device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright(c) 2016-2019 Intel Corporation. All rights reserved. */
|
|
|
|
#include <linux/memremap.h>
|
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/memory.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/pfn_t.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/dax.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/mman.h>
|
2022-08-18 21:10:36 +08:00
|
|
|
#include <linux/memory-tiers.h>
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
#include "dax-private.h"
|
|
|
|
#include "bus.h"
|
|
|
|
|
2022-08-18 21:10:36 +08:00
|
|
|
/*
|
|
|
|
* Default abstract distance assigned to the NUMA node onlined
|
|
|
|
* by DAX/kmem if the low level platform driver didn't initialize
|
|
|
|
* one for this NUMA node.
|
|
|
|
*/
|
|
|
|
#define MEMTIER_DEFAULT_DAX_ADISTANCE (MEMTIER_ADISTANCE_DRAM * 5)
|
|
|
|
|
2020-06-05 07:48:48 +08:00
|
|
|
/* Memory resource name used for add_memory_driver_managed(). */
|
|
|
|
static const char *kmem_name;
|
|
|
|
/* Set if any memory will remain added when the driver will be unloaded. */
|
|
|
|
static bool any_hotremove_failed;
|
|
|
|
|
2020-10-14 07:50:39 +08:00
|
|
|
static int dax_kmem_range(struct dev_dax *dev_dax, int i, struct range *r)
|
2020-10-14 07:49:48 +08:00
|
|
|
{
|
2020-10-14 07:50:39 +08:00
|
|
|
struct dev_dax_range *dax_range = &dev_dax->ranges[i];
|
|
|
|
struct range *range = &dax_range->range;
|
2020-10-14 07:49:48 +08:00
|
|
|
|
|
|
|
/* memory-block align the hotplug range */
|
2020-10-14 07:50:39 +08:00
|
|
|
r->start = ALIGN(range->start, memory_block_size_bytes());
|
|
|
|
r->end = ALIGN_DOWN(range->end + 1, memory_block_size_bytes()) - 1;
|
|
|
|
if (r->start >= r->end) {
|
|
|
|
r->start = range->start;
|
|
|
|
r->end = range->end;
|
|
|
|
return -ENOSPC;
|
|
|
|
}
|
|
|
|
return 0;
|
2020-10-14 07:49:48 +08:00
|
|
|
}
|
|
|
|
|
2020-10-16 11:04:22 +08:00
|
|
|
struct dax_kmem_data {
|
|
|
|
const char *res_name;
|
2021-09-08 10:55:37 +08:00
|
|
|
int mgid;
|
2020-10-16 11:04:22 +08:00
|
|
|
struct resource *res[];
|
|
|
|
};
|
|
|
|
|
2022-08-18 21:10:36 +08:00
|
|
|
static struct memory_dev_type *dax_slowmem_type;
|
2020-10-14 07:50:08 +08:00
|
|
|
static int dev_dax_kmem_probe(struct dev_dax *dev_dax)
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
{
|
2020-10-14 07:50:08 +08:00
|
|
|
struct device *dev = &dev_dax->dev;
|
2021-09-08 10:55:37 +08:00
|
|
|
unsigned long total_len = 0;
|
2020-10-16 11:04:22 +08:00
|
|
|
struct dax_kmem_data *data;
|
2021-09-08 10:55:37 +08:00
|
|
|
int i, rc, mapped = 0;
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
int numa_node;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure good NUMA information for the persistent memory.
|
|
|
|
* Without this check, there is a risk that slow memory
|
|
|
|
* could be mixed in a node with faster memory, causing
|
|
|
|
* unavoidable performance issues.
|
|
|
|
*/
|
|
|
|
numa_node = dev_dax->target_node;
|
|
|
|
if (numa_node < 0) {
|
2020-10-14 07:49:43 +08:00
|
|
|
dev_warn(dev, "rejecting DAX region with invalid node: %d\n",
|
|
|
|
numa_node);
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2021-09-08 10:55:37 +08:00
|
|
|
for (i = 0; i < dev_dax->nr_range; i++) {
|
|
|
|
struct range range;
|
|
|
|
|
|
|
|
rc = dax_kmem_range(dev_dax, i, &range);
|
|
|
|
if (rc) {
|
|
|
|
dev_info(dev, "mapping%d: %#llx-%#llx too small after alignment\n",
|
|
|
|
i, range.start, range.end);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
total_len += range_len(&range);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!total_len) {
|
|
|
|
dev_warn(dev, "rejecting DAX region without any memory after alignment\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2022-08-18 21:10:36 +08:00
|
|
|
init_node_memory_type(numa_node, dax_slowmem_type);
|
|
|
|
|
|
|
|
rc = -ENOMEM;
|
2020-12-15 11:04:43 +08:00
|
|
|
data = kzalloc(struct_size(data, res, dev_dax->nr_range), GFP_KERNEL);
|
2020-10-16 11:04:22 +08:00
|
|
|
if (!data)
|
2022-08-18 21:10:36 +08:00
|
|
|
goto err_dax_kmem_data;
|
2020-05-23 13:22:42 +08:00
|
|
|
|
2020-10-16 11:04:22 +08:00
|
|
|
data->res_name = kstrdup(dev_name(dev), GFP_KERNEL);
|
|
|
|
if (!data->res_name)
|
|
|
|
goto err_res_name;
|
|
|
|
|
2021-09-08 10:55:37 +08:00
|
|
|
rc = memory_group_register_static(numa_node, total_len);
|
|
|
|
if (rc < 0)
|
|
|
|
goto err_reg_mgid;
|
|
|
|
data->mgid = rc;
|
|
|
|
|
2020-10-14 07:50:39 +08:00
|
|
|
for (i = 0; i < dev_dax->nr_range; i++) {
|
|
|
|
struct resource *res;
|
|
|
|
struct range range;
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
|
2020-10-14 07:50:39 +08:00
|
|
|
rc = dax_kmem_range(dev_dax, i, &range);
|
2021-09-08 10:55:37 +08:00
|
|
|
if (rc)
|
2020-10-14 07:50:39 +08:00
|
|
|
continue;
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
|
2020-10-14 07:50:39 +08:00
|
|
|
/* Region is permanently reserved if hotremove fails. */
|
2020-10-16 11:04:22 +08:00
|
|
|
res = request_mem_region(range.start, range_len(&range), data->res_name);
|
2020-10-14 07:50:39 +08:00
|
|
|
if (!res) {
|
|
|
|
dev_warn(dev, "mapping%d: %#llx-%#llx could not reserve region\n",
|
|
|
|
i, range.start, range.end);
|
|
|
|
/*
|
|
|
|
* Once some memory has been onlined we can't
|
|
|
|
* assume that it can be un-onlined safely.
|
|
|
|
*/
|
|
|
|
if (mapped)
|
|
|
|
continue;
|
2020-10-16 11:04:22 +08:00
|
|
|
rc = -EBUSY;
|
|
|
|
goto err_request_mem;
|
2020-10-14 07:50:39 +08:00
|
|
|
}
|
2020-10-16 11:04:22 +08:00
|
|
|
data->res[i] = res;
|
2020-10-14 07:50:39 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Set flags appropriate for System RAM. Leave ..._BUSY clear
|
|
|
|
* so that add_memory() can add a child resource. Do not
|
|
|
|
* inherit flags from the parent since it may set new flags
|
|
|
|
* unknown to us that will break add_memory() below.
|
|
|
|
*/
|
|
|
|
res->flags = IORESOURCE_SYSTEM_RAM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure that future kexec'd kernels will not treat
|
|
|
|
* this as RAM automatically.
|
|
|
|
*/
|
2021-09-08 10:55:37 +08:00
|
|
|
rc = add_memory_driver_managed(data->mgid, range.start,
|
|
|
|
range_len(&range), kmem_name, MHP_NID_IS_MGID);
|
2020-10-14 07:50:39 +08:00
|
|
|
|
|
|
|
if (rc) {
|
|
|
|
dev_warn(dev, "mapping%d: %#llx-%#llx memory add failed\n",
|
|
|
|
i, range.start, range.end);
|
2023-02-16 16:36:02 +08:00
|
|
|
remove_resource(res);
|
2020-10-16 11:04:22 +08:00
|
|
|
kfree(res);
|
|
|
|
data->res[i] = NULL;
|
2020-10-14 07:50:39 +08:00
|
|
|
if (mapped)
|
|
|
|
continue;
|
2020-10-16 11:04:22 +08:00
|
|
|
goto err_request_mem;
|
2020-10-14 07:50:39 +08:00
|
|
|
}
|
|
|
|
mapped++;
|
2019-07-17 07:30:27 +08:00
|
|
|
}
|
2020-10-14 07:49:53 +08:00
|
|
|
|
2020-10-16 11:04:22 +08:00
|
|
|
dev_set_drvdata(dev, data);
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
|
|
|
|
return 0;
|
2020-10-16 11:04:22 +08:00
|
|
|
|
|
|
|
err_request_mem:
|
2021-09-08 10:55:37 +08:00
|
|
|
memory_group_unregister(data->mgid);
|
|
|
|
err_reg_mgid:
|
2020-10-16 11:04:22 +08:00
|
|
|
kfree(data->res_name);
|
|
|
|
err_res_name:
|
|
|
|
kfree(data);
|
2022-08-18 21:10:36 +08:00
|
|
|
err_dax_kmem_data:
|
|
|
|
clear_node_memory_type(numa_node, dax_slowmem_type);
|
2020-10-16 11:04:22 +08:00
|
|
|
return rc;
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
}
|
|
|
|
|
2019-07-17 07:30:35 +08:00
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
2021-02-06 06:28:42 +08:00
|
|
|
static void dev_dax_kmem_remove(struct dev_dax *dev_dax)
|
2019-07-17 07:30:35 +08:00
|
|
|
{
|
2020-10-14 07:50:39 +08:00
|
|
|
int i, success = 0;
|
2022-08-18 21:10:36 +08:00
|
|
|
int node = dev_dax->target_node;
|
2020-10-14 07:50:08 +08:00
|
|
|
struct device *dev = &dev_dax->dev;
|
2020-10-16 11:04:22 +08:00
|
|
|
struct dax_kmem_data *data = dev_get_drvdata(dev);
|
2019-07-17 07:30:35 +08:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We have one shot for removing memory, if some memory blocks were not
|
|
|
|
* offline prior to calling this function remove_memory() will fail, and
|
|
|
|
* there is no way to hotremove this memory until reboot because device
|
|
|
|
* unbind will succeed even if we return failure.
|
|
|
|
*/
|
2020-10-14 07:50:39 +08:00
|
|
|
for (i = 0; i < dev_dax->nr_range; i++) {
|
|
|
|
struct range range;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
rc = dax_kmem_range(dev_dax, i, &range);
|
|
|
|
if (rc)
|
|
|
|
continue;
|
|
|
|
|
2021-09-08 10:55:09 +08:00
|
|
|
rc = remove_memory(range.start, range_len(&range));
|
2020-10-14 07:50:39 +08:00
|
|
|
if (rc == 0) {
|
2023-02-16 16:36:02 +08:00
|
|
|
remove_resource(data->res[i]);
|
2020-10-16 11:04:22 +08:00
|
|
|
kfree(data->res[i]);
|
|
|
|
data->res[i] = NULL;
|
2020-10-14 07:50:39 +08:00
|
|
|
success++;
|
|
|
|
continue;
|
|
|
|
}
|
2020-06-05 07:48:48 +08:00
|
|
|
any_hotremove_failed = true;
|
2020-10-14 07:50:39 +08:00
|
|
|
dev_err(dev,
|
|
|
|
"mapping%d: %#llx-%#llx cannot be hotremoved until the next reboot\n",
|
|
|
|
i, range.start, range.end);
|
2019-07-17 07:30:35 +08:00
|
|
|
}
|
|
|
|
|
2020-10-14 07:50:39 +08:00
|
|
|
if (success >= dev_dax->nr_range) {
|
2021-09-08 10:55:37 +08:00
|
|
|
memory_group_unregister(data->mgid);
|
2020-10-16 11:04:22 +08:00
|
|
|
kfree(data->res_name);
|
|
|
|
kfree(data);
|
2020-10-14 07:50:39 +08:00
|
|
|
dev_set_drvdata(dev, NULL);
|
2022-08-18 21:10:36 +08:00
|
|
|
/*
|
|
|
|
* Clear the memtype association on successful unplug.
|
|
|
|
* If not, we have memory blocks left which can be
|
|
|
|
* offlined/onlined later. We need to keep memory_dev_type
|
|
|
|
* for that. This implies this reference will be around
|
|
|
|
* till next reboot.
|
|
|
|
*/
|
|
|
|
clear_node_memory_type(node, dax_slowmem_type);
|
2020-10-14 07:50:39 +08:00
|
|
|
}
|
2019-07-17 07:30:35 +08:00
|
|
|
}
|
|
|
|
#else
|
2021-02-06 06:28:42 +08:00
|
|
|
static void dev_dax_kmem_remove(struct dev_dax *dev_dax)
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
{
|
|
|
|
/*
|
2019-07-17 07:30:35 +08:00
|
|
|
* Without hotremove purposely leak the request_mem_region() for the
|
|
|
|
* device-dax range and return '0' to ->remove() attempts. The removal
|
|
|
|
* of the device from the driver always succeeds, but the region is
|
|
|
|
* permanently pinned as reserved by the unreleased
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
* request_mem_region().
|
|
|
|
*/
|
2020-06-05 07:48:48 +08:00
|
|
|
any_hotremove_failed = true;
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
}
|
2019-07-17 07:30:35 +08:00
|
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
|
|
|
|
static struct dax_device_driver device_dax_kmem_driver = {
|
2020-10-14 07:50:08 +08:00
|
|
|
.probe = dev_dax_kmem_probe,
|
|
|
|
.remove = dev_dax_kmem_remove,
|
dax: Assign RAM regions to memory-hotplug by default
The default mode for device-dax instances is backwards for RAM-regions
as evidenced by the fact that it tends to catch end users by surprise.
"Where is my memory?". Recall that platforms are increasingly shipping
with performance-differentiated memory pools beyond typical DRAM and
NUMA effects. This includes HBM (high-bandwidth-memory) and CXL (dynamic
interleave, varied media types, and future fabric attached
possibilities).
For this reason the EFI_MEMORY_SP (EFI Special Purpose Memory => Linux
'Soft Reserved') attribute is expected to be applied to all memory-pools
that are not the general purpose pool. This designation gives an
Operating System a chance to defer usage of a memory pool until later in
the boot process where its performance properties can be interrogated
and administrator policy can be applied.
'Soft Reserved' memory can be anything from too limited and precious to
be part of the general purpose pool (HBM), too slow to host hot kernel
data structures (some PMEM media), or anything in between. However, in
the absence of an explicit policy, the memory should at least be made
usable by default. The current device-dax default hides all
non-general-purpose memory behind a device interface.
The expectation is that the distribution of users that want the memory
online by default vs device-dedicated-access by default follows the
Pareto principle. A small number of enlightened users may want to do
userspace memory management through a device, but general users just
want the kernel to make the memory available with an option to get more
advanced later.
Arrange for all device-dax instances not backed by PMEM to default to
attaching to the dax_kmem driver. From there the baseline memory hotplug
policy (CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE / memhp_default_state=)
gates whether the memory comes online or stays offline. Where, if it
stays offline, it can be reliably converted back to device-mode where it
can be partitioned, or fronted by a userspace allocator.
So, if someone wants device-dax instances for their 'Soft Reserved'
memory:
1/ Build a kernel with CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE=n or boot
with memhp_default_state=offline, or roll the dice and hope that the
kernel has not pinned a page in that memory before step 2.
2/ Write a udev rule to convert the target dax device(s) from
'system-ram' mode to 'devdax' mode:
daxctl reconfigure-device $dax -m devdax -f
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/167602003336.1924368.6809503401422267885.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2023-02-10 17:07:13 +08:00
|
|
|
.type = DAXDRV_KMEM_TYPE,
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static int __init dax_kmem_init(void)
|
|
|
|
{
|
2020-06-05 07:48:48 +08:00
|
|
|
int rc;
|
|
|
|
|
|
|
|
/* Resource name is permanently allocated if any hotremove fails. */
|
|
|
|
kmem_name = kstrdup_const("System RAM (kmem)", GFP_KERNEL);
|
|
|
|
if (!kmem_name)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2022-08-18 21:10:36 +08:00
|
|
|
dax_slowmem_type = alloc_memory_type(MEMTIER_DEFAULT_DAX_ADISTANCE);
|
|
|
|
if (IS_ERR(dax_slowmem_type)) {
|
|
|
|
rc = PTR_ERR(dax_slowmem_type);
|
|
|
|
goto err_dax_slowmem_type;
|
|
|
|
}
|
|
|
|
|
2020-06-05 07:48:48 +08:00
|
|
|
rc = dax_driver_register(&device_dax_kmem_driver);
|
|
|
|
if (rc)
|
2022-08-18 21:10:36 +08:00
|
|
|
goto error_dax_driver;
|
|
|
|
|
|
|
|
return rc;
|
|
|
|
|
|
|
|
error_dax_driver:
|
|
|
|
destroy_memory_type(dax_slowmem_type);
|
|
|
|
err_dax_slowmem_type:
|
|
|
|
kfree_const(kmem_name);
|
2020-06-05 07:48:48 +08:00
|
|
|
return rc;
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit dax_kmem_exit(void)
|
|
|
|
{
|
|
|
|
dax_driver_unregister(&device_dax_kmem_driver);
|
2020-06-05 07:48:48 +08:00
|
|
|
if (!any_hotremove_failed)
|
|
|
|
kfree_const(kmem_name);
|
2022-08-18 21:10:36 +08:00
|
|
|
destroy_memory_type(dax_slowmem_type);
|
device-dax: "Hotplug" persistent memory for use like normal RAM
This is intended for use with NVDIMMs that are physically persistent
(physically like flash) so that they can be used as a cost-effective
RAM replacement. Intel Optane DC persistent memory is one
implementation of this kind of NVDIMM.
Currently, a persistent memory region is "owned" by a device driver,
either the "Direct DAX" or "Filesystem DAX" drivers. These drivers
allow applications to explicitly use persistent memory, generally
by being modified to use special, new libraries. (DIMM-based
persistent memory hardware/software is described in great detail
here: Documentation/nvdimm/nvdimm.txt).
However, this limits persistent memory use to applications which
*have* been modified. To make it more broadly usable, this driver
"hotplugs" memory into the kernel, to be managed and used just like
normal RAM would be.
To make this work, management software must remove the device from
being controlled by the "Device DAX" infrastructure:
echo dax0.0 > /sys/bus/dax/drivers/device_dax/unbind
and then tell the new driver that it can bind to the device:
echo dax0.0 > /sys/bus/dax/drivers/kmem/new_id
After this, there will be a number of new memory sections visible
in sysfs that can be onlined, or that may get onlined by existing
udev-initiated memory hotplug rules.
This rebinding procedure is currently a one-way trip. Once memory
is bound to "kmem", it's there permanently and can not be
unbound and assigned back to device_dax.
The kmem driver will never bind to a dax device unless the device
is *explicitly* bound to the driver. There are two reasons for
this: One, since it is a one-way trip, it can not be undone if
bound incorrectly. Two, the kmem driver destroys data on the
device. Think of if you had good data on a pmem device. It
would be catastrophic if you compile-in "kmem", but leave out
the "device_dax" driver. kmem would take over the device and
write volatile data all over your good data.
This inherits any existing NUMA information for the newly-added
memory from the persistent memory device that came from the
firmware. On Intel platforms, the firmware has guarantees that
require each socket's persistent memory to be in a separate
memory-only NUMA node. That means that this patch is not expected
to create NUMA nodes, but will simply hotplug memory into existing
nodes.
Because NUMA nodes are created, the existing NUMA APIs and tools
are sufficient to create policies for applications or memory areas
to have affinity for or an aversion to using this memory.
There is currently some metadata at the beginning of pmem regions.
The section-size memory hotplug restrictions, plus this small
reserved area can cause the "loss" of a section or two of capacity.
This should be fixable in follow-on patches. But, as a first step,
losing 256MB of memory (worst case) out of hundreds of gigabytes
is a good tradeoff vs. the required code to fix this up precisely.
This calculation is also the reason we export
memory_block_size_bytes().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-26 02:57:40 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Intel Corporation");
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
module_init(dax_kmem_init);
|
|
|
|
module_exit(dax_kmem_exit);
|
|
|
|
MODULE_ALIAS_DAX_DEVICE(0);
|