OpenCloudOS-Kernel/kernel/watchdog.c

787 lines
22 KiB
C
Raw Normal View History

lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/*
* Detect hard and soft lockups on a system
*
* started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
*
* Note: Most of this code is borrowed heavily from the original softlockup
* detector, so thanks to Ingo for the initial implementation.
* Some chunks also taken from the old x86-specific nmi watchdog code, thanks
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
* to those contributors as well.
*/
#define pr_fmt(fmt) "watchdog: " fmt
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
#include <linux/mm.h>
#include <linux/cpu.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/sysctl.h>
#include <linux/smpboot.h>
#include <linux/sched/rt.h>
#include <uapi/linux/sched/types.h>
watchdog: add watchdog_cpumask sysctl to assist nohz Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:45 +08:00
#include <linux/tick.h>
workqueue: implement lockup detector Workqueue stalls can happen from a variety of usage bugs such as missing WQ_MEM_RECLAIM flag or concurrency managed work item indefinitely staying RUNNING. These stalls can be extremely difficult to hunt down because the usual warning mechanisms can't detect workqueue stalls and the internal state is pretty opaque. To alleviate the situation, this patch implements workqueue lockup detector. It periodically monitors all worker_pools periodically and, if any pool failed to make forward progress longer than the threshold duration, triggers warning and dumps workqueue state as follows. BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 31s! Showing busy workqueues and worker pools: workqueue events: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=17/256 pending: monkey_wrench_fn, e1000_watchdog, cache_reap, vmstat_shepherd, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, cgroup_release_agent workqueue events_power_efficient: flags=0x80 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 pending: check_lifetime, neigh_periodic_work workqueue cgroup_pidlist_destroy: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1 pending: cgroup_pidlist_destroy_work_fn ... The detection mechanism is controller through kernel parameter workqueue.watchdog_thresh and can be updated at runtime through the sysfs module parameter file. v2: Decoupled from softlockup control knobs. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Andrew Morton <akpm@linux-foundation.org>
2015-12-09 00:28:04 +08:00
#include <linux/workqueue.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
#include <asm/irq_regs.h>
#include <linux/kvm_para.h>
watchdog: introduce watchdog_park_threads() and watchdog_unpark_threads() Originally watchdog_nmi_enable(cpu) and watchdog_nmi_disable(cpu) were only called in watchdog thread context. However, the following commits utilize these functions outside of watchdog thread context too. commit 9809b18fcf6b8d8ec4d3643677345907e6b50eca Author: Michal Hocko <mhocko@suse.cz> Date: Tue Sep 24 15:27:30 2013 -0700 watchdog: update watchdog_thresh properly commit b3738d29323344da3017a91010530cf3a58590fc Author: Stephane Eranian <eranian@google.com> Date: Mon Nov 17 20:07:03 2014 +0100 watchdog: Add watchdog enable/disable all functions Hence, it is now possible that these functions execute concurrently with the same 'cpu' argument. This concurrency is problematic because per-cpu 'watchdog_ev' can be accessed/modified without adequate synchronization. The patch series aims to address the above problem. However, instead of introducing locks to protect per-cpu 'watchdog_ev' a different approach is taken: Invoke these functions by parking and unparking the watchdog threads (to ensure they are always called in watchdog thread context). static struct smp_hotplug_thread watchdog_threads = { ... .park = watchdog_disable, // calls watchdog_nmi_disable() .unpark = watchdog_enable, // calls watchdog_nmi_enable() }; Both previously mentioned commits call these functions in a similar way and thus in principle contain some duplicate code. The patch series also avoids this duplication by providing a commonly usable mechanism. - Patch 1/4 introduces the watchdog_{park|unpark}_threads functions that park/unpark all watchdog threads specified in 'watchdog_cpumask'. They are intended to be called inside of kernel/watchdog.c only. - Patch 2/4 introduces the watchdog_{suspend|resume} functions which can be utilized by external callers to deactivate the hard and soft lockup detector temporarily. - Patch 3/4 utilizes watchdog_{park|unpark}_threads to replace some code that was introduced by commit 9809b18fcf6b8d8ec4d3643677345907e6b50eca. - Patch 4/4 utilizes watchdog_{suspend|resume} to replace some code that was introduced by commit b3738d29323344da3017a91010530cf3a58590fc. A few corner cases should be mentioned here for completeness. - kthread_park() of watchdog/N could hang if cpu N is already locked up. However, if watchdog is enabled the lockup will be detected anyway. - kthread_unpark() of watchdog/N could hang if cpu N got locked up after kthread_park(). The occurrence of this scenario should be _very_ rare in practice, in particular because it is not expected that temporary deactivation will happen frequently, and if it happens at all it is expected that the duration of deactivation will be short. This patch (of 4): introduce watchdog_park_threads() and watchdog_unpark_threads() These functions are intended to be used only from inside kernel/watchdog.c to park/unpark all watchdog threads that are specified in watchdog_cpumask. Signed-off-by: Ulrich Obergfell <uobergfe@redhat.com> Reviewed-by: Aaron Tomlin <atomlin@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Stephane Eranian <eranian@google.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05 06:45:15 +08:00
#include <linux/kthread.h>
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
static DEFINE_MUTEX(watchdog_mutex);
#if defined(CONFIG_HARDLOCKUP_DETECTOR) || defined(CONFIG_HAVE_NMI_WATCHDOG)
# define WATCHDOG_DEFAULT (SOFT_WATCHDOG_ENABLED | NMI_WATCHDOG_ENABLED)
# define NMI_WATCHDOG_DEFAULT 1
#else
# define WATCHDOG_DEFAULT (SOFT_WATCHDOG_ENABLED)
# define NMI_WATCHDOG_DEFAULT 0
#endif
unsigned long __read_mostly watchdog_enabled;
int __read_mostly watchdog_user_enabled = 1;
int __read_mostly nmi_watchdog_user_enabled = NMI_WATCHDOG_DEFAULT;
int __read_mostly soft_watchdog_user_enabled = 1;
int __read_mostly watchdog_thresh = 10;
int __read_mostly nmi_watchdog_available;
struct cpumask watchdog_allowed_mask __read_mostly;
static bool softlockup_threads_initialized __read_mostly;
struct cpumask watchdog_cpumask __read_mostly;
unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask);
#ifdef CONFIG_HARDLOCKUP_DETECTOR
/*
* Should we panic when a soft-lockup or hard-lockup occurs:
*/
unsigned int __read_mostly hardlockup_panic =
CONFIG_BOOTPARAM_HARDLOCKUP_PANIC_VALUE;
/*
* We may not want to enable hard lockup detection by default in all cases,
* for example when running the kernel as a guest on a hypervisor. In these
* cases this function can be called to disable hard lockup detection. This
* function should only be executed once by the boot processor before the
* kernel command line parameters are parsed, because otherwise it is not
* possible to override this in hardlockup_panic_setup().
*/
void __init hardlockup_detector_disable(void)
{
nmi_watchdog_user_enabled = 0;
}
static int __init hardlockup_panic_setup(char *str)
{
if (!strncmp(str, "panic", 5))
hardlockup_panic = 1;
else if (!strncmp(str, "nopanic", 7))
hardlockup_panic = 0;
else if (!strncmp(str, "0", 1))
nmi_watchdog_user_enabled = 0;
else if (!strncmp(str, "1", 1))
nmi_watchdog_user_enabled = 1;
return 1;
}
__setup("nmi_watchdog=", hardlockup_panic_setup);
# ifdef CONFIG_SMP
int __read_mostly sysctl_hardlockup_all_cpu_backtrace;
static int __init hardlockup_all_cpu_backtrace_setup(char *str)
{
sysctl_hardlockup_all_cpu_backtrace = !!simple_strtol(str, NULL, 0);
return 1;
}
__setup("hardlockup_all_cpu_backtrace=", hardlockup_all_cpu_backtrace_setup);
# endif /* CONFIG_SMP */
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
/*
* These functions can be overridden if an architecture implements its
* own hardlockup detector.
*
* watchdog_nmi_enable/disable can be implemented to start and stop when
* softlockup watchdog threads start and stop. The arch must select the
* SOFTLOCKUP_DETECTOR Kconfig.
*/
int __weak watchdog_nmi_enable(unsigned int cpu)
{
hardlockup_detector_perf_enable();
return 0;
}
watchdog/hardlockup/perf: Prevent CPU hotplug deadlock The following deadlock is possible in the watchdog hotplug code: cpus_write_lock() ... takedown_cpu() smpboot_park_threads() smpboot_park_thread() kthread_park() ->park() := watchdog_disable() watchdog_nmi_disable() perf_event_release_kernel(); put_event() _free_event() ->destroy() := hw_perf_event_destroy() x86_release_hardware() release_ds_buffers() get_online_cpus() when a per cpu watchdog perf event is destroyed which drops the last reference to the PMU hardware. The cleanup code there invokes get_online_cpus() which instantly deadlocks because the hotplug percpu rwsem is write locked. To solve this add a deferring mechanism: cpus_write_lock() kthread_park() watchdog_nmi_disable(deferred) perf_event_disable(event); move_event_to_deferred(event); .... cpus_write_unlock() cleaup_deferred_events() perf_event_release_kernel() This is still properly serialized against concurrent hotplug via the cpu_add_remove_lock, which is held by the task which initiated the hotplug event. This is also used to handle event destruction when the watchdog threads are parked via other mechanisms than CPU hotplug. Analyzed-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:04 +08:00
void __weak watchdog_nmi_disable(unsigned int cpu)
{
watchdog/hardlockup/perf: Prevent CPU hotplug deadlock The following deadlock is possible in the watchdog hotplug code: cpus_write_lock() ... takedown_cpu() smpboot_park_threads() smpboot_park_thread() kthread_park() ->park() := watchdog_disable() watchdog_nmi_disable() perf_event_release_kernel(); put_event() _free_event() ->destroy() := hw_perf_event_destroy() x86_release_hardware() release_ds_buffers() get_online_cpus() when a per cpu watchdog perf event is destroyed which drops the last reference to the PMU hardware. The cleanup code there invokes get_online_cpus() which instantly deadlocks because the hotplug percpu rwsem is write locked. To solve this add a deferring mechanism: cpus_write_lock() kthread_park() watchdog_nmi_disable(deferred) perf_event_disable(event); move_event_to_deferred(event); .... cpus_write_unlock() cleaup_deferred_events() perf_event_release_kernel() This is still properly serialized against concurrent hotplug via the cpu_add_remove_lock, which is held by the task which initiated the hotplug event. This is also used to handle event destruction when the watchdog threads are parked via other mechanisms than CPU hotplug. Analyzed-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:04 +08:00
hardlockup_detector_perf_disable();
}
/* Return 0, if a NMI watchdog is available. Error code otherwise */
int __weak __init watchdog_nmi_probe(void)
{
return hardlockup_detector_perf_init();
}
/**
* watchdog_nmi_stop - Stop the watchdog for reconfiguration
*
* The reconfiguration steps are:
* watchdog_nmi_stop();
* update_variables();
* watchdog_nmi_start();
*/
void __weak watchdog_nmi_stop(void) { }
/**
* watchdog_nmi_start - Start the watchdog after reconfiguration
*
* Counterpart to watchdog_nmi_stop().
*
* The following variables have been updated in update_variables() and
* contain the currently valid configuration:
* - watchdog_enabled
* - watchdog_thresh
* - watchdog_cpumask
*/
void __weak watchdog_nmi_start(void) { }
/**
* lockup_detector_update_enable - Update the sysctl enable bit
*
* Caller needs to make sure that the NMI/perf watchdogs are off, so this
* can't race with watchdog_nmi_disable().
*/
static void lockup_detector_update_enable(void)
{
watchdog_enabled = 0;
if (!watchdog_user_enabled)
return;
if (nmi_watchdog_available && nmi_watchdog_user_enabled)
watchdog_enabled |= NMI_WATCHDOG_ENABLED;
if (soft_watchdog_user_enabled)
watchdog_enabled |= SOFT_WATCHDOG_ENABLED;
}
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
/* Global variables, exported for sysctl */
unsigned int __read_mostly softlockup_panic =
CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC_VALUE;
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
static u64 __read_mostly sample_period;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts);
static DEFINE_PER_CPU(struct task_struct *, softlockup_watchdog);
static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer);
static DEFINE_PER_CPU(bool, softlockup_touch_sync);
static DEFINE_PER_CPU(bool, soft_watchdog_warn);
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts);
static DEFINE_PER_CPU(unsigned long, soft_lockup_hrtimer_cnt);
static DEFINE_PER_CPU(struct task_struct *, softlockup_task_ptr_saved);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
static DEFINE_PER_CPU(unsigned long, hrtimer_interrupts_saved);
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
static unsigned long soft_lockup_nmi_warn;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
static int __init softlockup_panic_setup(char *str)
{
softlockup_panic = simple_strtoul(str, NULL, 0);
return 1;
}
__setup("softlockup_panic=", softlockup_panic_setup);
static int __init nowatchdog_setup(char *str)
{
watchdog_user_enabled = 0;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
return 1;
}
__setup("nowatchdog", nowatchdog_setup);
static int __init nosoftlockup_setup(char *str)
{
soft_watchdog_user_enabled = 0;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
return 1;
}
__setup("nosoftlockup", nosoftlockup_setup);
watchdog: enable the new user interface of the watchdog mechanism With the current user interface of the watchdog mechanism it is only possible to disable or enable both lockup detectors at the same time. This series introduces new kernel parameters and changes the semantics of some existing kernel parameters, so that the hard lockup detector and the soft lockup detector can be disabled or enabled individually. With this series applied, the user interface is as follows. - parameters in /proc/sys/kernel . soft_watchdog This is a new parameter to control and examine the run state of the soft lockup detector. . nmi_watchdog The semantics of this parameter have changed. It can now be used to control and examine the run state of the hard lockup detector. . watchdog This parameter is still available to control the run state of both lockup detectors at the same time. If this parameter is examined, it shows the logical OR of soft_watchdog and nmi_watchdog. . watchdog_thresh The semantics of this parameter are not affected by the patch. - kernel command line parameters . nosoftlockup The semantics of this parameter have changed. It can now be used to disable the soft lockup detector at boot time. . nmi_watchdog=0 or nmi_watchdog=1 Disable or enable the hard lockup detector at boot time. The patch introduces '=1' as a new option. . nowatchdog The semantics of this parameter are not affected by the patch. It is still available to disable both lockup detectors at boot time. Also, remove the proc_dowatchdog() function which is no longer needed. [dzickus@redhat.com: wrote changelog] [dzickus@redhat.com: update documentation for kernel params and sysctl] Signed-off-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 06:44:13 +08:00
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
#ifdef CONFIG_SMP
int __read_mostly sysctl_softlockup_all_cpu_backtrace;
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
static int __init softlockup_all_cpu_backtrace_setup(char *str)
{
sysctl_softlockup_all_cpu_backtrace = !!simple_strtol(str, NULL, 0);
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
return 1;
}
__setup("softlockup_all_cpu_backtrace=", softlockup_all_cpu_backtrace_setup);
#endif
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
watchdog/hardlockup/perf: Prevent CPU hotplug deadlock The following deadlock is possible in the watchdog hotplug code: cpus_write_lock() ... takedown_cpu() smpboot_park_threads() smpboot_park_thread() kthread_park() ->park() := watchdog_disable() watchdog_nmi_disable() perf_event_release_kernel(); put_event() _free_event() ->destroy() := hw_perf_event_destroy() x86_release_hardware() release_ds_buffers() get_online_cpus() when a per cpu watchdog perf event is destroyed which drops the last reference to the PMU hardware. The cleanup code there invokes get_online_cpus() which instantly deadlocks because the hotplug percpu rwsem is write locked. To solve this add a deferring mechanism: cpus_write_lock() kthread_park() watchdog_nmi_disable(deferred) perf_event_disable(event); move_event_to_deferred(event); .... cpus_write_unlock() cleaup_deferred_events() perf_event_release_kernel() This is still properly serialized against concurrent hotplug via the cpu_add_remove_lock, which is held by the task which initiated the hotplug event. This is also used to handle event destruction when the watchdog threads are parked via other mechanisms than CPU hotplug. Analyzed-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:04 +08:00
static void __lockup_detector_cleanup(void);
/*
* Hard-lockup warnings should be triggered after just a few seconds. Soft-
* lockups can have false positives under extreme conditions. So we generally
* want a higher threshold for soft lockups than for hard lockups. So we couple
* the thresholds with a factor: we make the soft threshold twice the amount of
* time the hard threshold is.
*/
static int get_softlockup_thresh(void)
{
return watchdog_thresh * 2;
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/*
* Returns seconds, approximately. We don't need nanosecond
* resolution, and we don't need to waste time with a big divide when
* 2^30ns == 1.074s.
*/
static unsigned long get_timestamp(void)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
return running_clock() >> 30LL; /* 2^30 ~= 10^9 */
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
static void set_sample_period(void)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
/*
* convert watchdog_thresh from seconds to ns
* the divide by 5 is to give hrtimer several chances (two
* or three with the current relation between the soft
* and hard thresholds) to increment before the
* hardlockup detector generates a warning
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
*/
sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / 5);
kernel/watchdog: Prevent false positives with turbo modes The hardlockup detector on x86 uses a performance counter based on unhalted CPU cycles and a periodic hrtimer. The hrtimer period is about 2/5 of the performance counter period, so the hrtimer should fire 2-3 times before the performance counter NMI fires. The NMI code checks whether the hrtimer fired since the last invocation. If not, it assumess a hard lockup. The calculation of those periods is based on the nominal CPU frequency. Turbo modes increase the CPU clock frequency and therefore shorten the period of the perf/NMI watchdog. With extreme Turbo-modes (3x nominal frequency) the perf/NMI period is shorter than the hrtimer period which leads to false positives. A simple fix would be to shorten the hrtimer period, but that comes with the side effect of more frequent hrtimer and softlockup thread wakeups, which is not desired. Implement a low pass filter, which checks the perf/NMI period against kernel time. If the perf/NMI fires before 4/5 of the watchdog period has elapsed then the event is ignored and postponed to the next perf/NMI. That solves the problem and avoids the overhead of shorter hrtimer periods and more frequent softlockup thread wakeups. Fixes: 58687acba592 ("lockup_detector: Combine nmi_watchdog and softlockup detector") Reported-and-tested-by: Kan Liang <Kan.liang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: dzickus@redhat.com Cc: prarit@redhat.com Cc: ak@linux.intel.com Cc: babu.moger@oracle.com Cc: peterz@infradead.org Cc: eranian@google.com Cc: acme@redhat.com Cc: stable@vger.kernel.org Cc: atomlin@redhat.com Cc: akpm@linux-foundation.org Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708150931310.1886@nanos
2017-08-15 15:50:13 +08:00
watchdog_update_hrtimer_threshold(sample_period);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
/* Commands for resetting the watchdog */
static void __touch_watchdog(void)
{
__this_cpu_write(watchdog_touch_ts, get_timestamp());
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
/**
* touch_softlockup_watchdog_sched - touch watchdog on scheduler stalls
*
* Call when the scheduler may have stalled for legitimate reasons
* preventing the watchdog task from executing - e.g. the scheduler
* entering idle state. This should only be used for scheduler events.
* Use touch_softlockup_watchdog() for everything else.
*/
void touch_softlockup_watchdog_sched(void)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
/*
* Preemption can be enabled. It doesn't matter which CPU's timestamp
* gets zeroed here, so use the raw_ operation.
*/
raw_cpu_write(watchdog_touch_ts, 0);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
void touch_softlockup_watchdog(void)
{
touch_softlockup_watchdog_sched();
workqueue: implement lockup detector Workqueue stalls can happen from a variety of usage bugs such as missing WQ_MEM_RECLAIM flag or concurrency managed work item indefinitely staying RUNNING. These stalls can be extremely difficult to hunt down because the usual warning mechanisms can't detect workqueue stalls and the internal state is pretty opaque. To alleviate the situation, this patch implements workqueue lockup detector. It periodically monitors all worker_pools periodically and, if any pool failed to make forward progress longer than the threshold duration, triggers warning and dumps workqueue state as follows. BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 31s! Showing busy workqueues and worker pools: workqueue events: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=17/256 pending: monkey_wrench_fn, e1000_watchdog, cache_reap, vmstat_shepherd, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, cgroup_release_agent workqueue events_power_efficient: flags=0x80 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 pending: check_lifetime, neigh_periodic_work workqueue cgroup_pidlist_destroy: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1 pending: cgroup_pidlist_destroy_work_fn ... The detection mechanism is controller through kernel parameter workqueue.watchdog_thresh and can be updated at runtime through the sysfs module parameter file. v2: Decoupled from softlockup control knobs. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Andrew Morton <akpm@linux-foundation.org>
2015-12-09 00:28:04 +08:00
wq_watchdog_touch(raw_smp_processor_id());
}
EXPORT_SYMBOL(touch_softlockup_watchdog);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
void touch_all_softlockup_watchdogs(void)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
int cpu;
/*
* watchdog_mutex cannpt be taken here, as this might be called
* from (soft)interrupt context, so the access to
* watchdog_allowed_cpumask might race with a concurrent update.
*
* The watchdog time stamp can race against a concurrent real
* update as well, the only side effect might be a cycle delay for
* the softlockup check.
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
*/
for_each_cpu(cpu, &watchdog_allowed_mask)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
per_cpu(watchdog_touch_ts, cpu) = 0;
workqueue: implement lockup detector Workqueue stalls can happen from a variety of usage bugs such as missing WQ_MEM_RECLAIM flag or concurrency managed work item indefinitely staying RUNNING. These stalls can be extremely difficult to hunt down because the usual warning mechanisms can't detect workqueue stalls and the internal state is pretty opaque. To alleviate the situation, this patch implements workqueue lockup detector. It periodically monitors all worker_pools periodically and, if any pool failed to make forward progress longer than the threshold duration, triggers warning and dumps workqueue state as follows. BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 31s! Showing busy workqueues and worker pools: workqueue events: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=17/256 pending: monkey_wrench_fn, e1000_watchdog, cache_reap, vmstat_shepherd, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, release_one_tty, cgroup_release_agent workqueue events_power_efficient: flags=0x80 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 pending: check_lifetime, neigh_periodic_work workqueue cgroup_pidlist_destroy: flags=0x0 pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1 pending: cgroup_pidlist_destroy_work_fn ... The detection mechanism is controller through kernel parameter workqueue.watchdog_thresh and can be updated at runtime through the sysfs module parameter file. v2: Decoupled from softlockup control knobs. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Andrew Morton <akpm@linux-foundation.org>
2015-12-09 00:28:04 +08:00
wq_watchdog_touch(-1);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
void touch_softlockup_watchdog_sync(void)
{
__this_cpu_write(softlockup_touch_sync, true);
__this_cpu_write(watchdog_touch_ts, 0);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
static int is_softlockup(unsigned long touch_ts)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
unsigned long now = get_timestamp();
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
if ((watchdog_enabled & SOFT_WATCHDOG_ENABLED) && watchdog_thresh){
watchdog: enable the new user interface of the watchdog mechanism With the current user interface of the watchdog mechanism it is only possible to disable or enable both lockup detectors at the same time. This series introduces new kernel parameters and changes the semantics of some existing kernel parameters, so that the hard lockup detector and the soft lockup detector can be disabled or enabled individually. With this series applied, the user interface is as follows. - parameters in /proc/sys/kernel . soft_watchdog This is a new parameter to control and examine the run state of the soft lockup detector. . nmi_watchdog The semantics of this parameter have changed. It can now be used to control and examine the run state of the hard lockup detector. . watchdog This parameter is still available to control the run state of both lockup detectors at the same time. If this parameter is examined, it shows the logical OR of soft_watchdog and nmi_watchdog. . watchdog_thresh The semantics of this parameter are not affected by the patch. - kernel command line parameters . nosoftlockup The semantics of this parameter have changed. It can now be used to disable the soft lockup detector at boot time. . nmi_watchdog=0 or nmi_watchdog=1 Disable or enable the hard lockup detector at boot time. The patch introduces '=1' as a new option. . nowatchdog The semantics of this parameter are not affected by the patch. It is still available to disable both lockup detectors at boot time. Also, remove the proc_dowatchdog() function which is no longer needed. [dzickus@redhat.com: wrote changelog] [dzickus@redhat.com: update documentation for kernel params and sysctl] Signed-off-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 06:44:13 +08:00
/* Warn about unreasonable delays. */
if (time_after(now, touch_ts + get_softlockup_thresh()))
return now - touch_ts;
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
return 0;
}
/* watchdog detector functions */
bool is_hardlockup(void)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
unsigned long hrint = __this_cpu_read(hrtimer_interrupts);
if (__this_cpu_read(hrtimer_interrupts_saved) == hrint)
return true;
__this_cpu_write(hrtimer_interrupts_saved, hrint);
return false;
}
static void watchdog_interrupt_count(void)
{
__this_cpu_inc(hrtimer_interrupts);
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/* watchdog kicker functions */
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
{
unsigned long touch_ts = __this_cpu_read(watchdog_touch_ts);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
struct pt_regs *regs = get_irq_regs();
int duration;
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
if (!watchdog_enabled)
return HRTIMER_NORESTART;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/* kick the hardlockup detector */
watchdog_interrupt_count();
/* kick the softlockup detector */
wake_up_process(__this_cpu_read(softlockup_watchdog));
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/* .. and repeat */
hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
if (touch_ts == 0) {
if (unlikely(__this_cpu_read(softlockup_touch_sync))) {
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/*
* If the time stamp was touched atomically
* make sure the scheduler tick is up to date.
*/
__this_cpu_write(softlockup_touch_sync, false);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
sched_clock_tick();
}
/* Clear the guest paused flag on watchdog reset */
kvm_check_and_clear_guest_paused();
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
__touch_watchdog();
return HRTIMER_RESTART;
}
/* check for a softlockup
* This is done by making sure a high priority task is
* being scheduled. The task touches the watchdog to
* indicate it is getting cpu time. If it hasn't then
* this is a good indication some task is hogging the cpu
*/
duration = is_softlockup(touch_ts);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
if (unlikely(duration)) {
/*
* If a virtual machine is stopped by the host it can look to
* the watchdog like a soft lockup, check to see if the host
* stopped the vm before we issue the warning
*/
if (kvm_check_and_clear_guest_paused())
return HRTIMER_RESTART;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/* only warn once */
if (__this_cpu_read(soft_watchdog_warn) == true) {
/*
* When multiple processes are causing softlockups the
* softlockup detector only warns on the first one
* because the code relies on a full quiet cycle to
* re-arm. The second process prevents the quiet cycle
* and never gets reported. Use task pointers to detect
* this.
*/
if (__this_cpu_read(softlockup_task_ptr_saved) !=
current) {
__this_cpu_write(soft_watchdog_warn, false);
__touch_watchdog();
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
return HRTIMER_RESTART;
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
if (softlockup_all_cpu_backtrace) {
/* Prevent multiple soft-lockup reports if one cpu is already
* engaged in dumping cpu back traces
*/
if (test_and_set_bit(0, &soft_lockup_nmi_warn)) {
/* Someone else will report us. Let's give up */
__this_cpu_write(soft_watchdog_warn, true);
return HRTIMER_RESTART;
}
}
pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
smp_processor_id(), duration,
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
current->comm, task_pid_nr(current));
__this_cpu_write(softlockup_task_ptr_saved, current);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
print_modules();
print_irqtrace_events(current);
if (regs)
show_regs(regs);
else
dump_stack();
kernel/watchdog.c: print traces for all cpus on lockup detection A 'softlockup' is defined as a bug that causes the kernel to loop in kernel mode for more than a predefined period to time, without giving other tasks a chance to run. Currently, upon detection of this condition by the per-cpu watchdog task, debug information (including a stack trace) is sent to the system log. On some occasions, we have observed that the "victim" rather than the actual "culprit" (i.e. the owner/holder of the contended resource) is reported to the user. Often this information has proven to be insufficient to assist debugging efforts. To avoid loss of useful debug information, for architectures which support NMI, this patch makes it possible to improve soft lockup reporting. This is accomplished by issuing an NMI to each cpu to obtain a stack trace. If NMI is not supported we just revert back to the old method. A sysctl and boot-time parameter is available to toggle this feature. [dzickus@redhat.com: add CONFIG_SMP in certain areas] [akpm@linux-foundation.org: additional CONFIG_SMP=n optimisations] [mq@suse.cz: fix warning] Signed-off-by: Aaron Tomlin <atomlin@redhat.com> Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jan Moskyto Matejka <mq@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-24 04:22:05 +08:00
if (softlockup_all_cpu_backtrace) {
/* Avoid generating two back traces for current
* given that one is already made above
*/
trigger_allbutself_cpu_backtrace();
clear_bit(0, &soft_lockup_nmi_warn);
/* Barrier to sync with other cpus */
smp_mb__after_atomic();
}
add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
if (softlockup_panic)
panic("softlockup: hung tasks");
__this_cpu_write(soft_watchdog_warn, true);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
} else
__this_cpu_write(soft_watchdog_warn, false);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
return HRTIMER_RESTART;
}
static void watchdog_set_prio(unsigned int policy, unsigned int prio)
{
struct sched_param param = { .sched_priority = prio };
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
sched_setscheduler(current, policy, &param);
}
static void watchdog_enable(unsigned int cpu)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
/*
* Start the timer first to prevent the NMI watchdog triggering
* before the timer has a chance to fire.
*/
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer->function = watchdog_timer_fn;
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
hrtimer_start(hrtimer, ns_to_ktime(sample_period),
HRTIMER_MODE_REL_PINNED);
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
/* Initialize timestamp */
__touch_watchdog();
/* Enable the perf event */
if (watchdog_enabled & NMI_WATCHDOG_ENABLED)
watchdog_nmi_enable(cpu);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
watchdog_set_prio(SCHED_FIFO, MAX_RT_PRIO - 1);
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
static void watchdog_disable(unsigned int cpu)
{
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
watchdog_set_prio(SCHED_NORMAL, 0);
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
/*
* Disable the perf event first. That prevents that a large delay
* between disabling the timer and disabling the perf event causes
* the perf NMI to detect a false positive.
*/
watchdog_nmi_disable(cpu);
watchdog/core: Remove the park_in_progress obfuscation Commit: b94f51183b06 ("kernel/watchdog: prevent false hardlockup on overloaded system") tries to fix the following issue: proc_write() set_sample_period() <--- New sample period becoms visible <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() thread->park() disable_nmi() <----- Broken ends The reason why this is broken is that the update of the watchdog threshold becomes immediately effective and visible for the hrtimer function which uses that value to rearm the timer. But the NMI/perf side still uses the old value up to the point where it is disabled. If the rate has been lowered then the NMI can run fast enough to 'detect' a hard lockup because the timer has not fired due to the longer period. The patch 'fixed' this by adding a variable: proc_write() set_sample_period() <----- Broken starts proc_watchdog_update() watchdog_enable_all_cpus() watchdog_hrtimer_fn() update_watchdog_all_cpus() restart_timer(sample_period) watchdog_park_threads() park_in_progress = 1 <----- Broken ends nmi_watchdog() if (park_in_progress) return; The only effect of this variable was to make the window where the breakage can hit small enough that it was not longer observable in testing. From a correctness point of view it is a pointless bandaid which merily papers over the root cause: the unsychronized update of the variable. Looking deeper into the related code pathes unearthed similar problems in the watchdog_start()/stop() functions. watchdog_start() perf_nmi_event_start() hrtimer_start() watchdog_stop() hrtimer_cancel() perf_nmi_event_stop() In both cases the call order is wrong because if the tasks gets preempted or the VM gets scheduled out long enough after the first call, then there is a chance that the next NMI will see a stale hrtimer interrupt count and trigger a false positive hard lockup splat. Get rid of park_in_progress so the code can be gradually deobfuscated and pruned from several layers of duct tape papering over the root cause, which has been either ignored or not understood at all. Once this is removed the underlying problem will be fixed by rewriting the proc interface to do a proper synchronized update. Address the start/stop() ordering problem as well by reverting the call order, so this part is at least correct now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1709052038270.2393@nanos Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:05 +08:00
hrtimer_cancel(hrtimer);
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
watchdog: Register / unregister watchdog kthreads on sysctl control The user activation/deactivation of the watchdog through boot parameters or systcl is currently implemented with a dance involving kthreads parking and unparking methods: the threads are unconditionally registered on boot and they park as soon as the user want the watchdog to be disabled. This method involves a few noisy details to handle though: the watchdog kthreads may be unparked anytime due to hotplug operations, after which the watchdog internals have to decide to park again if it is user-disabled. As a result the setup() and unpark() methods need to be able to request a reparking. This is not currently supported in the kthread infrastructure so this piece of the watchdog code only works halfway. Besides, unparking/reparking the watchdog kthreads consume unnecessary cputime on hotplug operations when those could be simply ignored in the first place. As suggested by Srivatsa, let's instead only register the watchdog threads when they are needed. This way we don't need to think about hotplug operations and we don't burden the CPU onlining when the watchdog is simply disabled. Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Anish Singh <anish198519851985@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com>
2013-06-06 21:42:53 +08:00
static void watchdog_cleanup(unsigned int cpu, bool online)
{
watchdog_disable(cpu);
}
static int watchdog_should_run(unsigned int cpu)
{
return __this_cpu_read(hrtimer_interrupts) !=
__this_cpu_read(soft_lockup_hrtimer_cnt);
}
/*
* The watchdog thread function - touches the timestamp.
*
* It only runs once every sample_period seconds (4 seconds by
* default) to reset the softlockup timestamp. If this gets delayed
* for more than 2*watchdog_thresh seconds then the debug-printout
* triggers in watchdog_timer_fn().
*/
static void watchdog(unsigned int cpu)
{
__this_cpu_write(soft_lockup_hrtimer_cnt,
__this_cpu_read(hrtimer_interrupts));
__touch_watchdog();
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
watchdog: Register / unregister watchdog kthreads on sysctl control The user activation/deactivation of the watchdog through boot parameters or systcl is currently implemented with a dance involving kthreads parking and unparking methods: the threads are unconditionally registered on boot and they park as soon as the user want the watchdog to be disabled. This method involves a few noisy details to handle though: the watchdog kthreads may be unparked anytime due to hotplug operations, after which the watchdog internals have to decide to park again if it is user-disabled. As a result the setup() and unpark() methods need to be able to request a reparking. This is not currently supported in the kthread infrastructure so this piece of the watchdog code only works halfway. Besides, unparking/reparking the watchdog kthreads consume unnecessary cputime on hotplug operations when those could be simply ignored in the first place. As suggested by Srivatsa, let's instead only register the watchdog threads when they are needed. This way we don't need to think about hotplug operations and we don't burden the CPU onlining when the watchdog is simply disabled. Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Anish Singh <anish198519851985@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com>
2013-06-06 21:42:53 +08:00
static struct smp_hotplug_thread watchdog_threads = {
.store = &softlockup_watchdog,
.thread_should_run = watchdog_should_run,
.thread_fn = watchdog,
.thread_comm = "watchdog/%u",
.setup = watchdog_enable,
.cleanup = watchdog_cleanup,
.park = watchdog_disable,
.unpark = watchdog_enable,
};
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
static void softlockup_update_smpboot_threads(void)
{
lockdep_assert_held(&watchdog_mutex);
if (!softlockup_threads_initialized)
return;
smpboot_update_cpumask_percpu_thread(&watchdog_threads,
&watchdog_allowed_mask);
}
/* Temporarily park all watchdog threads */
static void softlockup_park_all_threads(void)
{
cpumask_clear(&watchdog_allowed_mask);
softlockup_update_smpboot_threads();
}
/* Unpark enabled threads */
static void softlockup_unpark_threads(void)
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
{
cpumask_copy(&watchdog_allowed_mask, &watchdog_cpumask);
softlockup_update_smpboot_threads();
}
static void softlockup_reconfigure_threads(void)
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
{
cpus_read_lock();
watchdog_nmi_stop();
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
softlockup_park_all_threads();
set_sample_period();
lockup_detector_update_enable();
if (watchdog_enabled && watchdog_thresh)
softlockup_unpark_threads();
watchdog_nmi_start();
cpus_read_unlock();
/*
* Must be called outside the cpus locked section to prevent
* recursive locking in the perf code.
*/
__lockup_detector_cleanup();
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
}
/*
* Create the watchdog thread infrastructure.
*
* The threads are not unparked as watchdog_allowed_mask is empty. When
* the threads are sucessfully initialized, take the proper locks and
* unpark the threads in the watchdog_cpumask if the watchdog is enabled.
*/
static __init void softlockup_init_threads(void)
{
int ret;
/*
* If sysctl is off and watchdog got disabled on the command line,
* nothing to do here.
*/
lockup_detector_update_enable();
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
if (!IS_ENABLED(CONFIG_SYSCTL) &&
!(watchdog_enabled && watchdog_thresh))
return;
ret = smpboot_register_percpu_thread_cpumask(&watchdog_threads,
&watchdog_allowed_mask);
if (ret) {
pr_err("Failed to initialize soft lockup detector threads\n");
return;
}
mutex_lock(&watchdog_mutex);
softlockup_threads_initialized = true;
softlockup_reconfigure_threads();
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
mutex_unlock(&watchdog_mutex);
}
#else /* CONFIG_SOFTLOCKUP_DETECTOR */
static inline int watchdog_park_threads(void) { return 0; }
static inline void watchdog_unpark_threads(void) { }
static inline int watchdog_enable_all_cpus(void) { return 0; }
static inline void watchdog_disable_all_cpus(void) { }
watchdog/core: Create new thread handling infrastructure The lockup detector reconfiguration tears down all watchdog threads when the watchdog is disabled and sets them up again when its enabled. That's a pointless exercise. The watchdog threads are not consuming an insane amount of resources, so it's enough to set them up at init time and keep them in parked position when the watchdog is disabled and unpark them when it is reenabled. The smpboot thread infrastructure takes care of keeping the force parked threads in place even across cpu hotplug. Another horrible mechanism are the open coded park/unpark loops which are used for reconfiguration of the watchdog. The smpboot infrastructure allows exactly the same via smpboot_update_cpumask_thread_percpu(), which is cpu hotplug safe. Using that instead of the open coded loops allows to get rid of the hotplug locking mess in the watchdog code. Implement a clean infrastructure which allows to replace the open coded nonsense. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194147.377182587@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:10 +08:00
static inline void softlockup_init_threads(void) { }
static void softlockup_reconfigure_threads(void)
{
cpus_read_lock();
watchdog_nmi_stop();
lockup_detector_update_enable();
watchdog_nmi_start();
cpus_read_unlock();
}
#endif /* !CONFIG_SOFTLOCKUP_DETECTOR */
watchdog/hardlockup/perf: Prevent CPU hotplug deadlock The following deadlock is possible in the watchdog hotplug code: cpus_write_lock() ... takedown_cpu() smpboot_park_threads() smpboot_park_thread() kthread_park() ->park() := watchdog_disable() watchdog_nmi_disable() perf_event_release_kernel(); put_event() _free_event() ->destroy() := hw_perf_event_destroy() x86_release_hardware() release_ds_buffers() get_online_cpus() when a per cpu watchdog perf event is destroyed which drops the last reference to the PMU hardware. The cleanup code there invokes get_online_cpus() which instantly deadlocks because the hotplug percpu rwsem is write locked. To solve this add a deferring mechanism: cpus_write_lock() kthread_park() watchdog_nmi_disable(deferred) perf_event_disable(event); move_event_to_deferred(event); .... cpus_write_unlock() cleaup_deferred_events() perf_event_release_kernel() This is still properly serialized against concurrent hotplug via the cpu_add_remove_lock, which is held by the task which initiated the hotplug event. This is also used to handle event destruction when the watchdog threads are parked via other mechanisms than CPU hotplug. Analyzed-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Don Zickus <dzickus@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Ulrich Obergfell <uobergfe@redhat.com> Link: http://lkml.kernel.org/r/20170912194146.884469246@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 03:37:04 +08:00
static void __lockup_detector_cleanup(void)
{
lockdep_assert_held(&watchdog_mutex);
hardlockup_detector_perf_cleanup();
}
/**
* lockup_detector_cleanup - Cleanup after cpu hotplug or sysctl changes
*
* Caller must not hold the cpu hotplug rwsem.
*/
void lockup_detector_cleanup(void)
{
mutex_lock(&watchdog_mutex);
__lockup_detector_cleanup();
mutex_unlock(&watchdog_mutex);
}
/**
* lockup_detector_soft_poweroff - Interface to stop lockup detector(s)
*
* Special interface for parisc. It prevents lockup detector warnings from
* the default pm_poweroff() function which busy loops forever.
*/
void lockup_detector_soft_poweroff(void)
{
watchdog_enabled = 0;
}
#ifdef CONFIG_SYSCTL
/* Propagate any changes to the watchdog threads */
static void proc_watchdog_update(void)
{
/* Remove impossible cpus to keep sysctl output clean. */
cpumask_and(&watchdog_cpumask, &watchdog_cpumask, cpu_possible_mask);
softlockup_reconfigure_threads();
}
/*
* common function for watchdog, nmi_watchdog and soft_watchdog parameter
*
* caller | table->data points to | 'which'
* -------------------|----------------------------|--------------------------
* proc_watchdog | watchdog_user_enabled | NMI_WATCHDOG_ENABLED |
* | | SOFT_WATCHDOG_ENABLED
* -------------------|----------------------------|--------------------------
* proc_nmi_watchdog | nmi_watchdog_user_enabled | NMI_WATCHDOG_ENABLED
* -------------------|----------------------------|--------------------------
* proc_soft_watchdog | soft_watchdog_user_enabled | SOFT_WATCHDOG_ENABLED
*/
static int proc_watchdog_common(int which, struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int err, old, *param = table->data;
mutex_lock(&watchdog_mutex);
if (!write) {
/*
* On read synchronize the userspace interface. This is a
* racy snapshot.
*/
*param = (watchdog_enabled & which) != 0;
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
} else {
old = READ_ONCE(*param);
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!err && old != READ_ONCE(*param))
proc_watchdog_update();
}
mutex_unlock(&watchdog_mutex);
return err;
}
/*
* /proc/sys/kernel/watchdog
*/
int proc_watchdog(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
return proc_watchdog_common(NMI_WATCHDOG_ENABLED|SOFT_WATCHDOG_ENABLED,
table, write, buffer, lenp, ppos);
}
/*
* /proc/sys/kernel/nmi_watchdog
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
*/
int proc_nmi_watchdog(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
if (!nmi_watchdog_available && write)
return -ENOTSUPP;
return proc_watchdog_common(NMI_WATCHDOG_ENABLED,
table, write, buffer, lenp, ppos);
}
/*
* /proc/sys/kernel/soft_watchdog
*/
int proc_soft_watchdog(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
return proc_watchdog_common(SOFT_WATCHDOG_ENABLED,
table, write, buffer, lenp, ppos);
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
/*
* /proc/sys/kernel/watchdog_thresh
*/
int proc_watchdog_thresh(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
int err, old;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
mutex_lock(&watchdog_mutex);
old = READ_ONCE(watchdog_thresh);
watchdog: Register / unregister watchdog kthreads on sysctl control The user activation/deactivation of the watchdog through boot parameters or systcl is currently implemented with a dance involving kthreads parking and unparking methods: the threads are unconditionally registered on boot and they park as soon as the user want the watchdog to be disabled. This method involves a few noisy details to handle though: the watchdog kthreads may be unparked anytime due to hotplug operations, after which the watchdog internals have to decide to park again if it is user-disabled. As a result the setup() and unpark() methods need to be able to request a reparking. This is not currently supported in the kthread infrastructure so this piece of the watchdog code only works halfway. Besides, unparking/reparking the watchdog kthreads consume unnecessary cputime on hotplug operations when those could be simply ignored in the first place. As suggested by Srivatsa, let's instead only register the watchdog threads when they are needed. This way we don't need to think about hotplug operations and we don't burden the CPU onlining when the watchdog is simply disabled. Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Anish Singh <anish198519851985@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com>
2013-06-06 21:42:53 +08:00
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!err && write && old != READ_ONCE(watchdog_thresh))
proc_watchdog_update();
mutex_unlock(&watchdog_mutex);
watchdog: Register / unregister watchdog kthreads on sysctl control The user activation/deactivation of the watchdog through boot parameters or systcl is currently implemented with a dance involving kthreads parking and unparking methods: the threads are unconditionally registered on boot and they park as soon as the user want the watchdog to be disabled. This method involves a few noisy details to handle though: the watchdog kthreads may be unparked anytime due to hotplug operations, after which the watchdog internals have to decide to park again if it is user-disabled. As a result the setup() and unpark() methods need to be able to request a reparking. This is not currently supported in the kthread infrastructure so this piece of the watchdog code only works halfway. Besides, unparking/reparking the watchdog kthreads consume unnecessary cputime on hotplug operations when those could be simply ignored in the first place. As suggested by Srivatsa, let's instead only register the watchdog threads when they are needed. This way we don't need to think about hotplug operations and we don't burden the CPU onlining when the watchdog is simply disabled. Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Cc: Anish Singh <anish198519851985@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Li Zhong <zhong@linux.vnet.ibm.com> Cc: Don Zickus <dzickus@redhat.com>
2013-06-06 21:42:53 +08:00
return err;
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}
watchdog: add watchdog_cpumask sysctl to assist nohz Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:45 +08:00
/*
* The cpumask is the mask of possible cpus that the watchdog can run
* on, not the mask of cpus it is actually running on. This allows the
* user to specify a mask that will include cpus that have not yet
* been brought online, if desired.
*/
int proc_watchdog_cpumask(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int err;
mutex_lock(&watchdog_mutex);
watchdog: add watchdog_cpumask sysctl to assist nohz Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:45 +08:00
err = proc_do_large_bitmap(table, write, buffer, lenp, ppos);
if (!err && write)
proc_watchdog_update();
mutex_unlock(&watchdog_mutex);
watchdog: add watchdog_cpumask sysctl to assist nohz Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:45 +08:00
return err;
}
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
#endif /* CONFIG_SYSCTL */
void __init lockup_detector_init(void)
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
{
watchdog: add watchdog_cpumask sysctl to assist nohz Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:45 +08:00
#ifdef CONFIG_NO_HZ_FULL
if (tick_nohz_full_enabled()) {
pr_info("Disabling watchdog on nohz_full cores by default\n");
cpumask_copy(&watchdog_cpumask, housekeeping_mask);
watchdog: add watchdog_cpumask sysctl to assist nohz Change the default behavior of watchdog so it only runs on the housekeeping cores when nohz_full is enabled at build and boot time. Allow modifying the set of cores the watchdog is currently running on with a new kernel.watchdog_cpumask sysctl. In the current system, the watchdog subsystem runs a periodic timer that schedules the watchdog kthread to run. However, nohz_full cores are designed to allow userspace application code running on those cores to have 100% access to the CPU. So the watchdog system prevents the nohz_full application code from being able to run the way it wants to, thus the motivation to suppress the watchdog on nohz_full cores, which this patchset provides by default. However, if we disable the watchdog globally, then the housekeeping cores can't benefit from the watchdog functionality. So we allow disabling it only on some cores. See Documentation/lockup-watchdogs.txt for more information. [jhubbard@nvidia.com: fix a watchdog crash in some configurations] Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com> Acked-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ulrich Obergfell <uobergfe@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 07:55:45 +08:00
} else
cpumask_copy(&watchdog_cpumask, cpu_possible_mask);
#else
cpumask_copy(&watchdog_cpumask, cpu_possible_mask);
#endif
if (!watchdog_nmi_probe())
nmi_watchdog_available = true;
softlockup_init_threads();
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-08 05:11:44 +08:00
}