OpenCloudOS-Kernel/drivers/i2c/busses/i2c-rcar.c

1069 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Renesas R-Car I2C unit
*
* Copyright (C) 2014-19 Wolfram Sang <wsa@sang-engineering.com>
* Copyright (C) 2011-2019 Renesas Electronics Corporation
*
* Copyright (C) 2012-14 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* This file is based on the drivers/i2c/busses/i2c-sh7760.c
* (c) 2005-2008 MSC Vertriebsges.m.b.H, Manuel Lauss <mlau@msc-ge.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
/* register offsets */
#define ICSCR 0x00 /* slave ctrl */
#define ICMCR 0x04 /* master ctrl */
#define ICSSR 0x08 /* slave status */
#define ICMSR 0x0C /* master status */
#define ICSIER 0x10 /* slave irq enable */
#define ICMIER 0x14 /* master irq enable */
#define ICCCR 0x18 /* clock dividers */
#define ICSAR 0x1C /* slave address */
#define ICMAR 0x20 /* master address */
#define ICRXTX 0x24 /* data port */
#define ICFBSCR 0x38 /* first bit setup cycle (Gen3) */
#define ICDMAER 0x3c /* DMA enable (Gen3) */
/* ICSCR */
#define SDBS (1 << 3) /* slave data buffer select */
#define SIE (1 << 2) /* slave interface enable */
#define GCAE (1 << 1) /* general call address enable */
#define FNA (1 << 0) /* forced non acknowledgment */
/* ICMCR */
#define MDBS (1 << 7) /* non-fifo mode switch */
#define FSCL (1 << 6) /* override SCL pin */
#define FSDA (1 << 5) /* override SDA pin */
#define OBPC (1 << 4) /* override pins */
#define MIE (1 << 3) /* master if enable */
#define TSBE (1 << 2)
#define FSB (1 << 1) /* force stop bit */
#define ESG (1 << 0) /* enable start bit gen */
/* ICSSR (also for ICSIER) */
#define GCAR (1 << 6) /* general call received */
#define STM (1 << 5) /* slave transmit mode */
#define SSR (1 << 4) /* stop received */
#define SDE (1 << 3) /* slave data empty */
#define SDT (1 << 2) /* slave data transmitted */
#define SDR (1 << 1) /* slave data received */
#define SAR (1 << 0) /* slave addr received */
/* ICMSR (also for ICMIE) */
#define MNR (1 << 6) /* nack received */
#define MAL (1 << 5) /* arbitration lost */
#define MST (1 << 4) /* sent a stop */
#define MDE (1 << 3)
#define MDT (1 << 2)
#define MDR (1 << 1)
#define MAT (1 << 0) /* slave addr xfer done */
/* ICDMAER */
#define RSDMAE (1 << 3) /* DMA Slave Received Enable */
#define TSDMAE (1 << 2) /* DMA Slave Transmitted Enable */
#define RMDMAE (1 << 1) /* DMA Master Received Enable */
#define TMDMAE (1 << 0) /* DMA Master Transmitted Enable */
/* ICFBSCR */
#define TCYC17 0x0f /* 17*Tcyc delay 1st bit between SDA and SCL */
#define RCAR_MIN_DMA_LEN 8
#define RCAR_BUS_PHASE_START (MDBS | MIE | ESG)
#define RCAR_BUS_PHASE_DATA (MDBS | MIE)
#define RCAR_BUS_MASK_DATA (~(ESG | FSB) & 0xFF)
#define RCAR_BUS_PHASE_STOP (MDBS | MIE | FSB)
#define RCAR_IRQ_SEND (MNR | MAL | MST | MAT | MDE)
#define RCAR_IRQ_RECV (MNR | MAL | MST | MAT | MDR)
#define RCAR_IRQ_STOP (MST)
#define RCAR_IRQ_ACK_SEND (~(MAT | MDE) & 0x7F)
#define RCAR_IRQ_ACK_RECV (~(MAT | MDR) & 0x7F)
#define ID_LAST_MSG (1 << 0)
#define ID_FIRST_MSG (1 << 1)
#define ID_DONE (1 << 2)
#define ID_ARBLOST (1 << 3)
#define ID_NACK (1 << 4)
/* persistent flags */
#define ID_P_REP_AFTER_RD BIT(29)
#define ID_P_NO_RXDMA BIT(30) /* HW forbids RXDMA sometimes */
#define ID_P_PM_BLOCKED BIT(31)
#define ID_P_MASK GENMASK(31, 29)
enum rcar_i2c_type {
I2C_RCAR_GEN1,
I2C_RCAR_GEN2,
I2C_RCAR_GEN3,
};
struct rcar_i2c_priv {
void __iomem *io;
struct i2c_adapter adap;
struct i2c_msg *msg;
int msgs_left;
struct clk *clk;
wait_queue_head_t wait;
int pos;
u32 icccr;
u32 flags;
u8 recovery_icmcr; /* protected by adapter lock */
enum rcar_i2c_type devtype;
struct i2c_client *slave;
struct resource *res;
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
struct scatterlist sg;
enum dma_data_direction dma_direction;
struct reset_control *rstc;
int irq;
};
#define rcar_i2c_priv_to_dev(p) ((p)->adap.dev.parent)
#define rcar_i2c_is_recv(p) ((p)->msg->flags & I2C_M_RD)
#define LOOP_TIMEOUT 1024
static void rcar_i2c_write(struct rcar_i2c_priv *priv, int reg, u32 val)
{
writel(val, priv->io + reg);
}
static u32 rcar_i2c_read(struct rcar_i2c_priv *priv, int reg)
{
return readl(priv->io + reg);
}
static int rcar_i2c_get_scl(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
return !!(rcar_i2c_read(priv, ICMCR) & FSCL);
};
static void rcar_i2c_set_scl(struct i2c_adapter *adap, int val)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
if (val)
priv->recovery_icmcr |= FSCL;
else
priv->recovery_icmcr &= ~FSCL;
rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
};
static void rcar_i2c_set_sda(struct i2c_adapter *adap, int val)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
if (val)
priv->recovery_icmcr |= FSDA;
else
priv->recovery_icmcr &= ~FSDA;
rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
};
static int rcar_i2c_get_bus_free(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
return !(rcar_i2c_read(priv, ICMCR) & FSDA);
};
static struct i2c_bus_recovery_info rcar_i2c_bri = {
.get_scl = rcar_i2c_get_scl,
.set_scl = rcar_i2c_set_scl,
.set_sda = rcar_i2c_set_sda,
.get_bus_free = rcar_i2c_get_bus_free,
.recover_bus = i2c_generic_scl_recovery,
};
static void rcar_i2c_init(struct rcar_i2c_priv *priv)
{
/* reset master mode */
rcar_i2c_write(priv, ICMIER, 0);
rcar_i2c_write(priv, ICMCR, MDBS);
rcar_i2c_write(priv, ICMSR, 0);
/* start clock */
rcar_i2c_write(priv, ICCCR, priv->icccr);
if (priv->devtype == I2C_RCAR_GEN3)
rcar_i2c_write(priv, ICFBSCR, TCYC17);
}
static int rcar_i2c_bus_barrier(struct rcar_i2c_priv *priv)
{
int i;
for (i = 0; i < LOOP_TIMEOUT; i++) {
/* make sure that bus is not busy */
if (!(rcar_i2c_read(priv, ICMCR) & FSDA))
return 0;
udelay(1);
}
/* Waiting did not help, try to recover */
priv->recovery_icmcr = MDBS | OBPC | FSDA | FSCL;
return i2c_recover_bus(&priv->adap);
}
static int rcar_i2c_clock_calculate(struct rcar_i2c_priv *priv)
{
u32 scgd, cdf, round, ick, sum, scl, cdf_width;
unsigned long rate;
struct device *dev = rcar_i2c_priv_to_dev(priv);
struct i2c_timings t = {
.bus_freq_hz = I2C_MAX_STANDARD_MODE_FREQ,
.scl_fall_ns = 35,
.scl_rise_ns = 200,
.scl_int_delay_ns = 50,
};
/* Fall back to previously used values if not supplied */
i2c_parse_fw_timings(dev, &t, false);
switch (priv->devtype) {
case I2C_RCAR_GEN1:
cdf_width = 2;
break;
case I2C_RCAR_GEN2:
case I2C_RCAR_GEN3:
cdf_width = 3;
break;
default:
dev_err(dev, "device type error\n");
return -EIO;
}
/*
* calculate SCL clock
* see
* ICCCR
*
* ick = clkp / (1 + CDF)
* SCL = ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
*
* ick : I2C internal clock < 20 MHz
* ticf : I2C SCL falling time
* tr : I2C SCL rising time
* intd : LSI internal delay
* clkp : peripheral_clk
* F[] : integer up-valuation
*/
rate = clk_get_rate(priv->clk);
cdf = rate / 20000000;
if (cdf >= 1U << cdf_width) {
dev_err(dev, "Input clock %lu too high\n", rate);
return -EIO;
}
ick = rate / (cdf + 1);
/*
* it is impossible to calculate large scale
* number on u32. separate it
*
* F[(ticf + tr + intd) * ick] with sum = (ticf + tr + intd)
* = F[sum * ick / 1000000000]
* = F[(ick / 1000000) * sum / 1000]
*/
sum = t.scl_fall_ns + t.scl_rise_ns + t.scl_int_delay_ns;
round = (ick + 500000) / 1000000 * sum;
round = (round + 500) / 1000;
/*
* SCL = ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
*
* Calculation result (= SCL) should be less than
* bus_speed for hardware safety
*
* We could use something along the lines of
* div = ick / (bus_speed + 1) + 1;
* scgd = (div - 20 - round + 7) / 8;
* scl = ick / (20 + (scgd * 8) + round);
* (not fully verified) but that would get pretty involved
*/
for (scgd = 0; scgd < 0x40; scgd++) {
scl = ick / (20 + (scgd * 8) + round);
if (scl <= t.bus_freq_hz)
goto scgd_find;
}
dev_err(dev, "it is impossible to calculate best SCL\n");
return -EIO;
scgd_find:
dev_dbg(dev, "clk %d/%d(%lu), round %u, CDF:0x%x, SCGD: 0x%x\n",
scl, t.bus_freq_hz, rate, round, cdf, scgd);
/* keep icccr value */
priv->icccr = scgd << cdf_width | cdf;
return 0;
}
static void rcar_i2c_prepare_msg(struct rcar_i2c_priv *priv)
{
int read = !!rcar_i2c_is_recv(priv);
priv->pos = 0;
if (priv->msgs_left == 1)
priv->flags |= ID_LAST_MSG;
rcar_i2c_write(priv, ICMAR, i2c_8bit_addr_from_msg(priv->msg));
/*
* We don't have a test case but the HW engineers say that the write order
* of ICMSR and ICMCR depends on whether we issue START or REP_START. Since
* it didn't cause a drawback for me, let's rather be safe than sorry.
*/
if (priv->flags & ID_FIRST_MSG) {
rcar_i2c_write(priv, ICMSR, 0);
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
} else {
if (priv->flags & ID_P_REP_AFTER_RD)
priv->flags &= ~ID_P_REP_AFTER_RD;
else
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
rcar_i2c_write(priv, ICMSR, 0);
}
rcar_i2c_write(priv, ICMIER, read ? RCAR_IRQ_RECV : RCAR_IRQ_SEND);
}
static void rcar_i2c_next_msg(struct rcar_i2c_priv *priv)
{
priv->msg++;
priv->msgs_left--;
priv->flags &= ID_P_MASK;
rcar_i2c_prepare_msg(priv);
}
static void rcar_i2c_dma_unmap(struct rcar_i2c_priv *priv)
{
struct dma_chan *chan = priv->dma_direction == DMA_FROM_DEVICE
? priv->dma_rx : priv->dma_tx;
dma_unmap_single(chan->device->dev, sg_dma_address(&priv->sg),
sg_dma_len(&priv->sg), priv->dma_direction);
/* Gen3 can only do one RXDMA per transfer and we just completed it */
if (priv->devtype == I2C_RCAR_GEN3 &&
priv->dma_direction == DMA_FROM_DEVICE)
priv->flags |= ID_P_NO_RXDMA;
priv->dma_direction = DMA_NONE;
i2c: rcar: fix concurrency issue related to ICDMAER This patch fixes the problem that an interrupt may set up a new I2C message and the DMA callback overwrites this setup. By disabling the DMA Enable Register(ICDMAER), rcar_i2c_dma_unmap() enables interrupts for register settings (such as Master Control Register(ICMCR)) and advances the I2C transfer sequence. If an interrupt occurs immediately after ICDMAER is disabled, the callback handler later continues and overwrites the previous settings from the interrupt. So, disable ICDMAER at the end of the callback to ensure other interrupts are masked until then. Note that this driver needs to work lock-free because there are IP cores with a HW race condition which prevent us from using a spinlock in the interrupt handler. Reproduction test: 1. Add a delay after disabling ICDMAER. (It is expected to generate an interrupt of rcar_i2c_irq()) void rcar_i2c_dma_unmap(struct rcar_i2c_priv *priv) { ... rcar_i2c_write(priv, ICDMAER, 0); usleep_range(500, 800) ... priv->dma_direction = DMA_NONE; } 2. Execute DMA transfers $ i2ctransfer -y 4 w9@0x6a 1 1+ r16 3. A log message of BUG_ON() will be displayed. Fixes: 73e8b0528346 ("i2c: rcar: add DMA support") Signed-off-by: Hiromitsu Yamasaki <hiromitsu.yamasaki.ym@renesas.com> Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com> [wsa: updated test case to be more reliable, added note to comment] Reviewed-by: Simon Horman <horms+renesas@verge.net.au> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2019-03-03 23:03:13 +08:00
/* Disable DMA Master Received/Transmitted, must be last! */
rcar_i2c_write(priv, ICDMAER, 0);
}
static void rcar_i2c_cleanup_dma(struct rcar_i2c_priv *priv)
{
if (priv->dma_direction == DMA_NONE)
return;
else if (priv->dma_direction == DMA_FROM_DEVICE)
dmaengine_terminate_all(priv->dma_rx);
else if (priv->dma_direction == DMA_TO_DEVICE)
dmaengine_terminate_all(priv->dma_tx);
rcar_i2c_dma_unmap(priv);
}
static void rcar_i2c_dma_callback(void *data)
{
struct rcar_i2c_priv *priv = data;
priv->pos += sg_dma_len(&priv->sg);
rcar_i2c_dma_unmap(priv);
}
static bool rcar_i2c_dma(struct rcar_i2c_priv *priv)
{
struct device *dev = rcar_i2c_priv_to_dev(priv);
struct i2c_msg *msg = priv->msg;
bool read = msg->flags & I2C_M_RD;
enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
struct dma_chan *chan = read ? priv->dma_rx : priv->dma_tx;
struct dma_async_tx_descriptor *txdesc;
dma_addr_t dma_addr;
dma_cookie_t cookie;
unsigned char *buf;
int len;
/* Do various checks to see if DMA is feasible at all */
if (IS_ERR(chan) || msg->len < RCAR_MIN_DMA_LEN ||
!(msg->flags & I2C_M_DMA_SAFE) || (read && priv->flags & ID_P_NO_RXDMA))
return false;
if (read) {
/*
* The last two bytes needs to be fetched using PIO in
* order for the STOP phase to work.
*/
buf = priv->msg->buf;
len = priv->msg->len - 2;
} else {
/*
* First byte in message was sent using PIO.
*/
buf = priv->msg->buf + 1;
len = priv->msg->len - 1;
}
dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
if (dma_mapping_error(chan->device->dev, dma_addr)) {
dev_dbg(dev, "dma map failed, using PIO\n");
return false;
}
sg_dma_len(&priv->sg) = len;
sg_dma_address(&priv->sg) = dma_addr;
priv->dma_direction = dir;
txdesc = dmaengine_prep_slave_sg(chan, &priv->sg, 1,
read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc) {
dev_dbg(dev, "dma prep slave sg failed, using PIO\n");
rcar_i2c_cleanup_dma(priv);
return false;
}
txdesc->callback = rcar_i2c_dma_callback;
txdesc->callback_param = priv;
cookie = dmaengine_submit(txdesc);
if (dma_submit_error(cookie)) {
dev_dbg(dev, "submitting dma failed, using PIO\n");
rcar_i2c_cleanup_dma(priv);
return false;
}
/* Enable DMA Master Received/Transmitted */
if (read)
rcar_i2c_write(priv, ICDMAER, RMDMAE);
else
rcar_i2c_write(priv, ICDMAER, TMDMAE);
dma_async_issue_pending(chan);
return true;
}
static void rcar_i2c_irq_send(struct rcar_i2c_priv *priv, u32 msr)
{
struct i2c_msg *msg = priv->msg;
/* FIXME: sometimes, unknown interrupt happened. Do nothing */
if (!(msr & MDE))
return;
/* Check if DMA can be enabled and take over */
if (priv->pos == 1 && rcar_i2c_dma(priv))
return;
if (priv->pos < msg->len) {
/*
* Prepare next data to ICRXTX register.
* This data will go to _SHIFT_ register.
*
* *
* [ICRXTX] -> [SHIFT] -> [I2C bus]
*/
rcar_i2c_write(priv, ICRXTX, msg->buf[priv->pos]);
priv->pos++;
} else {
/*
* The last data was pushed to ICRXTX on _PREV_ empty irq.
* It is on _SHIFT_ register, and will sent to I2C bus.
*
* *
* [ICRXTX] -> [SHIFT] -> [I2C bus]
*/
if (priv->flags & ID_LAST_MSG) {
/*
* If current msg is the _LAST_ msg,
* prepare stop condition here.
* ID_DONE will be set on STOP irq.
*/
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
} else {
rcar_i2c_next_msg(priv);
return;
}
}
rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_SEND);
}
static void rcar_i2c_irq_recv(struct rcar_i2c_priv *priv, u32 msr)
{
struct i2c_msg *msg = priv->msg;
/* FIXME: sometimes, unknown interrupt happened. Do nothing */
if (!(msr & MDR))
return;
if (msr & MAT) {
/*
* Address transfer phase finished, but no data at this point.
* Try to use DMA to receive data.
*/
rcar_i2c_dma(priv);
} else if (priv->pos < msg->len) {
/* get received data */
msg->buf[priv->pos] = rcar_i2c_read(priv, ICRXTX);
priv->pos++;
}
/* If next received data is the _LAST_, go to new phase. */
if (priv->pos + 1 == msg->len) {
if (priv->flags & ID_LAST_MSG) {
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
} else {
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
priv->flags |= ID_P_REP_AFTER_RD;
}
}
if (priv->pos == msg->len && !(priv->flags & ID_LAST_MSG))
rcar_i2c_next_msg(priv);
else
rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_RECV);
}
static bool rcar_i2c_slave_irq(struct rcar_i2c_priv *priv)
{
u32 ssr_raw, ssr_filtered;
u8 value;
ssr_raw = rcar_i2c_read(priv, ICSSR) & 0xff;
ssr_filtered = ssr_raw & rcar_i2c_read(priv, ICSIER);
if (!ssr_filtered)
return false;
/* address detected */
if (ssr_filtered & SAR) {
/* read or write request */
if (ssr_raw & STM) {
i2c_slave_event(priv->slave, I2C_SLAVE_READ_REQUESTED, &value);
rcar_i2c_write(priv, ICRXTX, value);
rcar_i2c_write(priv, ICSIER, SDE | SSR | SAR);
} else {
i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
rcar_i2c_read(priv, ICRXTX); /* dummy read */
rcar_i2c_write(priv, ICSIER, SDR | SSR | SAR);
}
rcar_i2c_write(priv, ICSSR, ~SAR & 0xff);
}
/* master sent stop */
if (ssr_filtered & SSR) {
i2c_slave_event(priv->slave, I2C_SLAVE_STOP, &value);
rcar_i2c_write(priv, ICSIER, SAR | SSR);
rcar_i2c_write(priv, ICSSR, ~SSR & 0xff);
}
/* master wants to write to us */
if (ssr_filtered & SDR) {
int ret;
value = rcar_i2c_read(priv, ICRXTX);
ret = i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
/* Send NACK in case of error */
rcar_i2c_write(priv, ICSCR, SIE | SDBS | (ret < 0 ? FNA : 0));
rcar_i2c_write(priv, ICSSR, ~SDR & 0xff);
}
/* master wants to read from us */
if (ssr_filtered & SDE) {
i2c_slave_event(priv->slave, I2C_SLAVE_READ_PROCESSED, &value);
rcar_i2c_write(priv, ICRXTX, value);
rcar_i2c_write(priv, ICSSR, ~SDE & 0xff);
}
return true;
}
/*
* This driver has a lock-free design because there are IP cores (at least
* R-Car Gen2) which have an inherent race condition in their hardware design.
* There, we need to clear RCAR_BUS_MASK_DATA bits as soon as possible after
* the interrupt was generated, otherwise an unwanted repeated message gets
* generated. It turned out that taking a spinlock at the beginning of the ISR
* was already causing repeated messages. Thus, this driver was converted to
* the now lockless behaviour. Please keep this in mind when hacking the driver.
*/
static irqreturn_t rcar_i2c_irq(int irq, void *ptr)
{
struct rcar_i2c_priv *priv = ptr;
u32 msr, val;
/* Clear START or STOP immediately, except for REPSTART after read */
if (likely(!(priv->flags & ID_P_REP_AFTER_RD))) {
val = rcar_i2c_read(priv, ICMCR);
rcar_i2c_write(priv, ICMCR, val & RCAR_BUS_MASK_DATA);
}
msr = rcar_i2c_read(priv, ICMSR);
/* Only handle interrupts that are currently enabled */
msr &= rcar_i2c_read(priv, ICMIER);
if (!msr) {
if (rcar_i2c_slave_irq(priv))
return IRQ_HANDLED;
return IRQ_NONE;
}
/* Arbitration lost */
if (msr & MAL) {
priv->flags |= ID_DONE | ID_ARBLOST;
goto out;
}
/* Nack */
if (msr & MNR) {
/* HW automatically sends STOP after received NACK */
rcar_i2c_write(priv, ICMIER, RCAR_IRQ_STOP);
priv->flags |= ID_NACK;
goto out;
}
/* Stop */
if (msr & MST) {
priv->msgs_left--; /* The last message also made it */
priv->flags |= ID_DONE;
goto out;
}
if (rcar_i2c_is_recv(priv))
rcar_i2c_irq_recv(priv, msr);
else
rcar_i2c_irq_send(priv, msr);
out:
if (priv->flags & ID_DONE) {
rcar_i2c_write(priv, ICMIER, 0);
rcar_i2c_write(priv, ICMSR, 0);
wake_up(&priv->wait);
}
return IRQ_HANDLED;
}
static struct dma_chan *rcar_i2c_request_dma_chan(struct device *dev,
enum dma_transfer_direction dir,
dma_addr_t port_addr)
{
struct dma_chan *chan;
struct dma_slave_config cfg;
char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
int ret;
chan = dma_request_chan(dev, chan_name);
if (IS_ERR(chan)) {
dev_dbg(dev, "request_channel failed for %s (%ld)\n",
chan_name, PTR_ERR(chan));
return chan;
}
memset(&cfg, 0, sizeof(cfg));
cfg.direction = dir;
if (dir == DMA_MEM_TO_DEV) {
cfg.dst_addr = port_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
} else {
cfg.src_addr = port_addr;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
}
ret = dmaengine_slave_config(chan, &cfg);
if (ret) {
dev_dbg(dev, "slave_config failed for %s (%d)\n",
chan_name, ret);
dma_release_channel(chan);
return ERR_PTR(ret);
}
dev_dbg(dev, "got DMA channel for %s\n", chan_name);
return chan;
}
static void rcar_i2c_request_dma(struct rcar_i2c_priv *priv,
struct i2c_msg *msg)
{
struct device *dev = rcar_i2c_priv_to_dev(priv);
bool read;
struct dma_chan *chan;
enum dma_transfer_direction dir;
read = msg->flags & I2C_M_RD;
chan = read ? priv->dma_rx : priv->dma_tx;
if (PTR_ERR(chan) != -EPROBE_DEFER)
return;
dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
chan = rcar_i2c_request_dma_chan(dev, dir, priv->res->start + ICRXTX);
if (read)
priv->dma_rx = chan;
else
priv->dma_tx = chan;
}
static void rcar_i2c_release_dma(struct rcar_i2c_priv *priv)
{
if (!IS_ERR(priv->dma_tx)) {
dma_release_channel(priv->dma_tx);
priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
}
if (!IS_ERR(priv->dma_rx)) {
dma_release_channel(priv->dma_rx);
priv->dma_rx = ERR_PTR(-EPROBE_DEFER);
}
}
/* I2C is a special case, we need to poll the status of a reset */
static int rcar_i2c_do_reset(struct rcar_i2c_priv *priv)
{
int i, ret;
ret = reset_control_reset(priv->rstc);
if (ret)
return ret;
for (i = 0; i < LOOP_TIMEOUT; i++) {
ret = reset_control_status(priv->rstc);
if (ret == 0)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int rcar_i2c_master_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs,
int num)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
struct device *dev = rcar_i2c_priv_to_dev(priv);
int i, ret;
long time_left;
pm_runtime_get_sync(dev);
/* Check bus state before init otherwise bus busy info will be lost */
ret = rcar_i2c_bus_barrier(priv);
if (ret < 0)
goto out;
/* Gen3 needs a reset before allowing RXDMA once */
if (priv->devtype == I2C_RCAR_GEN3) {
priv->flags |= ID_P_NO_RXDMA;
if (!IS_ERR(priv->rstc)) {
ret = rcar_i2c_do_reset(priv);
if (ret == 0)
priv->flags &= ~ID_P_NO_RXDMA;
}
}
rcar_i2c_init(priv);
for (i = 0; i < num; i++)
rcar_i2c_request_dma(priv, msgs + i);
/* init first message */
priv->msg = msgs;
priv->msgs_left = num;
priv->flags = (priv->flags & ID_P_MASK) | ID_FIRST_MSG;
rcar_i2c_prepare_msg(priv);
time_left = wait_event_timeout(priv->wait, priv->flags & ID_DONE,
num * adap->timeout);
/* cleanup DMA if it couldn't complete properly due to an error */
if (priv->dma_direction != DMA_NONE)
rcar_i2c_cleanup_dma(priv);
if (!time_left) {
rcar_i2c_init(priv);
ret = -ETIMEDOUT;
} else if (priv->flags & ID_NACK) {
ret = -ENXIO;
} else if (priv->flags & ID_ARBLOST) {
ret = -EAGAIN;
} else {
ret = num - priv->msgs_left; /* The number of transfer */
}
out:
pm_runtime_put(dev);
if (ret < 0 && ret != -ENXIO)
dev_err(dev, "error %d : %x\n", ret, priv->flags);
return ret;
}
static int rcar_reg_slave(struct i2c_client *slave)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
if (priv->slave)
return -EBUSY;
if (slave->flags & I2C_CLIENT_TEN)
return -EAFNOSUPPORT;
/* Keep device active for slave address detection logic */
pm_runtime_get_sync(rcar_i2c_priv_to_dev(priv));
priv->slave = slave;
rcar_i2c_write(priv, ICSAR, slave->addr);
rcar_i2c_write(priv, ICSSR, 0);
rcar_i2c_write(priv, ICSIER, SAR | SSR);
rcar_i2c_write(priv, ICSCR, SIE | SDBS);
return 0;
}
static int rcar_unreg_slave(struct i2c_client *slave)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
WARN_ON(!priv->slave);
/* disable irqs and ensure none is running before clearing ptr */
rcar_i2c_write(priv, ICSIER, 0);
rcar_i2c_write(priv, ICSCR, 0);
synchronize_irq(priv->irq);
priv->slave = NULL;
pm_runtime_put(rcar_i2c_priv_to_dev(priv));
return 0;
}
static u32 rcar_i2c_func(struct i2c_adapter *adap)
{
/*
* This HW can't do:
* I2C_SMBUS_QUICK (setting FSB during START didn't work)
* I2C_M_NOSTART (automatically sends address after START)
* I2C_M_IGNORE_NAK (automatically sends STOP after NAK)
*/
return I2C_FUNC_I2C | I2C_FUNC_SLAVE |
(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm rcar_i2c_algo = {
.master_xfer = rcar_i2c_master_xfer,
.functionality = rcar_i2c_func,
.reg_slave = rcar_reg_slave,
.unreg_slave = rcar_unreg_slave,
};
static const struct i2c_adapter_quirks rcar_i2c_quirks = {
.flags = I2C_AQ_NO_ZERO_LEN,
};
static const struct of_device_id rcar_i2c_dt_ids[] = {
{ .compatible = "renesas,i2c-r8a7778", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,i2c-r8a7779", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,i2c-r8a7790", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7791", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7792", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7793", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7794", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7795", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,i2c-r8a7796", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,i2c-rcar", .data = (void *)I2C_RCAR_GEN1 }, /* Deprecated */
{ .compatible = "renesas,rcar-gen1-i2c", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,rcar-gen2-i2c", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,rcar-gen3-i2c", .data = (void *)I2C_RCAR_GEN3 },
{},
};
MODULE_DEVICE_TABLE(of, rcar_i2c_dt_ids);
static int rcar_i2c_probe(struct platform_device *pdev)
{
struct rcar_i2c_priv *priv;
struct i2c_adapter *adap;
struct device *dev = &pdev->dev;
int ret;
/* Otherwise logic will break because some bytes must always use PIO */
BUILD_BUG_ON_MSG(RCAR_MIN_DMA_LEN < 3, "Invalid min DMA length");
priv = devm_kzalloc(dev, sizeof(struct rcar_i2c_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(dev, "cannot get clock\n");
return PTR_ERR(priv->clk);
}
priv->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->io = devm_ioremap_resource(dev, priv->res);
if (IS_ERR(priv->io))
return PTR_ERR(priv->io);
priv->devtype = (enum rcar_i2c_type)of_device_get_match_data(dev);
init_waitqueue_head(&priv->wait);
adap = &priv->adap;
adap->nr = pdev->id;
adap->algo = &rcar_i2c_algo;
adap->class = I2C_CLASS_DEPRECATED;
adap->retries = 3;
adap->dev.parent = dev;
adap->dev.of_node = dev->of_node;
adap->bus_recovery_info = &rcar_i2c_bri;
adap->quirks = &rcar_i2c_quirks;
i2c_set_adapdata(adap, priv);
strlcpy(adap->name, pdev->name, sizeof(adap->name));
/* Init DMA */
sg_init_table(&priv->sg, 1);
priv->dma_direction = DMA_NONE;
priv->dma_rx = priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
/* Activate device for clock calculation */
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
ret = rcar_i2c_clock_calculate(priv);
if (ret < 0)
goto out_pm_put;
if (priv->devtype == I2C_RCAR_GEN3) {
priv->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (!IS_ERR(priv->rstc)) {
ret = reset_control_status(priv->rstc);
if (ret < 0)
priv->rstc = ERR_PTR(-ENOTSUPP);
}
}
/* Stay always active when multi-master to keep arbitration working */
if (of_property_read_bool(dev->of_node, "multi-master"))
priv->flags |= ID_P_PM_BLOCKED;
else
pm_runtime_put(dev);
priv->irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(dev, priv->irq, rcar_i2c_irq, 0, dev_name(dev), priv);
if (ret < 0) {
dev_err(dev, "cannot get irq %d\n", priv->irq);
goto out_pm_disable;
}
platform_set_drvdata(pdev, priv);
ret = i2c_add_numbered_adapter(adap);
if (ret < 0)
goto out_pm_disable;
dev_info(dev, "probed\n");
return 0;
out_pm_put:
pm_runtime_put(dev);
out_pm_disable:
pm_runtime_disable(dev);
return ret;
}
static int rcar_i2c_remove(struct platform_device *pdev)
{
struct rcar_i2c_priv *priv = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
i2c_del_adapter(&priv->adap);
rcar_i2c_release_dma(priv);
if (priv->flags & ID_P_PM_BLOCKED)
pm_runtime_put(dev);
pm_runtime_disable(dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int rcar_i2c_suspend(struct device *dev)
{
struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
i2c_mark_adapter_suspended(&priv->adap);
return 0;
}
static int rcar_i2c_resume(struct device *dev)
{
struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
i2c_mark_adapter_resumed(&priv->adap);
return 0;
}
static const struct dev_pm_ops rcar_i2c_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rcar_i2c_suspend, rcar_i2c_resume)
};
#define DEV_PM_OPS (&rcar_i2c_pm_ops)
#else
#define DEV_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static struct platform_driver rcar_i2c_driver = {
.driver = {
.name = "i2c-rcar",
.of_match_table = rcar_i2c_dt_ids,
.pm = DEV_PM_OPS,
},
.probe = rcar_i2c_probe,
.remove = rcar_i2c_remove,
};
module_platform_driver(rcar_i2c_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Renesas R-Car I2C bus driver");
MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");