OpenCloudOS-Kernel/drivers/video/intelfb/intelfbhw.c

2110 lines
51 KiB
C
Raw Normal View History

/*
* intelfb
*
* Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
*
* Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
* 2004 Sylvain Meyer
*
* This driver consists of two parts. The first part (intelfbdrv.c) provides
* the basic fbdev interfaces, is derived in part from the radeonfb and
* vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
* provides the code to program the hardware. Most of it is derived from
* the i810/i830 XFree86 driver. The HW-specific code is covered here
* under a dual license (GPL and MIT/XFree86 license).
*
* Author: David Dawes
*
*/
/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/interrupt.h>
#include <asm/io.h>
#include "intelfb.h"
#include "intelfbhw.h"
struct pll_min_max {
int min_m, max_m, min_m1, max_m1;
int min_m2, max_m2, min_n, max_n;
int min_p, max_p, min_p1, max_p1;
int min_vco, max_vco, p_transition_clk, ref_clk;
int p_inc_lo, p_inc_hi;
};
#define PLLS_I8xx 0
#define PLLS_I9xx 1
#define PLLS_MAX 2
static struct pll_min_max plls[PLLS_MAX] = {
{ 108, 140, 18, 26,
6, 16, 3, 16,
4, 128, 0, 31,
930000, 1400000, 165000, 48000,
4, 2 }, /* I8xx */
{ 75, 120, 10, 20,
5, 9, 4, 7,
5, 80, 1, 8,
1400000, 2800000, 200000, 96000,
10, 5 } /* I9xx */
};
int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
{
u32 tmp;
if (!pdev || !dinfo)
return 1;
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_830M:
dinfo->name = "Intel(R) 830M";
dinfo->chipset = INTEL_830M;
dinfo->mobile = 1;
dinfo->pll_index = PLLS_I8xx;
return 0;
case PCI_DEVICE_ID_INTEL_845G:
dinfo->name = "Intel(R) 845G";
dinfo->chipset = INTEL_845G;
dinfo->mobile = 0;
dinfo->pll_index = PLLS_I8xx;
return 0;
case PCI_DEVICE_ID_INTEL_854:
dinfo->mobile = 1;
dinfo->name = "Intel(R) 854";
dinfo->chipset = INTEL_854;
return 0;
case PCI_DEVICE_ID_INTEL_85XGM:
tmp = 0;
dinfo->mobile = 1;
dinfo->pll_index = PLLS_I8xx;
pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
INTEL_85X_VARIANT_MASK) {
case INTEL_VAR_855GME:
dinfo->name = "Intel(R) 855GME";
dinfo->chipset = INTEL_855GME;
return 0;
case INTEL_VAR_855GM:
dinfo->name = "Intel(R) 855GM";
dinfo->chipset = INTEL_855GM;
return 0;
case INTEL_VAR_852GME:
dinfo->name = "Intel(R) 852GME";
dinfo->chipset = INTEL_852GME;
return 0;
case INTEL_VAR_852GM:
dinfo->name = "Intel(R) 852GM";
dinfo->chipset = INTEL_852GM;
return 0;
default:
dinfo->name = "Intel(R) 852GM/855GM";
dinfo->chipset = INTEL_85XGM;
return 0;
}
break;
case PCI_DEVICE_ID_INTEL_865G:
dinfo->name = "Intel(R) 865G";
dinfo->chipset = INTEL_865G;
dinfo->mobile = 0;
dinfo->pll_index = PLLS_I8xx;
return 0;
case PCI_DEVICE_ID_INTEL_915G:
dinfo->name = "Intel(R) 915G";
dinfo->chipset = INTEL_915G;
dinfo->mobile = 0;
dinfo->pll_index = PLLS_I9xx;
return 0;
case PCI_DEVICE_ID_INTEL_915GM:
dinfo->name = "Intel(R) 915GM";
dinfo->chipset = INTEL_915GM;
dinfo->mobile = 1;
dinfo->pll_index = PLLS_I9xx;
return 0;
case PCI_DEVICE_ID_INTEL_945G:
dinfo->name = "Intel(R) 945G";
dinfo->chipset = INTEL_945G;
dinfo->mobile = 0;
dinfo->pll_index = PLLS_I9xx;
return 0;
case PCI_DEVICE_ID_INTEL_945GM:
dinfo->name = "Intel(R) 945GM";
dinfo->chipset = INTEL_945GM;
dinfo->mobile = 1;
dinfo->pll_index = PLLS_I9xx;
return 0;
case PCI_DEVICE_ID_INTEL_945GME:
dinfo->name = "Intel(R) 945GME";
dinfo->chipset = INTEL_945GME;
dinfo->mobile = 1;
dinfo->pll_index = PLLS_I9xx;
return 0;
case PCI_DEVICE_ID_INTEL_965G:
dinfo->name = "Intel(R) 965G";
dinfo->chipset = INTEL_965G;
dinfo->mobile = 0;
dinfo->pll_index = PLLS_I9xx;
return 0;
case PCI_DEVICE_ID_INTEL_965GM:
dinfo->name = "Intel(R) 965GM";
dinfo->chipset = INTEL_965GM;
dinfo->mobile = 1;
dinfo->pll_index = PLLS_I9xx;
return 0;
default:
return 1;
}
}
int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
int *stolen_size)
{
struct pci_dev *bridge_dev;
u16 tmp;
int stolen_overhead;
if (!pdev || !aperture_size || !stolen_size)
return 1;
/* Find the bridge device. It is always 0:0.0 */
if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
ERR_MSG("cannot find bridge device\n");
return 1;
}
/* Get the fb aperture size and "stolen" memory amount. */
tmp = 0;
pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
pci_dev_put(bridge_dev);
switch (pdev->device) {
case PCI_DEVICE_ID_INTEL_915G:
case PCI_DEVICE_ID_INTEL_915GM:
case PCI_DEVICE_ID_INTEL_945G:
case PCI_DEVICE_ID_INTEL_945GM:
case PCI_DEVICE_ID_INTEL_945GME:
case PCI_DEVICE_ID_INTEL_965G:
case PCI_DEVICE_ID_INTEL_965GM:
/* 915, 945 and 965 chipsets support a 256MB aperture.
Aperture size is determined by inspected the
base address of the aperture. */
if (pci_resource_start(pdev, 2) & 0x08000000)
*aperture_size = MB(128);
else
*aperture_size = MB(256);
break;
default:
if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
*aperture_size = MB(64);
else
*aperture_size = MB(128);
break;
}
/* Stolen memory size is reduced by the GTT and the popup.
GTT is 1K per MB of aperture size, and popup is 4K. */
stolen_overhead = (*aperture_size / MB(1)) + 4;
switch(pdev->device) {
case PCI_DEVICE_ID_INTEL_830M:
case PCI_DEVICE_ID_INTEL_845G:
switch (tmp & INTEL_830_GMCH_GMS_MASK) {
case INTEL_830_GMCH_GMS_STOLEN_512:
*stolen_size = KB(512) - KB(stolen_overhead);
return 0;
case INTEL_830_GMCH_GMS_STOLEN_1024:
*stolen_size = MB(1) - KB(stolen_overhead);
return 0;
case INTEL_830_GMCH_GMS_STOLEN_8192:
*stolen_size = MB(8) - KB(stolen_overhead);
return 0;
case INTEL_830_GMCH_GMS_LOCAL:
ERR_MSG("only local memory found\n");
return 1;
case INTEL_830_GMCH_GMS_DISABLED:
ERR_MSG("video memory is disabled\n");
return 1;
default:
ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
tmp & INTEL_830_GMCH_GMS_MASK);
return 1;
}
break;
default:
switch (tmp & INTEL_855_GMCH_GMS_MASK) {
case INTEL_855_GMCH_GMS_STOLEN_1M:
*stolen_size = MB(1) - KB(stolen_overhead);
return 0;
case INTEL_855_GMCH_GMS_STOLEN_4M:
*stolen_size = MB(4) - KB(stolen_overhead);
return 0;
case INTEL_855_GMCH_GMS_STOLEN_8M:
*stolen_size = MB(8) - KB(stolen_overhead);
return 0;
case INTEL_855_GMCH_GMS_STOLEN_16M:
*stolen_size = MB(16) - KB(stolen_overhead);
return 0;
case INTEL_855_GMCH_GMS_STOLEN_32M:
*stolen_size = MB(32) - KB(stolen_overhead);
return 0;
case INTEL_915G_GMCH_GMS_STOLEN_48M:
*stolen_size = MB(48) - KB(stolen_overhead);
return 0;
case INTEL_915G_GMCH_GMS_STOLEN_64M:
*stolen_size = MB(64) - KB(stolen_overhead);
return 0;
case INTEL_855_GMCH_GMS_DISABLED:
ERR_MSG("video memory is disabled\n");
return 0;
default:
ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
tmp & INTEL_855_GMCH_GMS_MASK);
return 1;
}
}
}
int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
{
int dvo = 0;
if (INREG(LVDS) & PORT_ENABLE)
dvo |= LVDS_PORT;
if (INREG(DVOA) & PORT_ENABLE)
dvo |= DVOA_PORT;
if (INREG(DVOB) & PORT_ENABLE)
dvo |= DVOB_PORT;
if (INREG(DVOC) & PORT_ENABLE)
dvo |= DVOC_PORT;
return dvo;
}
const char * intelfbhw_dvo_to_string(int dvo)
{
if (dvo & DVOA_PORT)
return "DVO port A";
else if (dvo & DVOB_PORT)
return "DVO port B";
else if (dvo & DVOC_PORT)
return "DVO port C";
else if (dvo & LVDS_PORT)
return "LVDS port";
else
return NULL;
}
int intelfbhw_validate_mode(struct intelfb_info *dinfo,
struct fb_var_screeninfo *var)
{
int bytes_per_pixel;
int tmp;
#if VERBOSE > 0
DBG_MSG("intelfbhw_validate_mode\n");
#endif
bytes_per_pixel = var->bits_per_pixel / 8;
if (bytes_per_pixel == 3)
bytes_per_pixel = 4;
/* Check if enough video memory. */
tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
if (tmp > dinfo->fb.size) {
WRN_MSG("Not enough video ram for mode "
"(%d KByte vs %d KByte).\n",
BtoKB(tmp), BtoKB(dinfo->fb.size));
return 1;
}
/* Check if x/y limits are OK. */
if (var->xres - 1 > HACTIVE_MASK) {
WRN_MSG("X resolution too large (%d vs %d).\n",
var->xres, HACTIVE_MASK + 1);
return 1;
}
if (var->yres - 1 > VACTIVE_MASK) {
WRN_MSG("Y resolution too large (%d vs %d).\n",
var->yres, VACTIVE_MASK + 1);
return 1;
}
if (var->xres < 4) {
WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
return 1;
}
if (var->yres < 4) {
WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
return 1;
}
/* Check for doublescan modes. */
if (var->vmode & FB_VMODE_DOUBLE) {
WRN_MSG("Mode is double-scan.\n");
return 1;
}
if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
WRN_MSG("Odd number of lines in interlaced mode\n");
return 1;
}
/* Check if clock is OK. */
tmp = 1000000000 / var->pixclock;
if (tmp < MIN_CLOCK) {
WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
(tmp + 500) / 1000, MIN_CLOCK / 1000);
return 1;
}
if (tmp > MAX_CLOCK) {
WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
(tmp + 500) / 1000, MAX_CLOCK / 1000);
return 1;
}
return 0;
}
int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct intelfb_info *dinfo = GET_DINFO(info);
u32 offset, xoffset, yoffset;
#if VERBOSE > 0
DBG_MSG("intelfbhw_pan_display\n");
#endif
xoffset = ROUND_DOWN_TO(var->xoffset, 8);
yoffset = var->yoffset;
if ((xoffset + var->xres > var->xres_virtual) ||
(yoffset + var->yres > var->yres_virtual))
return -EINVAL;
offset = (yoffset * dinfo->pitch) +
(xoffset * var->bits_per_pixel) / 8;
offset += dinfo->fb.offset << 12;
dinfo->vsync.pan_offset = offset;
if ((var->activate & FB_ACTIVATE_VBL) &&
!intelfbhw_enable_irq(dinfo))
dinfo->vsync.pan_display = 1;
else {
dinfo->vsync.pan_display = 0;
OUTREG(DSPABASE, offset);
}
return 0;
}
/* Blank the screen. */
void intelfbhw_do_blank(int blank, struct fb_info *info)
{
struct intelfb_info *dinfo = GET_DINFO(info);
u32 tmp;
#if VERBOSE > 0
DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
#endif
/* Turn plane A on or off */
tmp = INREG(DSPACNTR);
if (blank)
tmp &= ~DISPPLANE_PLANE_ENABLE;
else
tmp |= DISPPLANE_PLANE_ENABLE;
OUTREG(DSPACNTR, tmp);
/* Flush */
tmp = INREG(DSPABASE);
OUTREG(DSPABASE, tmp);
/* Turn off/on the HW cursor */
#if VERBOSE > 0
DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
#endif
if (dinfo->cursor_on) {
if (blank)
intelfbhw_cursor_hide(dinfo);
else
intelfbhw_cursor_show(dinfo);
dinfo->cursor_on = 1;
}
dinfo->cursor_blanked = blank;
/* Set DPMS level */
tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
switch (blank) {
case FB_BLANK_UNBLANK:
case FB_BLANK_NORMAL:
tmp |= ADPA_DPMS_D0;
break;
case FB_BLANK_VSYNC_SUSPEND:
tmp |= ADPA_DPMS_D1;
break;
case FB_BLANK_HSYNC_SUSPEND:
tmp |= ADPA_DPMS_D2;
break;
case FB_BLANK_POWERDOWN:
tmp |= ADPA_DPMS_D3;
break;
}
OUTREG(ADPA, tmp);
return;
}
void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
unsigned red, unsigned green, unsigned blue,
unsigned transp)
{
u32 palette_reg = (dinfo->pipe == PIPE_A) ?
PALETTE_A : PALETTE_B;
#if VERBOSE > 0
DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
regno, red, green, blue);
#endif
OUTREG(palette_reg + (regno << 2),
(red << PALETTE_8_RED_SHIFT) |
(green << PALETTE_8_GREEN_SHIFT) |
(blue << PALETTE_8_BLUE_SHIFT));
}
int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
struct intelfb_hwstate *hw, int flag)
{
int i;
#if VERBOSE > 0
DBG_MSG("intelfbhw_read_hw_state\n");
#endif
if (!hw || !dinfo)
return -1;
/* Read in as much of the HW state as possible. */
hw->vga0_divisor = INREG(VGA0_DIVISOR);
hw->vga1_divisor = INREG(VGA1_DIVISOR);
hw->vga_pd = INREG(VGAPD);
hw->dpll_a = INREG(DPLL_A);
hw->dpll_b = INREG(DPLL_B);
hw->fpa0 = INREG(FPA0);
hw->fpa1 = INREG(FPA1);
hw->fpb0 = INREG(FPB0);
hw->fpb1 = INREG(FPB1);
if (flag == 1)
return flag;
#if 0
/* This seems to be a problem with the 852GM/855GM */
for (i = 0; i < PALETTE_8_ENTRIES; i++) {
hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
}
#endif
if (flag == 2)
return flag;
hw->htotal_a = INREG(HTOTAL_A);
hw->hblank_a = INREG(HBLANK_A);
hw->hsync_a = INREG(HSYNC_A);
hw->vtotal_a = INREG(VTOTAL_A);
hw->vblank_a = INREG(VBLANK_A);
hw->vsync_a = INREG(VSYNC_A);
hw->src_size_a = INREG(SRC_SIZE_A);
hw->bclrpat_a = INREG(BCLRPAT_A);
hw->htotal_b = INREG(HTOTAL_B);
hw->hblank_b = INREG(HBLANK_B);
hw->hsync_b = INREG(HSYNC_B);
hw->vtotal_b = INREG(VTOTAL_B);
hw->vblank_b = INREG(VBLANK_B);
hw->vsync_b = INREG(VSYNC_B);
hw->src_size_b = INREG(SRC_SIZE_B);
hw->bclrpat_b = INREG(BCLRPAT_B);
if (flag == 3)
return flag;
hw->adpa = INREG(ADPA);
hw->dvoa = INREG(DVOA);
hw->dvob = INREG(DVOB);
hw->dvoc = INREG(DVOC);
hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
hw->dvob_srcdim = INREG(DVOB_SRCDIM);
hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
hw->lvds = INREG(LVDS);
if (flag == 4)
return flag;
hw->pipe_a_conf = INREG(PIPEACONF);
hw->pipe_b_conf = INREG(PIPEBCONF);
hw->disp_arb = INREG(DISPARB);
if (flag == 5)
return flag;
hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
if (flag == 6)
return flag;
for (i = 0; i < 4; i++) {
hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
}
if (flag == 7)
return flag;
hw->cursor_size = INREG(CURSOR_SIZE);
if (flag == 8)
return flag;
hw->disp_a_ctrl = INREG(DSPACNTR);
hw->disp_b_ctrl = INREG(DSPBCNTR);
hw->disp_a_base = INREG(DSPABASE);
hw->disp_b_base = INREG(DSPBBASE);
hw->disp_a_stride = INREG(DSPASTRIDE);
hw->disp_b_stride = INREG(DSPBSTRIDE);
if (flag == 9)
return flag;
hw->vgacntrl = INREG(VGACNTRL);
if (flag == 10)
return flag;
hw->add_id = INREG(ADD_ID);
if (flag == 11)
return flag;
for (i = 0; i < 7; i++) {
hw->swf0x[i] = INREG(SWF00 + (i << 2));
hw->swf1x[i] = INREG(SWF10 + (i << 2));
if (i < 3)
hw->swf3x[i] = INREG(SWF30 + (i << 2));
}
for (i = 0; i < 8; i++)
hw->fence[i] = INREG(FENCE + (i << 2));
hw->instpm = INREG(INSTPM);
hw->mem_mode = INREG(MEM_MODE);
hw->fw_blc_0 = INREG(FW_BLC_0);
hw->fw_blc_1 = INREG(FW_BLC_1);
hw->hwstam = INREG16(HWSTAM);
hw->ier = INREG16(IER);
hw->iir = INREG16(IIR);
hw->imr = INREG16(IMR);
return 0;
}
static int calc_vclock3(int index, int m, int n, int p)
{
if (p == 0 || n == 0)
return 0;
return plls[index].ref_clk * m / n / p;
}
static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
int lvds)
{
struct pll_min_max *pll = &plls[index];
u32 m, vco, p;
m = (5 * (m1 + 2)) + (m2 + 2);
n += 2;
vco = pll->ref_clk * m / n;
if (index == PLLS_I8xx)
p = ((p1 + 2) * (1 << (p2 + 1)));
else
p = ((p1) * (p2 ? 5 : 10));
return vco / p;
}
#if REGDUMP
static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
int *o_p1, int *o_p2)
{
int p1, p2;
if (IS_I9XX(dinfo)) {
if (dpll & DPLL_P1_FORCE_DIV2)
p1 = 1;
else
p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
p1 = ffs(p1);
p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
} else {
if (dpll & DPLL_P1_FORCE_DIV2)
p1 = 0;
else
p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
}
*o_p1 = p1;
*o_p2 = p2;
}
#endif
void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
struct intelfb_hwstate *hw)
{
#if REGDUMP
int i, m1, m2, n, p1, p2;
int index = dinfo->pll_index;
DBG_MSG("intelfbhw_print_hw_state\n");
if (!hw)
return;
/* Read in as much of the HW state as possible. */
printk("hw state dump start\n");
printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
printk(" VGAPD: 0x%08x\n", hw->vga_pd);
n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
m1, m2, n, p1, p2);
printk(" VGA0: clock is %d\n",
calc_vclock(index, m1, m2, n, p1, p2, 0));
n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
m1, m2, n, p1, p2);
printk(" VGA1: clock is %d\n",
calc_vclock(index, m1, m2, n, p1, p2, 0));
printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
printk(" FPA0: 0x%08x\n", hw->fpa0);
printk(" FPA1: 0x%08x\n", hw->fpa1);
printk(" FPB0: 0x%08x\n", hw->fpb0);
printk(" FPB1: 0x%08x\n", hw->fpb1);
n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
m1, m2, n, p1, p2);
printk(" PLLA0: clock is %d\n",
calc_vclock(index, m1, m2, n, p1, p2, 0));
n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
m1, m2, n, p1, p2);
printk(" PLLA1: clock is %d\n",
calc_vclock(index, m1, m2, n, p1, p2, 0));
#if 0
printk(" PALETTE_A:\n");
for (i = 0; i < PALETTE_8_ENTRIES)
printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
printk(" PALETTE_B:\n");
for (i = 0; i < PALETTE_8_ENTRIES)
printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
#endif
printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
printk(" ADPA: 0x%08x\n", hw->adpa);
printk(" DVOA: 0x%08x\n", hw->dvoa);
printk(" DVOB: 0x%08x\n", hw->dvob);
printk(" DVOC: 0x%08x\n", hw->dvoc);
printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
printk(" LVDS: 0x%08x\n", hw->lvds);
printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
printk(" DISPARB: 0x%08x\n", hw->disp_arb);
printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
printk(" CURSOR_A_PALETTE: ");
for (i = 0; i < 4; i++) {
printk("0x%08x", hw->cursor_a_palette[i]);
if (i < 3)
printk(", ");
}
printk("\n");
printk(" CURSOR_B_PALETTE: ");
for (i = 0; i < 4; i++) {
printk("0x%08x", hw->cursor_b_palette[i]);
if (i < 3)
printk(", ");
}
printk("\n");
printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
printk(" ADD_ID: 0x%08x\n", hw->add_id);
for (i = 0; i < 7; i++) {
printk(" SWF0%d 0x%08x\n", i,
hw->swf0x[i]);
}
for (i = 0; i < 7; i++) {
printk(" SWF1%d 0x%08x\n", i,
hw->swf1x[i]);
}
for (i = 0; i < 3; i++) {
printk(" SWF3%d 0x%08x\n", i,
hw->swf3x[i]);
}
for (i = 0; i < 8; i++)
printk(" FENCE%d 0x%08x\n", i,
hw->fence[i]);
printk(" INSTPM 0x%08x\n", hw->instpm);
printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
printk(" HWSTAM 0x%04x\n", hw->hwstam);
printk(" IER 0x%04x\n", hw->ier);
printk(" IIR 0x%04x\n", hw->iir);
printk(" IMR 0x%04x\n", hw->imr);
printk("hw state dump end\n");
#endif
}
/* Split the M parameter into M1 and M2. */
static int splitm(int index, unsigned int m, unsigned int *retm1,
unsigned int *retm2)
{
int m1, m2;
int testm;
struct pll_min_max *pll = &plls[index];
/* no point optimising too much - brute force m */
for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
testm = (5 * (m1 + 2)) + (m2 + 2);
if (testm == m) {
*retm1 = (unsigned int)m1;
*retm2 = (unsigned int)m2;
return 0;
}
}
}
return 1;
}
/* Split the P parameter into P1 and P2. */
static int splitp(int index, unsigned int p, unsigned int *retp1,
unsigned int *retp2)
{
int p1, p2;
struct pll_min_max *pll = &plls[index];
if (index == PLLS_I9xx) {
p2 = (p % 10) ? 1 : 0;
p1 = p / (p2 ? 5 : 10);
*retp1 = (unsigned int)p1;
*retp2 = (unsigned int)p2;
return 0;
}
if (p % 4 == 0)
p2 = 1;
else
p2 = 0;
p1 = (p / (1 << (p2 + 1))) - 2;
if (p % 4 == 0 && p1 < pll->min_p1) {
p2 = 0;
p1 = (p / (1 << (p2 + 1))) - 2;
}
if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
(p1 + 2) * (1 << (p2 + 1)) != p) {
return 1;
} else {
*retp1 = (unsigned int)p1;
*retp2 = (unsigned int)p2;
return 0;
}
}
static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
{
u32 m1, m2, n, p1, p2, n1, testm;
u32 f_vco, p, p_best = 0, m, f_out = 0;
u32 err_max, err_target, err_best = 10000000;
u32 n_best = 0, m_best = 0, f_best, f_err;
u32 p_min, p_max, p_inc, div_max;
struct pll_min_max *pll = &plls[index];
/* Accept 0.5% difference, but aim for 0.1% */
err_max = 5 * clock / 1000;
err_target = clock / 1000;
DBG_MSG("Clock is %d\n", clock);
div_max = pll->max_vco / clock;
p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
p_min = p_inc;
p_max = ROUND_DOWN_TO(div_max, p_inc);
if (p_min < pll->min_p)
p_min = pll->min_p;
if (p_max > pll->max_p)
p_max = pll->max_p;
DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
p = p_min;
do {
if (splitp(index, p, &p1, &p2)) {
WRN_MSG("cannot split p = %d\n", p);
p += p_inc;
continue;
}
n = pll->min_n;
f_vco = clock * p;
do {
m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
if (m < pll->min_m)
m = pll->min_m + 1;
if (m > pll->max_m)
m = pll->max_m - 1;
for (testm = m - 1; testm <= m; testm++) {
f_out = calc_vclock3(index, testm, n, p);
if (splitm(index, testm, &m1, &m2)) {
WRN_MSG("cannot split m = %d\n",
testm);
continue;
}
if (clock > f_out)
f_err = clock - f_out;
else/* slightly bias the error for bigger clocks */
f_err = f_out - clock + 1;
if (f_err < err_best) {
m_best = testm;
n_best = n;
p_best = p;
f_best = f_out;
err_best = f_err;
}
}
n++;
} while ((n <= pll->max_n) && (f_out >= clock));
p += p_inc;
} while ((p <= p_max));
if (!m_best) {
WRN_MSG("cannot find parameters for clock %d\n", clock);
return 1;
}
m = m_best;
n = n_best;
p = p_best;
splitm(index, m, &m1, &m2);
splitp(index, p, &p1, &p2);
n1 = n - 2;
DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
"f: %d (%d), VCO: %d\n",
m, m1, m2, n, n1, p, p1, p2,
calc_vclock3(index, m, n, p),
calc_vclock(index, m1, m2, n1, p1, p2, 0),
calc_vclock3(index, m, n, p) * p);
*retm1 = m1;
*retm2 = m2;
*retn = n1;
*retp1 = p1;
*retp2 = p2;
*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
return 0;
}
static __inline__ int check_overflow(u32 value, u32 limit,
const char *description)
{
if (value > limit) {
WRN_MSG("%s value %d exceeds limit %d\n",
description, value, limit);
return 1;
}
return 0;
}
/* It is assumed that hw is filled in with the initial state information. */
int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
struct intelfb_hwstate *hw,
struct fb_var_screeninfo *var)
{
int pipe = PIPE_A;
u32 *dpll, *fp0, *fp1;
u32 m1, m2, n, p1, p2, clock_target, clock;
u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
u32 vsync_pol, hsync_pol;
u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
u32 stride_alignment;
DBG_MSG("intelfbhw_mode_to_hw\n");
/* Disable VGA */
hw->vgacntrl |= VGA_DISABLE;
/* Check whether pipe A or pipe B is enabled. */
if (hw->pipe_a_conf & PIPECONF_ENABLE)
pipe = PIPE_A;
else if (hw->pipe_b_conf & PIPECONF_ENABLE)
pipe = PIPE_B;
/* Set which pipe's registers will be set. */
if (pipe == PIPE_B) {
dpll = &hw->dpll_b;
fp0 = &hw->fpb0;
fp1 = &hw->fpb1;
hs = &hw->hsync_b;
hb = &hw->hblank_b;
ht = &hw->htotal_b;
vs = &hw->vsync_b;
vb = &hw->vblank_b;
vt = &hw->vtotal_b;
ss = &hw->src_size_b;
pipe_conf = &hw->pipe_b_conf;
} else {
dpll = &hw->dpll_a;
fp0 = &hw->fpa0;
fp1 = &hw->fpa1;
hs = &hw->hsync_a;
hb = &hw->hblank_a;
ht = &hw->htotal_a;
vs = &hw->vsync_a;
vb = &hw->vblank_a;
vt = &hw->vtotal_a;
ss = &hw->src_size_a;
pipe_conf = &hw->pipe_a_conf;
}
/* Use ADPA register for sync control. */
hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
/* sync polarity */
hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
(ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
(vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
/* Connect correct pipe to the analog port DAC */
hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
/* Set DPMS state to D0 (on) */
hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
hw->adpa |= ADPA_DPMS_D0;
hw->adpa |= ADPA_DAC_ENABLE;
*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
/* Desired clock in kHz */
clock_target = 1000000000 / var->pixclock;
if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
&n, &p1, &p2, &clock)) {
WRN_MSG("calc_pll_params failed\n");
return 1;
}
/* Check for overflow. */
if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
return 1;
if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
return 1;
if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
return 1;
if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
return 1;
if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
return 1;
*dpll &= ~DPLL_P1_FORCE_DIV2;
*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
(DPLL_P1_MASK << DPLL_P1_SHIFT));
if (IS_I9XX(dinfo)) {
*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
} else
*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
*fp0 = (n << FP_N_DIVISOR_SHIFT) |
(m1 << FP_M1_DIVISOR_SHIFT) |
(m2 << FP_M2_DIVISOR_SHIFT);
*fp1 = *fp0;
hw->dvob &= ~PORT_ENABLE;
hw->dvoc &= ~PORT_ENABLE;
/* Use display plane A. */
hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
switch (intelfb_var_to_depth(var)) {
case 8:
hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
break;
case 15:
hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
break;
case 16:
hw->disp_a_ctrl |= DISPPLANE_16BPP;
break;
case 24:
hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
break;
}
hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
/* Set CRTC registers. */
hactive = var->xres;
hsync_start = hactive + var->right_margin;
hsync_end = hsync_start + var->hsync_len;
htotal = hsync_end + var->left_margin;
hblank_start = hactive;
hblank_end = htotal;
DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
hactive, hsync_start, hsync_end, htotal, hblank_start,
hblank_end);
vactive = var->yres;
if (var->vmode & FB_VMODE_INTERLACED)
vactive--; /* the chip adds 2 halflines automatically */
vsync_start = vactive + var->lower_margin;
vsync_end = vsync_start + var->vsync_len;
vtotal = vsync_end + var->upper_margin;
vblank_start = vactive;
vblank_end = vtotal;
vblank_end = vsync_end + 1;
DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
vactive, vsync_start, vsync_end, vtotal, vblank_start,
vblank_end);
/* Adjust for register values, and check for overflow. */
hactive--;
if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
return 1;
hsync_start--;
if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
return 1;
hsync_end--;
if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
return 1;
htotal--;
if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
return 1;
hblank_start--;
if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
return 1;
hblank_end--;
if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
return 1;
vactive--;
if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
return 1;
vsync_start--;
if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
return 1;
vsync_end--;
if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
return 1;
vtotal--;
if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
return 1;
vblank_start--;
if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
return 1;
vblank_end--;
if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
return 1;
*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
*hb = (hblank_start << HBLANKSTART_SHIFT) |
(hblank_end << HSYNCEND_SHIFT);
*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
*vb = (vblank_start << VBLANKSTART_SHIFT) |
(vblank_end << VSYNCEND_SHIFT);
*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
(vactive << SRC_SIZE_VERT_SHIFT);
hw->disp_a_stride = dinfo->pitch;
DBG_MSG("pitch is %d\n", hw->disp_a_stride);
hw->disp_a_base = hw->disp_a_stride * var->yoffset +
var->xoffset * var->bits_per_pixel / 8;
hw->disp_a_base += dinfo->fb.offset << 12;
/* Check stride alignment. */
stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
STRIDE_ALIGNMENT;
if (hw->disp_a_stride % stride_alignment != 0) {
WRN_MSG("display stride %d has bad alignment %d\n",
hw->disp_a_stride, stride_alignment);
return 1;
}
/* Set the palette to 8-bit mode. */
*pipe_conf &= ~PIPECONF_GAMMA;
if (var->vmode & FB_VMODE_INTERLACED)
*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
else
*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
return 0;
}
/* Program a (non-VGA) video mode. */
int intelfbhw_program_mode(struct intelfb_info *dinfo,
const struct intelfb_hwstate *hw, int blank)
{
int pipe = PIPE_A;
u32 tmp;
const u32 *dpll, *fp0, *fp1, *pipe_conf;
const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
u32 hsync_reg, htotal_reg, hblank_reg;
u32 vsync_reg, vtotal_reg, vblank_reg;
u32 src_size_reg;
u32 count, tmp_val[3];
/* Assume single pipe, display plane A, analog CRT. */
#if VERBOSE > 0
DBG_MSG("intelfbhw_program_mode\n");
#endif
/* Disable VGA */
tmp = INREG(VGACNTRL);
tmp |= VGA_DISABLE;
OUTREG(VGACNTRL, tmp);
/* Check whether pipe A or pipe B is enabled. */
if (hw->pipe_a_conf & PIPECONF_ENABLE)
pipe = PIPE_A;
else if (hw->pipe_b_conf & PIPECONF_ENABLE)
pipe = PIPE_B;
dinfo->pipe = pipe;
if (pipe == PIPE_B) {
dpll = &hw->dpll_b;
fp0 = &hw->fpb0;
fp1 = &hw->fpb1;
pipe_conf = &hw->pipe_b_conf;
hs = &hw->hsync_b;
hb = &hw->hblank_b;
ht = &hw->htotal_b;
vs = &hw->vsync_b;
vb = &hw->vblank_b;
vt = &hw->vtotal_b;
ss = &hw->src_size_b;
dpll_reg = DPLL_B;
fp0_reg = FPB0;
fp1_reg = FPB1;
pipe_conf_reg = PIPEBCONF;
pipe_stat_reg = PIPEBSTAT;
hsync_reg = HSYNC_B;
htotal_reg = HTOTAL_B;
hblank_reg = HBLANK_B;
vsync_reg = VSYNC_B;
vtotal_reg = VTOTAL_B;
vblank_reg = VBLANK_B;
src_size_reg = SRC_SIZE_B;
} else {
dpll = &hw->dpll_a;
fp0 = &hw->fpa0;
fp1 = &hw->fpa1;
pipe_conf = &hw->pipe_a_conf;
hs = &hw->hsync_a;
hb = &hw->hblank_a;
ht = &hw->htotal_a;
vs = &hw->vsync_a;
vb = &hw->vblank_a;
vt = &hw->vtotal_a;
ss = &hw->src_size_a;
dpll_reg = DPLL_A;
fp0_reg = FPA0;
fp1_reg = FPA1;
pipe_conf_reg = PIPEACONF;
pipe_stat_reg = PIPEASTAT;
hsync_reg = HSYNC_A;
htotal_reg = HTOTAL_A;
hblank_reg = HBLANK_A;
vsync_reg = VSYNC_A;
vtotal_reg = VTOTAL_A;
vblank_reg = VBLANK_A;
src_size_reg = SRC_SIZE_A;
}
/* turn off pipe */
tmp = INREG(pipe_conf_reg);
tmp &= ~PIPECONF_ENABLE;
OUTREG(pipe_conf_reg, tmp);
count = 0;
do {
tmp_val[count % 3] = INREG(PIPEA_DSL);
if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
break;
count++;
udelay(1);
if (count % 200 == 0) {
tmp = INREG(pipe_conf_reg);
tmp &= ~PIPECONF_ENABLE;
OUTREG(pipe_conf_reg, tmp);
}
} while (count < 2000);
OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
/* Disable planes A and B. */
tmp = INREG(DSPACNTR);
tmp &= ~DISPPLANE_PLANE_ENABLE;
OUTREG(DSPACNTR, tmp);
tmp = INREG(DSPBCNTR);
tmp &= ~DISPPLANE_PLANE_ENABLE;
OUTREG(DSPBCNTR, tmp);
/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
mdelay(20);
OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
/* Disable Sync */
tmp = INREG(ADPA);
tmp &= ~ADPA_DPMS_CONTROL_MASK;
tmp |= ADPA_DPMS_D3;
OUTREG(ADPA, tmp);
/* do some funky magic - xyzzy */
OUTREG(0x61204, 0xabcd0000);
/* turn off PLL */
tmp = INREG(dpll_reg);
tmp &= ~DPLL_VCO_ENABLE;
OUTREG(dpll_reg, tmp);
/* Set PLL parameters */
OUTREG(fp0_reg, *fp0);
OUTREG(fp1_reg, *fp1);
/* Enable PLL */
OUTREG(dpll_reg, *dpll);
/* Set DVOs B/C */
OUTREG(DVOB, hw->dvob);
OUTREG(DVOC, hw->dvoc);
/* undo funky magic */
OUTREG(0x61204, 0x00000000);
/* Set ADPA */
OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
/* Set pipe parameters */
OUTREG(hsync_reg, *hs);
OUTREG(hblank_reg, *hb);
OUTREG(htotal_reg, *ht);
OUTREG(vsync_reg, *vs);
OUTREG(vblank_reg, *vb);
OUTREG(vtotal_reg, *vt);
OUTREG(src_size_reg, *ss);
switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
FB_VMODE_ODD_FLD_FIRST)) {
case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
break;
case FB_VMODE_INTERLACED: /* even lines first */
OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
break;
default: /* non-interlaced */
OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
}
/* Enable pipe */
OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
/* Enable sync */
tmp = INREG(ADPA);
tmp &= ~ADPA_DPMS_CONTROL_MASK;
tmp |= ADPA_DPMS_D0;
OUTREG(ADPA, tmp);
/* setup display plane */
if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
/*
* i830M errata: the display plane must be enabled
* to allow writes to the other bits in the plane
* control register.
*/
tmp = INREG(DSPACNTR);
if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
tmp |= DISPPLANE_PLANE_ENABLE;
OUTREG(DSPACNTR, tmp);
OUTREG(DSPACNTR,
hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
mdelay(1);
}
}
OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
OUTREG(DSPASTRIDE, hw->disp_a_stride);
OUTREG(DSPABASE, hw->disp_a_base);
/* Enable plane */
if (!blank) {
tmp = INREG(DSPACNTR);
tmp |= DISPPLANE_PLANE_ENABLE;
OUTREG(DSPACNTR, tmp);
OUTREG(DSPABASE, hw->disp_a_base);
}
return 0;
}
/* forward declarations */
static void refresh_ring(struct intelfb_info *dinfo);
static void reset_state(struct intelfb_info *dinfo);
static void do_flush(struct intelfb_info *dinfo);
static u32 get_ring_space(struct intelfb_info *dinfo)
{
u32 ring_space;
if (dinfo->ring_tail >= dinfo->ring_head)
ring_space = dinfo->ring.size -
(dinfo->ring_tail - dinfo->ring_head);
else
ring_space = dinfo->ring_head - dinfo->ring_tail;
if (ring_space > RING_MIN_FREE)
ring_space -= RING_MIN_FREE;
else
ring_space = 0;
return ring_space;
}
static int wait_ring(struct intelfb_info *dinfo, int n)
{
int i = 0;
unsigned long end;
u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
#if VERBOSE > 0
DBG_MSG("wait_ring: %d\n", n);
#endif
end = jiffies + (HZ * 3);
while (dinfo->ring_space < n) {
dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
dinfo->ring_space = get_ring_space(dinfo);
if (dinfo->ring_head != last_head) {
end = jiffies + (HZ * 3);
last_head = dinfo->ring_head;
}
i++;
if (time_before(end, jiffies)) {
if (!i) {
/* Try again */
reset_state(dinfo);
refresh_ring(dinfo);
do_flush(dinfo);
end = jiffies + (HZ * 3);
i = 1;
} else {
WRN_MSG("ring buffer : space: %d wanted %d\n",
dinfo->ring_space, n);
WRN_MSG("lockup - turning off hardware "
"acceleration\n");
dinfo->ring_lockup = 1;
break;
}
}
udelay(1);
}
return i;
}
static void do_flush(struct intelfb_info *dinfo)
{
START_RING(2);
OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
OUT_RING(MI_NOOP);
ADVANCE_RING();
}
void intelfbhw_do_sync(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
DBG_MSG("intelfbhw_do_sync\n");
#endif
if (!dinfo->accel)
return;
/*
* Send a flush, then wait until the ring is empty. This is what
* the XFree86 driver does, and actually it doesn't seem a lot worse
* than the recommended method (both have problems).
*/
do_flush(dinfo);
wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
}
static void refresh_ring(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
DBG_MSG("refresh_ring\n");
#endif
dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
dinfo->ring_space = get_ring_space(dinfo);
}
static void reset_state(struct intelfb_info *dinfo)
{
int i;
u32 tmp;
#if VERBOSE > 0
DBG_MSG("reset_state\n");
#endif
for (i = 0; i < FENCE_NUM; i++)
OUTREG(FENCE + (i << 2), 0);
/* Flush the ring buffer if it's enabled. */
tmp = INREG(PRI_RING_LENGTH);
if (tmp & RING_ENABLE) {
#if VERBOSE > 0
DBG_MSG("reset_state: ring was enabled\n");
#endif
refresh_ring(dinfo);
intelfbhw_do_sync(dinfo);
DO_RING_IDLE();
}
OUTREG(PRI_RING_LENGTH, 0);
OUTREG(PRI_RING_HEAD, 0);
OUTREG(PRI_RING_TAIL, 0);
OUTREG(PRI_RING_START, 0);
}
/* Stop the 2D engine, and turn off the ring buffer. */
void intelfbhw_2d_stop(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
dinfo->accel, dinfo->ring_active);
#endif
if (!dinfo->accel)
return;
dinfo->ring_active = 0;
reset_state(dinfo);
}
/*
* Enable the ring buffer, and initialise the 2D engine.
* It is assumed that the graphics engine has been stopped by previously
* calling intelfb_2d_stop().
*/
void intelfbhw_2d_start(struct intelfb_info *dinfo)
{
#if VERBOSE > 0
DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
dinfo->accel, dinfo->ring_active);
#endif
if (!dinfo->accel)
return;
/* Initialise the primary ring buffer. */
OUTREG(PRI_RING_LENGTH, 0);
OUTREG(PRI_RING_TAIL, 0);
OUTREG(PRI_RING_HEAD, 0);
OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
OUTREG(PRI_RING_LENGTH,
((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
RING_NO_REPORT | RING_ENABLE);
refresh_ring(dinfo);
dinfo->ring_active = 1;
}
/* 2D fillrect (solid fill or invert) */
void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
{
u32 br00, br09, br13, br14, br16;
#if VERBOSE > 0
DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
#endif
br00 = COLOR_BLT_CMD;
br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
br13 = (rop << ROP_SHIFT) | pitch;
br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
br16 = color;
switch (bpp) {
case 8:
br13 |= COLOR_DEPTH_8;
break;
case 16:
br13 |= COLOR_DEPTH_16;
break;
case 32:
br13 |= COLOR_DEPTH_32;
br00 |= WRITE_ALPHA | WRITE_RGB;
break;
}
START_RING(6);
OUT_RING(br00);
OUT_RING(br13);
OUT_RING(br14);
OUT_RING(br09);
OUT_RING(br16);
OUT_RING(MI_NOOP);
ADVANCE_RING();
#if VERBOSE > 0
DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
dinfo->ring_tail, dinfo->ring_space);
#endif
}
void
intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
{
u32 br00, br09, br11, br12, br13, br22, br23, br26;
#if VERBOSE > 0
DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
curx, cury, dstx, dsty, w, h, pitch, bpp);
#endif
br00 = XY_SRC_COPY_BLT_CMD;
br09 = dinfo->fb_start;
br11 = (pitch << PITCH_SHIFT);
br12 = dinfo->fb_start;
br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
br23 = ((dstx + w) << WIDTH_SHIFT) |
((dsty + h) << HEIGHT_SHIFT);
br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
switch (bpp) {
case 8:
br13 |= COLOR_DEPTH_8;
break;
case 16:
br13 |= COLOR_DEPTH_16;
break;
case 32:
br13 |= COLOR_DEPTH_32;
br00 |= WRITE_ALPHA | WRITE_RGB;
break;
}
START_RING(8);
OUT_RING(br00);
OUT_RING(br13);
OUT_RING(br22);
OUT_RING(br23);
OUT_RING(br09);
OUT_RING(br26);
OUT_RING(br11);
OUT_RING(br12);
ADVANCE_RING();
}
int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
u32 bpp)
{
int nbytes, ndwords, pad, tmp;
u32 br00, br09, br13, br18, br19, br22, br23;
int dat, ix, iy, iw;
int i, j;
#if VERBOSE > 0
DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
#endif
/* size in bytes of a padded scanline */
nbytes = ROUND_UP_TO(w, 16) / 8;
/* Total bytes of padded scanline data to write out. */
nbytes = nbytes * h;
/*
* Check if the glyph data exceeds the immediate mode limit.
* It would take a large font (1K pixels) to hit this limit.
*/
if (nbytes > MAX_MONO_IMM_SIZE)
return 0;
/* Src data is packaged a dword (32-bit) at a time. */
ndwords = ROUND_UP_TO(nbytes, 4) / 4;
/*
* Ring has to be padded to a quad word. But because the command starts
with 7 bytes, pad only if there is an even number of ndwords
*/
pad = !(ndwords % 2);
tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
br09 = dinfo->fb_start;
br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
br18 = bg;
br19 = fg;
br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
switch (bpp) {
case 8:
br13 |= COLOR_DEPTH_8;
break;
case 16:
br13 |= COLOR_DEPTH_16;
break;
case 32:
br13 |= COLOR_DEPTH_32;
br00 |= WRITE_ALPHA | WRITE_RGB;
break;
}
START_RING(8 + ndwords);
OUT_RING(br00);
OUT_RING(br13);
OUT_RING(br22);
OUT_RING(br23);
OUT_RING(br09);
OUT_RING(br18);
OUT_RING(br19);
ix = iy = 0;
iw = ROUND_UP_TO(w, 8) / 8;
while (ndwords--) {
dat = 0;
for (j = 0; j < 2; ++j) {
for (i = 0; i < 2; ++i) {
if (ix != iw || i == 0)
dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
}
if (ix == iw && iy != (h-1)) {
ix = 0;
++iy;
}
}
OUT_RING(dat);
}
if (pad)
OUT_RING(MI_NOOP);
ADVANCE_RING();
return 1;
}
/* HW cursor functions. */
void intelfbhw_cursor_init(struct intelfb_info *dinfo)
{
u32 tmp;
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_init\n");
#endif
if (dinfo->mobile || IS_I9XX(dinfo)) {
if (!dinfo->cursor.physical)
return;
tmp = INREG(CURSOR_A_CONTROL);
tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
CURSOR_MEM_TYPE_LOCAL |
(1 << CURSOR_PIPE_SELECT_SHIFT));
tmp |= CURSOR_MODE_DISABLE;
OUTREG(CURSOR_A_CONTROL, tmp);
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
} else {
tmp = INREG(CURSOR_CONTROL);
tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
CURSOR_ENABLE | CURSOR_STRIDE_MASK);
tmp = CURSOR_FORMAT_3C;
OUTREG(CURSOR_CONTROL, tmp);
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
tmp = (64 << CURSOR_SIZE_H_SHIFT) |
(64 << CURSOR_SIZE_V_SHIFT);
OUTREG(CURSOR_SIZE, tmp);
}
}
void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
{
u32 tmp;
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_hide\n");
#endif
dinfo->cursor_on = 0;
if (dinfo->mobile || IS_I9XX(dinfo)) {
if (!dinfo->cursor.physical)
return;
tmp = INREG(CURSOR_A_CONTROL);
tmp &= ~CURSOR_MODE_MASK;
tmp |= CURSOR_MODE_DISABLE;
OUTREG(CURSOR_A_CONTROL, tmp);
/* Flush changes */
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
} else {
tmp = INREG(CURSOR_CONTROL);
tmp &= ~CURSOR_ENABLE;
OUTREG(CURSOR_CONTROL, tmp);
}
}
void intelfbhw_cursor_show(struct intelfb_info *dinfo)
{
u32 tmp;
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_show\n");
#endif
dinfo->cursor_on = 1;
if (dinfo->cursor_blanked)
return;
if (dinfo->mobile || IS_I9XX(dinfo)) {
if (!dinfo->cursor.physical)
return;
tmp = INREG(CURSOR_A_CONTROL);
tmp &= ~CURSOR_MODE_MASK;
tmp |= CURSOR_MODE_64_4C_AX;
OUTREG(CURSOR_A_CONTROL, tmp);
/* Flush changes */
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
} else {
tmp = INREG(CURSOR_CONTROL);
tmp |= CURSOR_ENABLE;
OUTREG(CURSOR_CONTROL, tmp);
}
}
void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
{
u32 tmp;
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
#endif
/*
* Sets the position. The coordinates are assumed to already
* have any offset adjusted. Assume that the cursor is never
* completely off-screen, and that x, y are always >= 0.
*/
tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
OUTREG(CURSOR_A_POSITION, tmp);
if (IS_I9XX(dinfo))
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
}
void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
{
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_setcolor\n");
#endif
OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
}
void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
u8 *data)
{
u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
int i, j, w = width / 8;
int mod = width % 8, t_mask, d_mask;
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_load\n");
#endif
if (!dinfo->cursor.virtual)
return;
t_mask = 0xff >> mod;
d_mask = ~(0xff >> mod);
for (i = height; i--; ) {
for (j = 0; j < w; j++) {
writeb(0x00, addr + j);
writeb(*(data++), addr + j+8);
}
if (mod) {
writeb(t_mask, addr + j);
writeb(*(data++) & d_mask, addr + j+8);
}
addr += 16;
}
}
void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
{
u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
int i, j;
#if VERBOSE > 0
DBG_MSG("intelfbhw_cursor_reset\n");
#endif
if (!dinfo->cursor.virtual)
return;
for (i = 64; i--; ) {
for (j = 0; j < 8; j++) {
writeb(0xff, addr + j+0);
writeb(0x00, addr + j+8);
}
addr += 16;
}
}
static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
{
u16 tmp;
struct intelfb_info *dinfo = dev_id;
spin_lock(&dinfo->int_lock);
tmp = INREG16(IIR);
if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
tmp &= PIPE_A_EVENT_INTERRUPT;
else
tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
if (tmp == 0) {
spin_unlock(&dinfo->int_lock);
return IRQ_RETVAL(0); /* not us */
}
/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
OUTREG(PIPEASTAT, INREG(PIPEASTAT));
OUTREG16(IIR, tmp);
if (dinfo->vsync.pan_display) {
dinfo->vsync.pan_display = 0;
OUTREG(DSPABASE, dinfo->vsync.pan_offset);
}
dinfo->vsync.count++;
wake_up_interruptible(&dinfo->vsync.wait);
spin_unlock(&dinfo->int_lock);
return IRQ_RETVAL(1);
}
int intelfbhw_enable_irq(struct intelfb_info *dinfo)
{
u16 tmp;
if (!test_and_set_bit(0, &dinfo->irq_flags)) {
if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
"intelfb", dinfo)) {
clear_bit(0, &dinfo->irq_flags);
return -EINVAL;
}
spin_lock_irq(&dinfo->int_lock);
OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
OUTREG16(IMR, 0);
} else
spin_lock_irq(&dinfo->int_lock);
if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
tmp = PIPE_A_EVENT_INTERRUPT;
else
tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
if (tmp != INREG16(IER)) {
DBG_MSG("changing IER to 0x%X\n", tmp);
OUTREG16(IER, tmp);
}
spin_unlock_irq(&dinfo->int_lock);
return 0;
}
void intelfbhw_disable_irq(struct intelfb_info *dinfo)
{
if (test_and_clear_bit(0, &dinfo->irq_flags)) {
if (dinfo->vsync.pan_display) {
dinfo->vsync.pan_display = 0;
OUTREG(DSPABASE, dinfo->vsync.pan_offset);
}
spin_lock_irq(&dinfo->int_lock);
OUTREG16(HWSTAM, 0xffff);
OUTREG16(IMR, 0xffff);
OUTREG16(IER, 0x0);
OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
spin_unlock_irq(&dinfo->int_lock);
free_irq(dinfo->pdev->irq, dinfo);
}
}
int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
{
struct intelfb_vsync *vsync;
unsigned int count;
int ret;
switch (pipe) {
case 0:
vsync = &dinfo->vsync;
break;
default:
return -ENODEV;
}
ret = intelfbhw_enable_irq(dinfo);
if (ret)
return ret;
count = vsync->count;
ret = wait_event_interruptible_timeout(vsync->wait,
count != vsync->count, HZ / 10);
if (ret < 0)
return ret;
if (ret == 0) {
DBG_MSG("wait_for_vsync timed out!\n");
return -ETIMEDOUT;
}
return 0;
}