OpenCloudOS-Kernel/arch/s390/kernel/uv.c

416 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Common Ultravisor functions and initialization
*
* Copyright IBM Corp. 2019, 2020
*/
#define KMSG_COMPONENT "prot_virt"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sizes.h>
#include <linux/bitmap.h>
#include <linux/memblock.h>
s390/mm: provide memory management functions for protected KVM guests This provides the basic ultravisor calls and page table handling to cope with secure guests: - provide arch_make_page_accessible - make pages accessible after unmapping of secure guests - provide the ultravisor commands convert to/from secure - provide the ultravisor commands pin/unpin shared - provide callbacks to make pages secure (inacccessible) - we check for the expected pin count to only make pages secure if the host is not accessing them - we fence hugetlbfs for secure pages - add missing radix-tree include into gmap.h The basic idea is that a page can have 3 states: secure, normal or shared. The hypervisor can call into a firmware function called ultravisor that allows to change the state of a page: convert from/to secure. The convert from secure will encrypt the page and make it available to the host and host I/O. The convert to secure will remove the host capability to access this page. The design is that on convert to secure we will wait until writeback and page refs are indicating no host usage. At the same time the convert from secure (export to host) will be called in common code when the refcount or the writeback bit is already set. This avoids races between convert from and to secure. Then there is also the concept of shared pages. Those are kind of secure where the host can still access those pages. We need to be notified when the guest "unshares" such a page, basically doing a convert to secure by then. There is a call "pin shared page" that we use instead of convert from secure when possible. We do use PG_arch_1 as an optimization to minimize the convert from secure/pin shared. Several comments have been added in the code to explain the logic in the relevant places. Co-developed-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Signed-off-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [borntraeger@de.ibm.com: patch merging, splitting, fixing] Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2020-01-21 16:48:44 +08:00
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <asm/facility.h>
#include <asm/sections.h>
#include <asm/uv.h>
/* the bootdata_preserved fields come from ones in arch/s390/boot/uv.c */
#ifdef CONFIG_PROTECTED_VIRTUALIZATION_GUEST
int __bootdata_preserved(prot_virt_guest);
#endif
struct uv_info __bootdata_preserved(uv_info);
#if IS_ENABLED(CONFIG_KVM)
int prot_virt_host;
EXPORT_SYMBOL(prot_virt_host);
EXPORT_SYMBOL(uv_info);
static int __init prot_virt_setup(char *val)
{
bool enabled;
int rc;
rc = kstrtobool(val, &enabled);
if (!rc && enabled)
prot_virt_host = 1;
if (is_prot_virt_guest() && prot_virt_host) {
prot_virt_host = 0;
pr_warn("Protected virtualization not available in protected guests.");
}
if (prot_virt_host && !test_facility(158)) {
prot_virt_host = 0;
pr_warn("Protected virtualization not supported by the hardware.");
}
return rc;
}
early_param("prot_virt", prot_virt_setup);
static int __init uv_init(unsigned long stor_base, unsigned long stor_len)
{
struct uv_cb_init uvcb = {
.header.cmd = UVC_CMD_INIT_UV,
.header.len = sizeof(uvcb),
.stor_origin = stor_base,
.stor_len = stor_len,
};
if (uv_call(0, (uint64_t)&uvcb)) {
pr_err("Ultravisor init failed with rc: 0x%x rrc: 0%x\n",
uvcb.header.rc, uvcb.header.rrc);
return -1;
}
return 0;
}
void __init setup_uv(void)
{
unsigned long uv_stor_base;
uv_stor_base = (unsigned long)memblock_alloc_try_nid(
uv_info.uv_base_stor_len, SZ_1M, SZ_2G,
MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
if (!uv_stor_base) {
pr_warn("Failed to reserve %lu bytes for ultravisor base storage\n",
uv_info.uv_base_stor_len);
goto fail;
}
if (uv_init(uv_stor_base, uv_info.uv_base_stor_len)) {
memblock_free(uv_stor_base, uv_info.uv_base_stor_len);
goto fail;
}
pr_info("Reserving %luMB as ultravisor base storage\n",
uv_info.uv_base_stor_len >> 20);
return;
fail:
pr_info("Disabling support for protected virtualization");
prot_virt_host = 0;
}
void adjust_to_uv_max(unsigned long *vmax)
{
*vmax = min_t(unsigned long, *vmax, uv_info.max_sec_stor_addr);
}
s390/mm: provide memory management functions for protected KVM guests This provides the basic ultravisor calls and page table handling to cope with secure guests: - provide arch_make_page_accessible - make pages accessible after unmapping of secure guests - provide the ultravisor commands convert to/from secure - provide the ultravisor commands pin/unpin shared - provide callbacks to make pages secure (inacccessible) - we check for the expected pin count to only make pages secure if the host is not accessing them - we fence hugetlbfs for secure pages - add missing radix-tree include into gmap.h The basic idea is that a page can have 3 states: secure, normal or shared. The hypervisor can call into a firmware function called ultravisor that allows to change the state of a page: convert from/to secure. The convert from secure will encrypt the page and make it available to the host and host I/O. The convert to secure will remove the host capability to access this page. The design is that on convert to secure we will wait until writeback and page refs are indicating no host usage. At the same time the convert from secure (export to host) will be called in common code when the refcount or the writeback bit is already set. This avoids races between convert from and to secure. Then there is also the concept of shared pages. Those are kind of secure where the host can still access those pages. We need to be notified when the guest "unshares" such a page, basically doing a convert to secure by then. There is a call "pin shared page" that we use instead of convert from secure when possible. We do use PG_arch_1 as an optimization to minimize the convert from secure/pin shared. Several comments have been added in the code to explain the logic in the relevant places. Co-developed-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Signed-off-by: Ulrich Weigand <Ulrich.Weigand@de.ibm.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [borntraeger@de.ibm.com: patch merging, splitting, fixing] Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2020-01-21 16:48:44 +08:00
/*
* Requests the Ultravisor to pin the page in the shared state. This will
* cause an intercept when the guest attempts to unshare the pinned page.
*/
static int uv_pin_shared(unsigned long paddr)
{
struct uv_cb_cfs uvcb = {
.header.cmd = UVC_CMD_PIN_PAGE_SHARED,
.header.len = sizeof(uvcb),
.paddr = paddr,
};
if (uv_call(0, (u64)&uvcb))
return -EINVAL;
return 0;
}
/*
* Requests the Ultravisor to encrypt a guest page and make it
* accessible to the host for paging (export).
*
* @paddr: Absolute host address of page to be exported
*/
int uv_convert_from_secure(unsigned long paddr)
{
struct uv_cb_cfs uvcb = {
.header.cmd = UVC_CMD_CONV_FROM_SEC_STOR,
.header.len = sizeof(uvcb),
.paddr = paddr
};
if (uv_call(0, (u64)&uvcb))
return -EINVAL;
return 0;
}
/*
* Calculate the expected ref_count for a page that would otherwise have no
* further pins. This was cribbed from similar functions in other places in
* the kernel, but with some slight modifications. We know that a secure
* page can not be a huge page for example.
*/
static int expected_page_refs(struct page *page)
{
int res;
res = page_mapcount(page);
if (PageSwapCache(page)) {
res++;
} else if (page_mapping(page)) {
res++;
if (page_has_private(page))
res++;
}
return res;
}
static int make_secure_pte(pte_t *ptep, unsigned long addr,
struct page *exp_page, struct uv_cb_header *uvcb)
{
pte_t entry = READ_ONCE(*ptep);
struct page *page;
int expected, rc = 0;
if (!pte_present(entry))
return -ENXIO;
if (pte_val(entry) & _PAGE_INVALID)
return -ENXIO;
page = pte_page(entry);
if (page != exp_page)
return -ENXIO;
if (PageWriteback(page))
return -EAGAIN;
expected = expected_page_refs(page);
if (!page_ref_freeze(page, expected))
return -EBUSY;
set_bit(PG_arch_1, &page->flags);
rc = uv_call(0, (u64)uvcb);
page_ref_unfreeze(page, expected);
/* Return -ENXIO if the page was not mapped, -EINVAL otherwise */
if (rc)
rc = uvcb->rc == 0x10a ? -ENXIO : -EINVAL;
return rc;
}
/*
* Requests the Ultravisor to make a page accessible to a guest.
* If it's brought in the first time, it will be cleared. If
* it has been exported before, it will be decrypted and integrity
* checked.
*/
int gmap_make_secure(struct gmap *gmap, unsigned long gaddr, void *uvcb)
{
struct vm_area_struct *vma;
bool local_drain = false;
spinlock_t *ptelock;
unsigned long uaddr;
struct page *page;
pte_t *ptep;
int rc;
again:
rc = -EFAULT;
down_read(&gmap->mm->mmap_sem);
uaddr = __gmap_translate(gmap, gaddr);
if (IS_ERR_VALUE(uaddr))
goto out;
vma = find_vma(gmap->mm, uaddr);
if (!vma)
goto out;
/*
* Secure pages cannot be huge and userspace should not combine both.
* In case userspace does it anyway this will result in an -EFAULT for
* the unpack. The guest is thus never reaching secure mode. If
* userspace is playing dirty tricky with mapping huge pages later
* on this will result in a segmentation fault.
*/
if (is_vm_hugetlb_page(vma))
goto out;
rc = -ENXIO;
page = follow_page(vma, uaddr, FOLL_WRITE);
if (IS_ERR_OR_NULL(page))
goto out;
lock_page(page);
ptep = get_locked_pte(gmap->mm, uaddr, &ptelock);
rc = make_secure_pte(ptep, uaddr, page, uvcb);
pte_unmap_unlock(ptep, ptelock);
unlock_page(page);
out:
up_read(&gmap->mm->mmap_sem);
if (rc == -EAGAIN) {
wait_on_page_writeback(page);
} else if (rc == -EBUSY) {
/*
* If we have tried a local drain and the page refcount
* still does not match our expected safe value, try with a
* system wide drain. This is needed if the pagevecs holding
* the page are on a different CPU.
*/
if (local_drain) {
lru_add_drain_all();
/* We give up here, and let the caller try again */
return -EAGAIN;
}
/*
* We are here if the page refcount does not match the
* expected safe value. The main culprits are usually
* pagevecs. With lru_add_drain() we drain the pagevecs
* on the local CPU so that hopefully the refcount will
* reach the expected safe value.
*/
lru_add_drain();
local_drain = true;
/* And now we try again immediately after draining */
goto again;
} else if (rc == -ENXIO) {
if (gmap_fault(gmap, gaddr, FAULT_FLAG_WRITE))
return -EFAULT;
return -EAGAIN;
}
return rc;
}
EXPORT_SYMBOL_GPL(gmap_make_secure);
int gmap_convert_to_secure(struct gmap *gmap, unsigned long gaddr)
{
struct uv_cb_cts uvcb = {
.header.cmd = UVC_CMD_CONV_TO_SEC_STOR,
.header.len = sizeof(uvcb),
.guest_handle = gmap->guest_handle,
.gaddr = gaddr,
};
return gmap_make_secure(gmap, gaddr, &uvcb);
}
EXPORT_SYMBOL_GPL(gmap_convert_to_secure);
/*
* To be called with the page locked or with an extra reference! This will
* prevent gmap_make_secure from touching the page concurrently. Having 2
* parallel make_page_accessible is fine, as the UV calls will become a
* no-op if the page is already exported.
*/
int arch_make_page_accessible(struct page *page)
{
int rc = 0;
/* Hugepage cannot be protected, so nothing to do */
if (PageHuge(page))
return 0;
/*
* PG_arch_1 is used in 3 places:
* 1. for kernel page tables during early boot
* 2. for storage keys of huge pages and KVM
* 3. As an indication that this page might be secure. This can
* overindicate, e.g. we set the bit before calling
* convert_to_secure.
* As secure pages are never huge, all 3 variants can co-exists.
*/
if (!test_bit(PG_arch_1, &page->flags))
return 0;
rc = uv_pin_shared(page_to_phys(page));
if (!rc) {
clear_bit(PG_arch_1, &page->flags);
return 0;
}
rc = uv_convert_from_secure(page_to_phys(page));
if (!rc) {
clear_bit(PG_arch_1, &page->flags);
return 0;
}
return rc;
}
EXPORT_SYMBOL_GPL(arch_make_page_accessible);
#endif
#if defined(CONFIG_PROTECTED_VIRTUALIZATION_GUEST) || IS_ENABLED(CONFIG_KVM)
static ssize_t uv_query_facilities(struct kobject *kobj,
struct kobj_attribute *attr, char *page)
{
return snprintf(page, PAGE_SIZE, "%lx\n%lx\n%lx\n%lx\n",
uv_info.inst_calls_list[0],
uv_info.inst_calls_list[1],
uv_info.inst_calls_list[2],
uv_info.inst_calls_list[3]);
}
static struct kobj_attribute uv_query_facilities_attr =
__ATTR(facilities, 0444, uv_query_facilities, NULL);
static ssize_t uv_query_max_guest_cpus(struct kobject *kobj,
struct kobj_attribute *attr, char *page)
{
return snprintf(page, PAGE_SIZE, "%d\n",
uv_info.max_guest_cpus);
}
static struct kobj_attribute uv_query_max_guest_cpus_attr =
__ATTR(max_cpus, 0444, uv_query_max_guest_cpus, NULL);
static ssize_t uv_query_max_guest_vms(struct kobject *kobj,
struct kobj_attribute *attr, char *page)
{
return snprintf(page, PAGE_SIZE, "%d\n",
uv_info.max_num_sec_conf);
}
static struct kobj_attribute uv_query_max_guest_vms_attr =
__ATTR(max_guests, 0444, uv_query_max_guest_vms, NULL);
static ssize_t uv_query_max_guest_addr(struct kobject *kobj,
struct kobj_attribute *attr, char *page)
{
return snprintf(page, PAGE_SIZE, "%lx\n",
uv_info.max_sec_stor_addr);
}
static struct kobj_attribute uv_query_max_guest_addr_attr =
__ATTR(max_address, 0444, uv_query_max_guest_addr, NULL);
static struct attribute *uv_query_attrs[] = {
&uv_query_facilities_attr.attr,
&uv_query_max_guest_cpus_attr.attr,
&uv_query_max_guest_vms_attr.attr,
&uv_query_max_guest_addr_attr.attr,
NULL,
};
static struct attribute_group uv_query_attr_group = {
.attrs = uv_query_attrs,
};
static struct kset *uv_query_kset;
static struct kobject *uv_kobj;
static int __init uv_info_init(void)
{
int rc = -ENOMEM;
if (!test_facility(158))
return 0;
uv_kobj = kobject_create_and_add("uv", firmware_kobj);
if (!uv_kobj)
return -ENOMEM;
uv_query_kset = kset_create_and_add("query", NULL, uv_kobj);
if (!uv_query_kset)
goto out_kobj;
rc = sysfs_create_group(&uv_query_kset->kobj, &uv_query_attr_group);
if (!rc)
return 0;
kset_unregister(uv_query_kset);
out_kobj:
kobject_del(uv_kobj);
kobject_put(uv_kobj);
return rc;
}
device_initcall(uv_info_init);
#endif