes) > 1)
return 0;
/* First active box registers the pmu */
ret = uncore_pmu_register(pmu);
if (ret) {
pmu->boxes[die] = NULL;
uncore_box_exit(box);
kfree(box);
}
return ret;
}
/*
* add a pci uncore device
*/
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct intel_uncore_type *type;
perf/x86/intel/uncore: Locate specific box by checking full device info Some platforms, e.g. Knights Landing, use a common PCI device ID for multiple instances of an uncore PMU device type. So it is impossible to locate the specific instances only by PCI device ID. The current code specially handles Knights Landing by arbitrarily pointing an instance to an unused uncore box. However, we still have no idea which uncore device is mapped to which box. Furthermore, there could be more platforms which use a common PCI device ID for uncore devices. We have to specially handle them one by one. This patch records full device information (slot, func, and device ID) in id_table[]. So the probe function can point the instance to a specific uncore box by checking the full device information. Tested-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: tglx@linutronix.de Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@suse.de Cc: harish.chegondi@intel.com Cc: hubert.chrzaniuk@intel.com Cc: lawrence.f.meadows@intel.com Link: http://lkml.kernel.org/r/1463379504-39003-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-16 14:18:24 +08:00
struct intel_uncore_pmu *pmu = NULL;
int phys_id, die, ret;
ret = uncore_pci_get_dev_die_info(pdev, &phys_id, &die);
if (ret)
return ret;
if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
uncore_extra_pci_dev[die].dev[idx] = pdev;
pci_set_drvdata(pdev, NULL);
return 0;
}
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
perf/x86/intel/uncore: Locate specific box by checking full device info Some platforms, e.g. Knights Landing, use a common PCI device ID for multiple instances of an uncore PMU device type. So it is impossible to locate the specific instances only by PCI device ID. The current code specially handles Knights Landing by arbitrarily pointing an instance to an unused uncore box. However, we still have no idea which uncore device is mapped to which box. Furthermore, there could be more platforms which use a common PCI device ID for uncore devices. We have to specially handle them one by one. This patch records full device information (slot, func, and device ID) in id_table[]. So the probe function can point the instance to a specific uncore box by checking the full device information. Tested-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: tglx@linutronix.de Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@suse.de Cc: harish.chegondi@intel.com Cc: hubert.chrzaniuk@intel.com Cc: lawrence.f.meadows@intel.com Link: http://lkml.kernel.org/r/1463379504-39003-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-16 14:18:24 +08:00
/*
perf/x86/intel/uncore: Locate specific box by checking full device info Some platforms, e.g. Knights Landing, use a common PCI device ID for multiple instances of an uncore PMU device type. So it is impossible to locate the specific instances only by PCI device ID. The current code specially handles Knights Landing by arbitrarily pointing an instance to an unused uncore box. However, we still have no idea which uncore device is mapped to which box. Furthermore, there could be more platforms which use a common PCI device ID for uncore devices. We have to specially handle them one by one. This patch records full device information (slot, func, and device ID) in id_table[]. So the probe function can point the instance to a specific uncore box by checking the full device information. Tested-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: tglx@linutronix.de Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@suse.de Cc: harish.chegondi@intel.com Cc: hubert.chrzaniuk@intel.com Cc: lawrence.f.meadows@intel.com Link: http://lkml.kernel.org/r/1463379504-39003-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-16 14:18:24 +08:00
* Some platforms, e.g. Knights Landing, use a common PCI device ID
* for multiple instances of an uncore PMU device type. We should check
* PCI slot and func to indicate the uncore box.
*/
perf/x86/intel/uncore: Locate specific box by checking full device info Some platforms, e.g. Knights Landing, use a common PCI device ID for multiple instances of an uncore PMU device type. So it is impossible to locate the specific instances only by PCI device ID. The current code specially handles Knights Landing by arbitrarily pointing an instance to an unused uncore box. However, we still have no idea which uncore device is mapped to which box. Furthermore, there could be more platforms which use a common PCI device ID for uncore devices. We have to specially handle them one by one. This patch records full device information (slot, func, and device ID) in id_table[]. So the probe function can point the instance to a specific uncore box by checking the full device information. Tested-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: tglx@linutronix.de Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@suse.de Cc: harish.chegondi@intel.com Cc: hubert.chrzaniuk@intel.com Cc: lawrence.f.meadows@intel.com Link: http://lkml.kernel.org/r/1463379504-39003-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-16 14:18:24 +08:00
if (id->driver_data & ~0xffff) {
struct pci_driver *pci_drv = pdev->driver;
pmu = uncore_pci_find_dev_pmu(pdev, pci_drv->id_table);
perf/x86/intel/uncore: Locate specific box by checking full device info Some platforms, e.g. Knights Landing, use a common PCI device ID for multiple instances of an uncore PMU device type. So it is impossible to locate the specific instances only by PCI device ID. The current code specially handles Knights Landing by arbitrarily pointing an instance to an unused uncore box. However, we still have no idea which uncore device is mapped to which box. Furthermore, there could be more platforms which use a common PCI device ID for uncore devices. We have to specially handle them one by one. This patch records full device information (slot, func, and device ID) in id_table[]. So the probe function can point the instance to a specific uncore box by checking the full device information. Tested-by: Lukasz Odzioba <lukasz.odzioba@intel.com> Signed-off-by: Kan Liang <kan.liang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: tglx@linutronix.de Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: bp@suse.de Cc: harish.chegondi@intel.com Cc: hubert.chrzaniuk@intel.com Cc: lawrence.f.meadows@intel.com Link: http://lkml.kernel.org/r/1463379504-39003-1-git-send-email-kan.liang@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-16 14:18:24 +08:00
if (pmu == NULL)
return -ENODEV;
} else {
/*
* for performance monitoring unit with multiple boxes,
* each box has a different function id.
*/
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
}
ret = uncore_pci_pmu_register(pdev, type, pmu, phys_id, die);
pci_set_drvdata(pdev, pmu->boxes[die]);
return ret;
}
/*
* Unregister the PMU of a PCI device
* @pmu: The corresponding PMU is unregistered.
* @phys_id: The physical socket id which the device maps to.
* @die: The die id which the device maps to.
*/
static void uncore_pci_pmu_unregister(struct intel_uncore_pmu *pmu,
int phys_id, int die)
{
struct intel_uncore_box *box = pmu->boxes[die];
if (WARN_ON_ONCE(phys_id != box->pci_phys_id))
return;
pmu->boxes[die] = NULL;
if (atomic_dec_return(&pmu->activeboxes) == 0)
uncore_pmu_unregister(pmu);
uncore_box_exit(box);
kfree(box);
}
static void uncore_pci_remove(struct pci_dev *pdev)
{
struct intel_uncore_box *box;
struct intel_uncore_pmu *pmu;
int i, phys_id, die;
if (uncore_pci_get_dev_die_info(pdev, &phys_id, &die))
return;
box = pci_get_drvdata(pdev);
if (!box) {
for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
if (uncore_extra_pci_dev[die].dev[i] == pdev) {
uncore_extra_pci_dev[die].dev[i] = NULL;
break;
}
}
WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
return;
}
pmu = box->pmu;
pci_set_drvdata(pdev, NULL);
uncore_pci_pmu_unregister(pmu, phys_id, die);
}
static int uncore_bus_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
struct pci_dev *pdev = to_pci_dev(dev);
struct intel_uncore_pmu *pmu;
int phys_id, die;
/* Unregister the PMU when the device is going to be deleted. */
if (action != BUS_NOTIFY_DEL_DEVICE)
return NOTIFY_DONE;
pmu = uncore_pci_find_dev_pmu(pdev, uncore_pci_sub_driver->id_table);
if (!pmu)
return NOTIFY_DONE;
if (uncore_pci_get_dev_die_info(pdev, &phys_id, &die))
return NOTIFY_DONE;
uncore_pci_pmu_unregister(pmu, phys_id, die);
return NOTIFY_OK;
}
static struct notifier_block uncore_notifier = {
.notifier_call = uncore_bus_notify,
};
static void uncore_pci_sub_driver_init(void)
{
const struct pci_device_id *ids = uncore_pci_sub_driver->id_table;
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct pci_dev *pci_sub_dev;
bool notify = false;
unsigned int devfn;
int phys_id, die;
while (ids && ids->vendor) {
pci_sub_dev = NULL;
type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(ids->driver_data)];
/*
* Search the available device, and register the
* corresponding PMU.
*/
while ((pci_sub_dev = pci_get_device(PCI_VENDOR_ID_INTEL,
ids->device, pci_sub_dev))) {
devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(ids->driver_data),
UNCORE_PCI_DEV_FUNC(ids->driver_data));
if (devfn != pci_sub_dev->devfn)
continue;
pmu = &type->pmus[UNCORE_PCI_DEV_IDX(ids->driver_data)];
if (!pmu)
continue;
if (uncore_pci_get_dev_die_info(pci_sub_dev,
&phys_id, &die))
continue;
if (!uncore_pci_pmu_register(pci_sub_dev, type, pmu,
phys_id, die))
notify = true;
}
ids++;
}
if (notify && bus_register_notifier(&pci_bus_type, &uncore_notifier))
notify = false;
if (!notify)
uncore_pci_sub_driver = NULL;
}
static int __init uncore_pci_init(void)
{
size_t size;
int ret;
size = uncore_max_dies() * sizeof(struct pci_extra_dev);
uncore_extra_pci_dev = kzalloc(size, GFP_KERNEL);
if (!uncore_extra_pci_dev) {
ret = -ENOMEM;
goto err;
}
ret = uncore_types_init(uncore_pci_uncores, false);
if (ret)
goto errtype;
uncore_pci_driver->probe = uncore_pci_probe;
uncore_pci_driver->remove = uncore_pci_remove;
ret = pci_register_driver(uncore_pci_driver);
if (ret)
goto errtype;
if (uncore_pci_sub_driver)
uncore_pci_sub_driver_init();
pcidrv_registered = true;
return 0;
errtype:
uncore_types_exit(uncore_pci_uncores);
kfree(uncore_extra_pci_dev);
uncore_extra_pci_dev = NULL;
uncore_free_pcibus_map();
err:
uncore_pci_uncores = empty_uncore;
return ret;
}
static void uncore_pci_exit(void)
{
if (pcidrv_registered) {
pcidrv_registered = false;
if (uncore_pci_sub_driver)
bus_unregister_notifier(&pci_bus_type, &uncore_notifier);
pci_unregister_driver(uncore_pci_driver);
uncore_types_exit(uncore_pci_uncores);
kfree(uncore_extra_pci_dev);
uncore_free_pcibus_map();
}
}
static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu,
int new_cpu)
{
struct intel_uncore_pmu *pmu = type->pmus;
struct intel_uncore_box *box;
int i, die;
die = topology_logical_die_id(old_cpu < 0 ? new_cpu : old_cpu);
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[die];
if (!box)
continue;
if (old_cpu < 0) {
WARN_ON_ONCE(box->cpu != -1);
box->cpu = new_cpu;
continue;
}
WARN_ON_ONCE(box->cpu != old_cpu);
box->cpu = -1;
if (new_cpu < 0)
continue;
uncore_pmu_cancel_hrtimer(box);
perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu);
box->cpu = new_cpu;
}
}
static void uncore_change_context(struct intel_uncore_type **uncores,
int old_cpu, int new_cpu)
{
for (; *uncores; uncores++)
uncore_change_type_ctx(*uncores, old_cpu, new_cpu);
}
static void uncore_box_unref(struct intel_uncore_type **types, int id)
{
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
int i;
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[id];
if (box && atomic_dec_return(&box->refcnt) == 0)
uncore_box_exit(box);
}
}
}
static int uncore_event_cpu_offline(unsigned int cpu)
{
int die, target;
/* Check if exiting cpu is used for collecting uncore events */
if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
goto unref;
/* Find a new cpu to collect uncore events */
target = cpumask_any_but(topology_die_cpumask(cpu), cpu);
/* Migrate uncore events to the new target */
if (target < nr_cpu_ids)
cpumask_set_cpu(target, &uncore_cpu_mask);
else
target = -1;
uncore_change_context(uncore_msr_uncores, cpu, target);
uncore_change_context(uncore_mmio_uncores, cpu, target);
uncore_change_context(uncore_pci_uncores, cpu, target);
unref:
/* Clear the references */
die = topology_logical_die_id(cpu);
uncore_box_unref(uncore_msr_uncores, die);
uncore_box_unref(uncore_mmio_uncores, die);
return 0;
}
static int allocate_boxes(struct intel_uncore_type **types,
unsigned int die, unsigned int cpu)
{
struct intel_uncore_box *box, *tmp;
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
LIST_HEAD(allocated);
int i;
/* Try to allocate all required boxes */
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
if (pmu->boxes[die])
continue;
box = uncore_alloc_box(type, cpu_to_node(cpu));
if (!box)
goto cleanup;
box->pmu = pmu;
box->dieid = die;
list_add(&box->active_list, &allocated);
}
}
/* Install them in the pmus */
list_for_each_entry_safe(box, tmp, &allocated, active_list) {
list_del_init(&box->active_list);
box->pmu->boxes[die] = box;
}
return 0;
cleanup:
list_for_each_entry_safe(box, tmp, &allocated, active_list) {
list_del_init(&box->active_list);
kfree(box);
}
return -ENOMEM;
}
static int uncore_box_ref(struct intel_uncore_type **types,
int id, unsigned int cpu)
{
struct intel_uncore_type *type;
struct intel_uncore_pmu *pmu;
struct intel_uncore_box *box;
int i, ret;
ret = allocate_boxes(types, id, cpu);
if (ret)
return ret;
for (; *types; types++) {
type = *types;
pmu = type->pmus;
for (i = 0; i < type->num_boxes; i++, pmu++) {
box = pmu->boxes[id];
if (box && atomic_inc_return(&box->refcnt) == 1)
uncore_box_init(box);
}
}
return 0;
}
static int uncore_event_cpu_online(unsigned int cpu)
{
int die, target, msr_ret, mmio_ret;
die = topology_logical_die_id(cpu);
msr_ret = uncore_box_ref(uncore_msr_uncores, die, cpu);
mmio_ret = uncore_box_ref(uncore_mmio_uncores, die, cpu);
if (msr_ret && mmio_ret)
return -ENOMEM;
/*
* Check if there is an online cpu in the package
* which collects uncore events already.
*/
target = cpumask_any_and(&uncore_cpu_mask, topology_die_cpumask(cpu));
if (target < nr_cpu_ids)
return 0;
cpumask_set_cpu(cpu, &uncore_cpu_mask);
if (!msr_ret)
uncore_change_context(uncore_msr_uncores, -1, cpu);
if (!mmio_ret)
uncore_change_context(uncore_mmio_uncores, -1, cpu);
uncore_change_context(uncore_pci_uncores, -1, cpu);
return 0;
}
static int __init type_pmu_register(struct intel_uncore_type *type)
{
int i, ret;
for (i = 0; i < type->num_boxes; i++) {
ret = uncore_pmu_register(&type->pmus[i]);
if (ret)
return ret;
}
return 0;
}
static int __init uncore_msr_pmus_register(void)
{
struct intel_uncore_type **types = uncore_msr_uncores;
int ret;
for (; *types; types++) {
ret = type_pmu_register(*types);
if (ret)
return ret;
}
return 0;
}
static int __init uncore_cpu_init(void)
{
int ret;
ret = uncore_types_init(uncore_msr_uncores, true);
if (ret)
goto err;
ret = uncore_msr_pmus_register();
if (ret)
goto err;
return 0;
err:
uncore_types_exit(uncore_msr_uncores);
uncore_msr_uncores = empty_uncore;
return ret;
}
static int __init uncore_mmio_init(void)
{
struct intel_uncore_type **types = uncore_mmio_uncores;
int ret;
ret = uncore_types_init(types, true);
if (ret)
goto err;
for (; *types; types++) {
ret = type_pmu_register(*types);
if (ret)
goto err;
}
return 0;
err:
uncore_types_exit(uncore_mmio_uncores);
uncore_mmio_uncores = empty_uncore;
return ret;
}
struct intel_uncore_init_fun {
void (*cpu_init)(void);
int (*pci_init)(void);
void (*mmio_init)(void);
};
static const struct intel_uncore_init_fun nhm_uncore_init __initconst = {
.cpu_init = nhm_uncore_cpu_init,
};
static const struct intel_uncore_init_fun snb_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = snb_uncore_pci_init,
};
static const struct intel_uncore_init_fun ivb_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = ivb_uncore_pci_init,
};
static const struct intel_uncore_init_fun hsw_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = hsw_uncore_pci_init,
};
static const struct intel_uncore_init_fun bdw_uncore_init __initconst = {
.cpu_init = snb_uncore_cpu_init,
.pci_init = bdw_uncore_pci_init,
};
static const struct intel_uncore_init_fun snbep_uncore_init __initconst = {
.cpu_init = snbep_uncore_cpu_init,
.pci_init = snbep_uncore_pci_init,
};
static const struct intel_uncore_init_fun nhmex_uncore_init __initconst = {
.cpu_init = nhmex_uncore_cpu_init,
};
static const struct intel_uncore_init_fun ivbep_uncore_init __initconst = {
.cpu_init = ivbep_uncore_cpu_init,
.pci_init = ivbep_uncore_pci_init,
};
static const struct intel_uncore_init_fun hswep_uncore_init __initconst = {
.cpu_init = hswep_uncore_cpu_init,
.pci_init = hswep_uncore_pci_init,
};
static const struct intel_uncore_init_fun bdx_uncore_init __initconst = {
.cpu_init = bdx_uncore_cpu_init,
.pci_init = bdx_uncore_pci_init,
};
static const struct intel_uncore_init_fun knl_uncore_init __initconst = {
.cpu_init = knl_uncore_cpu_init,
.pci_init = knl_uncore_pci_init,
};
static const struct intel_uncore_init_fun skl_uncore_init __initconst = {
.cpu_init = skl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun skx_uncore_init __initconst = {
.cpu_init = skx_uncore_cpu_init,
.pci_init = skx_uncore_pci_init,
};
static const struct intel_uncore_init_fun icl_uncore_init __initconst = {
.cpu_init = icl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun tgl_uncore_init __initconst = {
.cpu_init = tgl_uncore_cpu_init,
.mmio_init = tgl_uncore_mmio_init,
};
static const struct intel_uncore_init_fun tgl_l_uncore_init __initconst = {
.cpu_init = tgl_uncore_cpu_init,
.mmio_init = tgl_l_uncore_mmio_init,
};
static const struct intel_uncore_init_fun rkl_uncore_init __initconst = {
.cpu_init = tgl_uncore_cpu_init,
.pci_init = skl_uncore_pci_init,
};
static const struct intel_uncore_init_fun icx_uncore_init __initconst = {
.cpu_init = icx_uncore_cpu_init,
.pci_init = icx_uncore_pci_init,
.mmio_init = icx_uncore_mmio_init,
};
static const struct intel_uncore_init_fun snr_uncore_init __initconst = {
.cpu_init = snr_uncore_cpu_init,
.pci_init = snr_uncore_pci_init,
.mmio_init = snr_uncore_mmio_init,
};
static const struct x86_cpu_id intel_uncore_match[] __initconst = {
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EP, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EP, &nhm_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &snb_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &ivb_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &hsw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &hsw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &hsw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &bdw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &bdw_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &snbep_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EX, &nhmex_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EX, &nhmex_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ivbep_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &hswep_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &bdx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &bdx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &knl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &knl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &skx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &skl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &icl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &icl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &icl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &icx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &icx_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &tgl_l_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &tgl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rkl_uncore_init),
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &snr_uncore_init),
{},
};
MODULE_DEVICE_TABLE(x86cpu, intel_uncore_match);
static int __init intel_uncore_init(void)
{
const struct x86_cpu_id *id;
struct intel_uncore_init_fun *uncore_init;
int pret = 0, cret = 0, mret = 0, ret;
id = x86_match_cpu(intel_uncore_match);
if (!id)
return -ENODEV;
if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
return -ENODEV;
__uncore_max_dies =
topology_max_packages() * topology_max_die_per_package();
uncore_init = (struct intel_uncore_init_fun *)id->driver_data;
if (uncore_init->pci_init) {
pret = uncore_init->pci_init();
if (!pret)
pret = uncore_pci_init();
}
if (uncore_init->cpu_init) {
uncore_init->cpu_init();
cret = uncore_cpu_init();
}
if (uncore_init->mmio_init) {
uncore_init->mmio_init();
mret = uncore_mmio_init();
}
if (cret && pret && mret)
return -ENODEV;
/* Install hotplug callbacks to setup the targets for each package */
ret = cpuhp_setup_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE,
"perf/x86/intel/uncore:online",
uncore_event_cpu_online,
uncore_event_cpu_offline);
if (ret)
goto err;
return 0;
err:
uncore_types_exit(uncore_msr_uncores);
uncore_types_exit(uncore_mmio_uncores);
uncore_pci_exit();
return ret;
}
module_init(intel_uncore_init);
static void __exit intel_uncore_exit(void)
{
cpuhp_remove_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE);
uncore_types_exit(uncore_msr_uncores);
uncore_types_exit(uncore_mmio_uncores);
uncore_pci_exit();
}
module_exit(intel_uncore_exit);