OpenCloudOS-Kernel/include/acpi/acpiosxf.h

420 lines
11 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
/******************************************************************************
*
* Name: acpiosxf.h - All interfaces to the OS Services Layer (OSL). These
* interfaces must be implemented by OSL to interface the
* ACPI components to the host operating system.
*
* Copyright (C) 2000 - 2023, Intel Corp.
*
*****************************************************************************/
#ifndef __ACPIOSXF_H__
#define __ACPIOSXF_H__
#include <acpi/platform/acenv.h>
#include <acpi/actypes.h>
/* Types for acpi_os_execute */
typedef enum {
OSL_GLOBAL_LOCK_HANDLER,
OSL_NOTIFY_HANDLER,
OSL_GPE_HANDLER,
ACPICA: Debugger: Add thread ID support so that single step mode can only apply to the debugger thread When the debugger is running in the kernel mode, acpi_db_single_step() may also be invoked by the kernel runtime code path but the single stepping command prompt may be erronously logged as the kernel logs and runtime code path cannot proceed. This patch fixes this issue by adding acpi_gbl_db_thread_id for the debugger thread and preventing acpi_db_single_step() to be invoked from other threads. It is not suitable to add acpi_thread_id parameter for acpi_os_execute() as the function may be implemented as work queue on some hosts. So it is better to let the hosts invoke acpi_set_debugger_thread_id(). Currently acpiexec is not configured as DEBUGGER_MULTI_THREADED, but we can do this. When we do this, it is better to invoke acpi_set_debugger_thread_id() in acpi_os_execute() when the execution type is OSL_DEBUGGER_MAIN_THREAD. The support should look like: create_thread(&tid); if (type == OSL_DEBUGGER_MAIN_THREAD) acpi_set_debugger_thread_id(tid); resume_thread(tid); Similarly, semop() may be used for pthread implementation. But this patch simply skips debugger thread ID check for application instead of introducing such complications as there is no need to skip acpi_db_single_step() for an application debugger - acpiexec. Note that the debugger thread ID can also be used by acpi_os_printf() to filter out debugger output. Lv Zheng. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-10-19 10:25:50 +08:00
OSL_DEBUGGER_MAIN_THREAD,
OSL_DEBUGGER_EXEC_THREAD,
OSL_EC_POLL_HANDLER,
ACPI: ACPICA 20060526 Restructured, flattened, and simplified the internal interfaces for namespace object evaluation - resulting in smaller code, less CPU stack use, and fewer interfaces. (With assistance from Mikhail Kouzmich) Fixed a problem with the CopyObject operator where the first parameter was not typed correctly for the parser, interpreter, compiler, and disassembler. Caused various errors and unexpected behavior. Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits produced incorrect results with some C compilers. Since the behavior of C compilers when the shift value is larger than the datatype width is apparently not well defined, the interpreter now detects this condition and simply returns zero as expected in all such cases. (BZ 395) Fixed problem reports (Valery Podrezov) integrated: - Update String-to-Integer conversion to match ACPI 3.0A spec http://bugzilla.kernel.org/show_bug.cgi?id=5329 Allow interpreter to handle nested method declarations http://bugzilla.kernel.org/show_bug.cgi?id=5361 Fixed problem reports (Fiodor Suietov) integrated: - acpi_terminate() doesn't free debug memory allocation list objects (BZ 355) - After Core Subsystem shutdown, acpi_subsystem_status() returns AE_OK (BZ 356) - acpi_os_unmap_memory() for RSDP can be invoked inconsistently (BZ 357) - Resource Manager should return AE_TYPE for non-device objects (BZ 358) - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359) - Use acpi_os_free() instead of ACPI_FREE in acpi_rs_set_srs_method_data (BZ 360) - Incomplete cleanup branch in acpi_ps_parse_aml (BZ 361) - Incomplete cleanup branch in acpi_ds_delete_walk_state (BZ 362) - acpi_get_table_header returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365) - Status of the Global Initialization Handler call not used (BZ 366) - Incorrect object parameter to Global Initialization Handler (BZ 367) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-05-27 04:36:00 +08:00
OSL_EC_BURST_HANDLER
} acpi_execute_type;
#define ACPI_NO_UNIT_LIMIT ((u32) -1)
#define ACPI_MUTEX_SEM 1
/* Functions for acpi_os_signal */
#define ACPI_SIGNAL_FATAL 0
#define ACPI_SIGNAL_BREAKPOINT 1
struct acpi_signal_fatal_info {
u32 type;
u32 code;
u32 argument;
};
/*
* OSL Initialization and shutdown primitives
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_initialize
acpi_status acpi_os_initialize(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_terminate
acpi_status acpi_os_terminate(void);
#endif
/*
* ACPI Table interfaces
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_root_pointer
acpi_physical_address acpi_os_get_root_pointer(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_predefined_override
acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
acpi_string *new_val);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_table_override
acpi_status
acpi_os_table_override(struct acpi_table_header *existing_table,
struct acpi_table_header **new_table);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_physical_table_override
acpi_status
acpi_os_physical_table_override(struct acpi_table_header *existing_table,
acpi_physical_address *new_address,
u32 *new_table_length);
#endif
/*
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
* Spinlock primitives
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_create_lock
ACPICA: Cleanup indentation to reduce differences between Linux and ACPICA. This is a cosmetic patch only. Comparison of the resulting binary showed only line number differences. This patch does not affect the generation of the Linux binary. This patch decreases 210 lines of 20121018 divergence.diff. The ACPICA source codes uses a totally different indentation style from the Linux to be compatible with other users (operating systems or BIOS). Indentation differences are critical to the release automation. There are two causes related to the "indentation" that are affecting the release automation: 1. The ACPICA -> Linux release process is: ACPICA source -- acpisrc - hierarchy - indent -> linuxized ACPICA source -- diff -> linuxized ACPICA patch (x) -- human intervention -> linuxized ACPICA patch (o) Where 'x' means "cannot be directly applied to the Linux" 'o' means "can be directly applied to the Linux" Different "indent" version or "indent" options used in the "indent" step will lead to different divergences. The version of "indent" used for the current release process is: GNU indent 2.2.11 The options of "indent" used for the current release process is: -npro -kr -i8 -ts8 -sob -l80 -ss -ncs 2. Manual indentation prettifying work in the Linux side will also harm the automatically generated linuxized ACPICA patches, making them impossible to apply directly. This patch fixes source code differences caused by the two causes so that the "human intervention" can be reduced in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2012-12-19 13:37:15 +08:00
acpi_status acpi_os_create_lock(acpi_spinlock * out_handle);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_delete_lock
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
void acpi_os_delete_lock(acpi_spinlock handle);
#endif
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_acquire_lock
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock handle);
#endif
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_release_lock
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
void acpi_os_release_lock(acpi_spinlock handle, acpi_cpu_flags flags);
#endif
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
/*
* RAW spinlock primitives. If the OS does not provide them, fallback to
* spinlock primitives
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_create_raw_lock
# define acpi_os_create_raw_lock(out_handle) acpi_os_create_lock(out_handle)
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_delete_raw_lock
# define acpi_os_delete_raw_lock(handle) acpi_os_delete_lock(handle)
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_acquire_raw_lock
# define acpi_os_acquire_raw_lock(handle) acpi_os_acquire_lock(handle)
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_release_raw_lock
# define acpi_os_release_raw_lock(handle, flags) \
acpi_os_release_lock(handle, flags)
#endif
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
/*
* Semaphore primitives
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_create_semaphore
acpi_status
acpi_os_create_semaphore(u32 max_units,
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
u32 initial_units, acpi_semaphore * out_handle);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_delete_semaphore
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
acpi_status acpi_os_delete_semaphore(acpi_semaphore handle);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_wait_semaphore
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
acpi_status
acpi_os_wait_semaphore(acpi_semaphore handle, u32 units, u16 timeout);
#endif
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_signal_semaphore
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
acpi_status acpi_os_signal_semaphore(acpi_semaphore handle, u32 units);
#endif
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
/*
* Mutex primitives. May be configured to use semaphores instead via
* ACPI_MUTEX_TYPE (see platform/acenv.h)
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
*/
#if (ACPI_MUTEX_TYPE != ACPI_BINARY_SEMAPHORE)
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_create_mutex
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
acpi_status acpi_os_create_mutex(acpi_mutex * out_handle);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_delete_mutex
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
void acpi_os_delete_mutex(acpi_mutex handle);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_acquire_mutex
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
acpi_status acpi_os_acquire_mutex(acpi_mutex handle, u16 timeout);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_release_mutex
ACPI: ACPICA 20060623 Implemented a new acpi_spinlock type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. http://bugzilla.kernel.org/show_bug.cgi?id=3691 Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-06-24 05:04:00 +08:00
void acpi_os_release_mutex(acpi_mutex handle);
#endif
#endif
/*
* Memory allocation and mapping
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_allocate
void *acpi_os_allocate(acpi_size size);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_allocate_zeroed
void *acpi_os_allocate_zeroed(acpi_size size);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_free
void acpi_os_free(void *memory);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_map_memory
void *acpi_os_map_memory(acpi_physical_address where, acpi_size length);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_unmap_memory
void acpi_os_unmap_memory(void *logical_address, acpi_size size);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_physical_address
acpi_status
acpi_os_get_physical_address(void *logical_address,
acpi_physical_address *physical_address);
#endif
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
/*
* Memory/Object Cache
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_create_cache
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
acpi_status
acpi_os_create_cache(char *cache_name,
u16 object_size,
u16 max_depth, acpi_cache_t ** return_cache);
#endif
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_delete_cache
acpi_status acpi_os_delete_cache(acpi_cache_t * cache);
#endif
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_purge_cache
acpi_status acpi_os_purge_cache(acpi_cache_t * cache);
#endif
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_acquire_object
void *acpi_os_acquire_object(acpi_cache_t * cache);
#endif
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_release_object
acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object);
#endif
ACPICA 20050617-0624 from Bob Moore <robert.moore@intel.com> ACPICA 20050617: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. Thanks to Alexey Starikovskiy. acpi_os_create_cache acpi_os_delete_cache acpi_os_purge_cache acpi_os_acquire_object acpi_os_release_object Modified the interfaces to acpi_os_acquire_lock and acpi_os_release_lock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. Thanks to Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. ACPICA 20050624: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. acpi_os_acquire_object is now similar to the acpi_os_allocate interface. Thanks to Alexey Starikovskiy. Modified the initialization sequence in acpi_initialize_subsystem to call the OSL interface acpi_osl_initialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ parser/psloop.c /* Main AML parse loop */ Signed-off-by: Len Brown <len.brown@intel.com>
2005-06-24 12:00:00 +08:00
/*
* Interrupt handlers
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_install_interrupt_handler
acpi_status
acpi_os_install_interrupt_handler(u32 interrupt_number,
acpi_osd_handler service_routine,
void *context);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_remove_interrupt_handler
acpi_status
acpi_os_remove_interrupt_handler(u32 interrupt_number,
acpi_osd_handler service_routine);
#endif
/*
* Threads and Scheduling
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_thread_id
acpi_thread_id acpi_os_get_thread_id(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_execute
acpi_status
acpi_os_execute(acpi_execute_type type,
acpi_osd_exec_callback function, void *context);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_wait_events_complete
void acpi_os_wait_events_complete(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_sleep
void acpi_os_sleep(u64 milliseconds);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_stall
void acpi_os_stall(u32 microseconds);
#endif
/*
* Platform and hardware-independent I/O interfaces
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_read_port
acpi_status acpi_os_read_port(acpi_io_address address, u32 *value, u32 width);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_write_port
acpi_status acpi_os_write_port(acpi_io_address address, u32 value, u32 width);
#endif
/*
* Platform and hardware-independent physical memory interfaces
*/
ACPI / LPIT: Add Low Power Idle Table (LPIT) support Add functionality to read LPIT table, which provides: - Sysfs interface to read residency counters via /sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us /sys/devices/system/cpu/cpuidle/low_power_idle_system_residency_us Here the count "low_power_idle_cpu_residency_us" shows the time spent by CPU package in low power state. This is read via MSR interface, which points to MSR for PKG C10. Here the count "low_power_idle_system_residency_us" show the count the system was in low power state. This is read via MMIO interface. This is mapped to SLP_S0 residency on modern Intel systems. This residency is achieved only when CPU is in PKG C10 and all functional blocks are in low power state. It is possible that none of the above counters present or anyone of the counter present or all counters present. For example: On my Kabylake system both of the above counters present. After suspend to idle these counts updated and prints: 6916179 6998564 This counter can be read by tools like turbostat to display. Or it can be used to debug, if modern systems are reaching desired low power state. - Provides an interface to read residency counter memory address This address can be used to get the base address of PMC memory mapped IO. This is utilized by intel_pmc_core driver to print more debug information. In addition, to avoid code duplication to read iomem, removed the read of iomem from acpi_os_read_memory() in osl.c and made a common function acpi_os_read_iomem(). This new function is used for reading iomem in in both osl.c and acpi_lpit.c. Link: http://www.uefi.org/sites/default/files/resources/Intel_ACPI_Low_Power_S0_Idle.pdf Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-10-06 07:24:03 +08:00
int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width);
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_read_memory
acpi_status
acpi_os_read_memory(acpi_physical_address address, u64 *value, u32 width);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_write_memory
acpi_status
acpi_os_write_memory(acpi_physical_address address, u64 value, u32 width);
#endif
/*
* Platform and hardware-independent PCI configuration space access
* Note: Can't use "Register" as a parameter, changed to "Reg" --
* certain compilers complain.
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_read_pci_configuration
acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id,
u32 reg, u64 *value, u32 width);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_write_pci_configuration
acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id,
u32 reg, u64 value, u32 width);
#endif
/*
* Miscellaneous
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_readable
u8 acpi_os_readable(void *pointer, acpi_size length);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_writable
u8 acpi_os_writable(void *pointer, acpi_size length);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_timer
u64 acpi_os_get_timer(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_signal
acpi_status acpi_os_signal(u32 function, void *info);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_enter_sleep
acpi_status acpi_os_enter_sleep(u8 sleep_state, u32 rega_value, u32 regb_value);
#endif
/*
* Debug print routines
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_printf
ACPI_PRINTF_LIKE(1)
void ACPI_INTERNAL_VAR_XFACE acpi_os_printf(const char *format, ...);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_vprintf
void acpi_os_vprintf(const char *format, va_list args);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_redirect_output
void acpi_os_redirect_output(void *destination);
#endif
/*
ACPICA: Debugger: Convert some mechanisms to OSPM specific The following mechanisms are OSPM specific: 1. Redirect output destination to console: no file redirection will be needed by an in-kernel debugger, there is even no file can be accessed when the debugger is running in the kernel mode. 2. Output command prompts: programs other than acpiexec can have different prompt characters and the prompt characters may be implemented as a special character sequence to form a char device IO protocol. 3. Command ready/complete handshake: OSPM debugger may wait more conditions to implement OSPM specific semantics (for example, FIFO full/empty conditions for O_NONBLOCK or IO open/close conditions). Leaving such OSPM specific stuffs in the ACPICA debugger core blocks Linux debugger IO driver implementation. Several new OSL APIs are provided by this patch: 1. acpi_os_initialize_command_signals: initialize command handshake mechanism or any other OSPM specific stuffs. 2. acpi_os_terminate_command_signals: reversal of acpi_os_initialize_command_signals. 3. acpi_os_wait_command_ready: putting debugger task into wait state when a command is not ready. OSPMs can terminate command loop by returning AE_CTRL_TERMINATE from this API. Normally, wait_event() or wait_for_multiple_object() may be used to implement this API. 4. acpi_os_notify_command_complete: putting user task into running state when a command has been completed. OSPMs can terminate command loop by returning AE_CTRL_TERMINATE from this API. Normally, wake_up() or set_event() may be used to implement this API. This patch also converts current command signaling implementation into a generic debugger layer (osgendbg.c) to be used by the existing OSPMs or acpiexec, in return, Linux can have chance to implement its own command handshake mechanism. This patch also implements acpiexec batch mode in a multi-threading mode comaptible style as a demo (this can be confirmed by configuring acpiexec into DEBUGGER_MULTI_THREADED mode where the batch mode is still working). Lv Zheng. Note that the OSPM specific command handshake mechanism is required by Linux kernel because: 1. Linux kernel trends to use wait queue to synchronize two threads, using mutexes to achieve that will cause false "dead lock" warnings. 2. The command handshake mechanism implemented by ACPICA is implemented in this way because of a design issue in debugger IO streaming. Debugger IO outputs are simply cached using a giant buffer, this should be tuned by Linux in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-03 10:42:46 +08:00
* Debug IO
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_line
acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_initialize_debugger
acpi_status acpi_os_initialize_debugger(void);
ACPICA: Debugger: Convert some mechanisms to OSPM specific The following mechanisms are OSPM specific: 1. Redirect output destination to console: no file redirection will be needed by an in-kernel debugger, there is even no file can be accessed when the debugger is running in the kernel mode. 2. Output command prompts: programs other than acpiexec can have different prompt characters and the prompt characters may be implemented as a special character sequence to form a char device IO protocol. 3. Command ready/complete handshake: OSPM debugger may wait more conditions to implement OSPM specific semantics (for example, FIFO full/empty conditions for O_NONBLOCK or IO open/close conditions). Leaving such OSPM specific stuffs in the ACPICA debugger core blocks Linux debugger IO driver implementation. Several new OSL APIs are provided by this patch: 1. acpi_os_initialize_command_signals: initialize command handshake mechanism or any other OSPM specific stuffs. 2. acpi_os_terminate_command_signals: reversal of acpi_os_initialize_command_signals. 3. acpi_os_wait_command_ready: putting debugger task into wait state when a command is not ready. OSPMs can terminate command loop by returning AE_CTRL_TERMINATE from this API. Normally, wait_event() or wait_for_multiple_object() may be used to implement this API. 4. acpi_os_notify_command_complete: putting user task into running state when a command has been completed. OSPMs can terminate command loop by returning AE_CTRL_TERMINATE from this API. Normally, wake_up() or set_event() may be used to implement this API. This patch also converts current command signaling implementation into a generic debugger layer (osgendbg.c) to be used by the existing OSPMs or acpiexec, in return, Linux can have chance to implement its own command handshake mechanism. This patch also implements acpiexec batch mode in a multi-threading mode comaptible style as a demo (this can be confirmed by configuring acpiexec into DEBUGGER_MULTI_THREADED mode where the batch mode is still working). Lv Zheng. Note that the OSPM specific command handshake mechanism is required by Linux kernel because: 1. Linux kernel trends to use wait queue to synchronize two threads, using mutexes to achieve that will cause false "dead lock" warnings. 2. The command handshake mechanism implemented by ACPICA is implemented in this way because of a design issue in debugger IO streaming. Debugger IO outputs are simply cached using a giant buffer, this should be tuned by Linux in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-03 10:42:46 +08:00
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_terminate_debugger
void acpi_os_terminate_debugger(void);
ACPICA: Debugger: Convert some mechanisms to OSPM specific The following mechanisms are OSPM specific: 1. Redirect output destination to console: no file redirection will be needed by an in-kernel debugger, there is even no file can be accessed when the debugger is running in the kernel mode. 2. Output command prompts: programs other than acpiexec can have different prompt characters and the prompt characters may be implemented as a special character sequence to form a char device IO protocol. 3. Command ready/complete handshake: OSPM debugger may wait more conditions to implement OSPM specific semantics (for example, FIFO full/empty conditions for O_NONBLOCK or IO open/close conditions). Leaving such OSPM specific stuffs in the ACPICA debugger core blocks Linux debugger IO driver implementation. Several new OSL APIs are provided by this patch: 1. acpi_os_initialize_command_signals: initialize command handshake mechanism or any other OSPM specific stuffs. 2. acpi_os_terminate_command_signals: reversal of acpi_os_initialize_command_signals. 3. acpi_os_wait_command_ready: putting debugger task into wait state when a command is not ready. OSPMs can terminate command loop by returning AE_CTRL_TERMINATE from this API. Normally, wait_event() or wait_for_multiple_object() may be used to implement this API. 4. acpi_os_notify_command_complete: putting user task into running state when a command has been completed. OSPMs can terminate command loop by returning AE_CTRL_TERMINATE from this API. Normally, wake_up() or set_event() may be used to implement this API. This patch also converts current command signaling implementation into a generic debugger layer (osgendbg.c) to be used by the existing OSPMs or acpiexec, in return, Linux can have chance to implement its own command handshake mechanism. This patch also implements acpiexec batch mode in a multi-threading mode comaptible style as a demo (this can be confirmed by configuring acpiexec into DEBUGGER_MULTI_THREADED mode where the batch mode is still working). Lv Zheng. Note that the OSPM specific command handshake mechanism is required by Linux kernel because: 1. Linux kernel trends to use wait queue to synchronize two threads, using mutexes to achieve that will cause false "dead lock" warnings. 2. The command handshake mechanism implemented by ACPICA is implemented in this way because of a design issue in debugger IO streaming. Debugger IO outputs are simply cached using a giant buffer, this should be tuned by Linux in the future. Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-12-03 10:42:46 +08:00
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_wait_command_ready
acpi_status acpi_os_wait_command_ready(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_notify_command_complete
acpi_status acpi_os_notify_command_complete(void);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_trace_point
void
acpi_os_trace_point(acpi_trace_event_type type,
u8 begin, u8 *aml, char *pathname);
#endif
/*
* Obtain ACPI table(s)
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_table_by_name
acpi_status
acpi_os_get_table_by_name(char *signature,
u32 instance,
struct acpi_table_header **table,
acpi_physical_address *address);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_table_by_index
acpi_status
acpi_os_get_table_by_index(u32 index,
struct acpi_table_header **table,
u32 *instance, acpi_physical_address *address);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_table_by_address
acpi_status
acpi_os_get_table_by_address(acpi_physical_address address,
struct acpi_table_header **table);
#endif
/*
* Directory manipulation
*/
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_open_directory
void *acpi_os_open_directory(char *pathname,
char *wildcard_spec, char requested_file_type);
#endif
/* requeste_file_type values */
#define REQUEST_FILE_ONLY 0
#define REQUEST_DIR_ONLY 1
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_get_next_filename
char *acpi_os_get_next_filename(void *dir_handle);
#endif
#ifndef ACPI_USE_ALTERNATE_PROTOTYPE_acpi_os_close_directory
void acpi_os_close_directory(void *dir_handle);
#endif
#endif /* __ACPIOSXF_H__ */