OpenCloudOS-Kernel/drivers/usb/mon/mon_bin.c

1391 lines
33 KiB
C
Raw Normal View History

/*
* The USB Monitor, inspired by Dave Harding's USBMon.
*
* This is a binary format reader.
*
* Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
* Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/export.h>
#include <linux/usb.h>
#include <linux/poll.h>
#include <linux/compat.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <asm/uaccess.h>
#include "usb_mon.h"
/*
* Defined by USB 2.0 clause 9.3, table 9.2.
*/
#define SETUP_LEN 8
/* ioctl macros */
#define MON_IOC_MAGIC 0x92
#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
#define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
/* #9 was MON_IOCT_SETAPI */
#define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
#ifdef CONFIG_COMPAT
#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
#define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
#endif
/*
* Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
* But it's all right. Just use a simple way to make sure the chunk is never
* smaller than a page.
*
* N.B. An application does not know our chunk size.
*
* Woops, get_zeroed_page() returns a single page. I guess we're stuck with
* page-sized chunks for the time being.
*/
#define CHUNK_SIZE PAGE_SIZE
#define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
/*
* The magic limit was calculated so that it allows the monitoring
* application to pick data once in two ticks. This way, another application,
* which presumably drives the bus, gets to hog CPU, yet we collect our data.
* If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
* enormous overhead built into the bus protocol, so we need about 1000 KB.
*
* This is still too much for most cases, where we just snoop a few
* descriptor fetches for enumeration. So, the default is a "reasonable"
* amount for systems with HZ=250 and incomplete bus saturation.
*
* XXX What about multi-megabyte URBs which take minutes to transfer?
*/
#define BUFF_MAX CHUNK_ALIGN(1200*1024)
#define BUFF_DFL CHUNK_ALIGN(300*1024)
#define BUFF_MIN CHUNK_ALIGN(8*1024)
/*
* The per-event API header (2 per URB).
*
* This structure is seen in userland as defined by the documentation.
*/
struct mon_bin_hdr {
u64 id; /* URB ID - from submission to callback */
unsigned char type; /* Same as in text API; extensible. */
unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
unsigned char epnum; /* Endpoint number and transfer direction */
unsigned char devnum; /* Device address */
unsigned short busnum; /* Bus number */
char flag_setup;
char flag_data;
s64 ts_sec; /* gettimeofday */
s32 ts_usec; /* gettimeofday */
int status;
unsigned int len_urb; /* Length of data (submitted or actual) */
unsigned int len_cap; /* Delivered length */
union {
unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
struct iso_rec {
int error_count;
int numdesc;
} iso;
} s;
int interval;
int start_frame;
unsigned int xfer_flags;
unsigned int ndesc; /* Actual number of ISO descriptors */
};
/*
* ISO vector, packed into the head of data stream.
* This has to take 16 bytes to make sure that the end of buffer
* wrap is not happening in the middle of a descriptor.
*/
struct mon_bin_isodesc {
int iso_status;
unsigned int iso_off;
unsigned int iso_len;
u32 _pad;
};
/* per file statistic */
struct mon_bin_stats {
u32 queued;
u32 dropped;
};
struct mon_bin_get {
struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */
void __user *data;
size_t alloc; /* Length of data (can be zero) */
};
struct mon_bin_mfetch {
u32 __user *offvec; /* Vector of events fetched */
u32 nfetch; /* Number of events to fetch (out: fetched) */
u32 nflush; /* Number of events to flush */
};
#ifdef CONFIG_COMPAT
struct mon_bin_get32 {
u32 hdr32;
u32 data32;
u32 alloc32;
};
struct mon_bin_mfetch32 {
u32 offvec32;
u32 nfetch32;
u32 nflush32;
};
#endif
/* Having these two values same prevents wrapping of the mon_bin_hdr */
#define PKT_ALIGN 64
#define PKT_SIZE 64
#define PKT_SZ_API0 48 /* API 0 (2.6.20) size */
#define PKT_SZ_API1 64 /* API 1 size: extra fields */
#define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */
/* max number of USB bus supported */
#define MON_BIN_MAX_MINOR 128
/*
* The buffer: map of used pages.
*/
struct mon_pgmap {
struct page *pg;
unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
};
/*
* This gets associated with an open file struct.
*/
struct mon_reader_bin {
/* The buffer: one per open. */
spinlock_t b_lock; /* Protect b_cnt, b_in */
unsigned int b_size; /* Current size of the buffer - bytes */
unsigned int b_cnt; /* Bytes used */
unsigned int b_in, b_out; /* Offsets into buffer - bytes */
unsigned int b_read; /* Amount of read data in curr. pkt. */
struct mon_pgmap *b_vec; /* The map array */
wait_queue_head_t b_wait; /* Wait for data here */
struct mutex fetch_lock; /* Protect b_read, b_out */
int mmap_active;
/* A list of these is needed for "bus 0". Some time later. */
struct mon_reader r;
/* Stats */
unsigned int cnt_lost;
};
static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
unsigned int offset)
{
return (struct mon_bin_hdr *)
(rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
}
#define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
static unsigned char xfer_to_pipe[4] = {
PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
};
static struct class *mon_bin_class;
static dev_t mon_bin_dev0;
static struct cdev mon_bin_cdev;
static void mon_buff_area_fill(const struct mon_reader_bin *rp,
unsigned int offset, unsigned int size);
static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
static int mon_alloc_buff(struct mon_pgmap *map, int npages);
static void mon_free_buff(struct mon_pgmap *map, int npages);
/*
* This is a "chunked memcpy". It does not manipulate any counters.
*/
static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
unsigned int off, const unsigned char *from, unsigned int length)
{
unsigned int step_len;
unsigned char *buf;
unsigned int in_page;
while (length) {
/*
* Determine step_len.
*/
step_len = length;
in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
if (in_page < step_len)
step_len = in_page;
/*
* Copy data and advance pointers.
*/
buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
memcpy(buf, from, step_len);
if ((off += step_len) >= this->b_size) off = 0;
from += step_len;
length -= step_len;
}
return off;
}
/*
* This is a little worse than the above because it's "chunked copy_to_user".
* The return value is an error code, not an offset.
*/
static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
char __user *to, int length)
{
unsigned int step_len;
unsigned char *buf;
unsigned int in_page;
while (length) {
/*
* Determine step_len.
*/
step_len = length;
in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
if (in_page < step_len)
step_len = in_page;
/*
* Copy data and advance pointers.
*/
buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
if (copy_to_user(to, buf, step_len))
return -EINVAL;
if ((off += step_len) >= this->b_size) off = 0;
to += step_len;
length -= step_len;
}
return 0;
}
/*
* Allocate an (aligned) area in the buffer.
* This is called under b_lock.
* Returns ~0 on failure.
*/
static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
unsigned int size)
{
unsigned int offset;
size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
if (rp->b_cnt + size > rp->b_size)
return ~0;
offset = rp->b_in;
rp->b_cnt += size;
if ((rp->b_in += size) >= rp->b_size)
rp->b_in -= rp->b_size;
return offset;
}
/*
* This is the same thing as mon_buff_area_alloc, only it does not allow
* buffers to wrap. This is needed by applications which pass references
* into mmap-ed buffers up their stacks (libpcap can do that).
*
* Currently, we always have the header stuck with the data, although
* it is not strictly speaking necessary.
*
* When a buffer would wrap, we place a filler packet to mark the space.
*/
static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
unsigned int size)
{
unsigned int offset;
unsigned int fill_size;
size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
if (rp->b_cnt + size > rp->b_size)
return ~0;
if (rp->b_in + size > rp->b_size) {
/*
* This would wrap. Find if we still have space after
* skipping to the end of the buffer. If we do, place
* a filler packet and allocate a new packet.
*/
fill_size = rp->b_size - rp->b_in;
if (rp->b_cnt + size + fill_size > rp->b_size)
return ~0;
mon_buff_area_fill(rp, rp->b_in, fill_size);
offset = 0;
rp->b_in = size;
rp->b_cnt += size + fill_size;
} else if (rp->b_in + size == rp->b_size) {
offset = rp->b_in;
rp->b_in = 0;
rp->b_cnt += size;
} else {
offset = rp->b_in;
rp->b_in += size;
rp->b_cnt += size;
}
return offset;
}
/*
* Return a few (kilo-)bytes to the head of the buffer.
* This is used if a data fetch fails.
*/
static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
{
/* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */
rp->b_cnt -= size;
if (rp->b_in < size)
rp->b_in += rp->b_size;
rp->b_in -= size;
}
/*
* This has to be called under both b_lock and fetch_lock, because
* it accesses both b_cnt and b_out.
*/
static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
{
size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
rp->b_cnt -= size;
if ((rp->b_out += size) >= rp->b_size)
rp->b_out -= rp->b_size;
}
static void mon_buff_area_fill(const struct mon_reader_bin *rp,
unsigned int offset, unsigned int size)
{
struct mon_bin_hdr *ep;
ep = MON_OFF2HDR(rp, offset);
memset(ep, 0, PKT_SIZE);
ep->type = '@';
ep->len_cap = size - PKT_SIZE;
}
static inline char mon_bin_get_setup(unsigned char *setupb,
const struct urb *urb, char ev_type)
{
if (urb->setup_packet == NULL)
return 'Z';
memcpy(setupb, urb->setup_packet, SETUP_LEN);
return 0;
}
static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
unsigned int offset, struct urb *urb, unsigned int length,
char *flag)
{
int i;
struct scatterlist *sg;
unsigned int this_len;
*flag = 0;
if (urb->num_sgs == 0) {
if (urb->transfer_buffer == NULL) {
*flag = 'Z';
return length;
}
mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
length = 0;
} else {
/* If IOMMU coalescing occurred, we cannot trust sg_page */
2010-04-03 01:27:28 +08:00
if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
*flag = 'D';
return length;
}
/* Copy up to the first non-addressable segment */
for_each_sg(urb->sg, sg, urb->num_sgs, i) {
if (length == 0 || PageHighMem(sg_page(sg)))
break;
this_len = min_t(unsigned int, sg->length, length);
offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
this_len);
length -= this_len;
}
if (i == 0)
*flag = 'D';
}
return length;
}
/*
* This is the look-ahead pass in case of 'C Zi', when actual_length cannot
* be used to determine the length of the whole contiguous buffer.
*/
static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
struct urb *urb, unsigned int ndesc)
{
struct usb_iso_packet_descriptor *fp;
unsigned int length;
length = 0;
fp = urb->iso_frame_desc;
while (ndesc-- != 0) {
if (fp->actual_length != 0) {
if (fp->offset + fp->actual_length > length)
length = fp->offset + fp->actual_length;
}
fp++;
}
return length;
}
static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
{
struct mon_bin_isodesc *dp;
struct usb_iso_packet_descriptor *fp;
fp = urb->iso_frame_desc;
while (ndesc-- != 0) {
dp = (struct mon_bin_isodesc *)
(rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
dp->iso_status = fp->status;
dp->iso_off = fp->offset;
dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
dp->_pad = 0;
if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
offset = 0;
fp++;
}
}
static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
char ev_type, int status)
{
const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
struct timeval ts;
unsigned long flags;
unsigned int urb_length;
unsigned int offset;
unsigned int length;
unsigned int delta;
unsigned int ndesc, lendesc;
unsigned char dir;
struct mon_bin_hdr *ep;
char data_tag = 0;
do_gettimeofday(&ts);
spin_lock_irqsave(&rp->b_lock, flags);
/*
* Find the maximum allowable length, then allocate space.
*/
urb_length = (ev_type == 'S') ?
urb->transfer_buffer_length : urb->actual_length;
length = urb_length;
if (usb_endpoint_xfer_isoc(epd)) {
if (urb->number_of_packets < 0) {
ndesc = 0;
} else if (urb->number_of_packets >= ISODESC_MAX) {
ndesc = ISODESC_MAX;
} else {
ndesc = urb->number_of_packets;
}
if (ev_type == 'C' && usb_urb_dir_in(urb))
length = mon_bin_collate_isodesc(rp, urb, ndesc);
} else {
ndesc = 0;
}
lendesc = ndesc*sizeof(struct mon_bin_isodesc);
/* not an issue unless there's a subtle bug in a HCD somewhere */
if (length >= urb->transfer_buffer_length)
length = urb->transfer_buffer_length;
if (length >= rp->b_size/5)
length = rp->b_size/5;
if (usb_urb_dir_in(urb)) {
if (ev_type == 'S') {
length = 0;
data_tag = '<';
}
/* Cannot rely on endpoint number in case of control ep.0 */
dir = USB_DIR_IN;
} else {
if (ev_type == 'C') {
length = 0;
data_tag = '>';
}
dir = 0;
}
if (rp->mmap_active) {
offset = mon_buff_area_alloc_contiguous(rp,
length + PKT_SIZE + lendesc);
} else {
offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
}
if (offset == ~0) {
rp->cnt_lost++;
spin_unlock_irqrestore(&rp->b_lock, flags);
return;
}
ep = MON_OFF2HDR(rp, offset);
if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
/*
* Fill the allocated area.
*/
memset(ep, 0, PKT_SIZE);
ep->type = ev_type;
ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
ep->epnum = dir | usb_endpoint_num(epd);
ep->devnum = urb->dev->devnum;
ep->busnum = urb->dev->bus->busnum;
ep->id = (unsigned long) urb;
ep->ts_sec = ts.tv_sec;
ep->ts_usec = ts.tv_usec;
ep->status = status;
ep->len_urb = urb_length;
ep->len_cap = length + lendesc;
ep->xfer_flags = urb->transfer_flags;
if (usb_endpoint_xfer_int(epd)) {
ep->interval = urb->interval;
} else if (usb_endpoint_xfer_isoc(epd)) {
ep->interval = urb->interval;
ep->start_frame = urb->start_frame;
ep->s.iso.error_count = urb->error_count;
ep->s.iso.numdesc = urb->number_of_packets;
}
if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
} else {
ep->flag_setup = '-';
}
if (ndesc != 0) {
ep->ndesc = ndesc;
mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
if ((offset += lendesc) >= rp->b_size)
offset -= rp->b_size;
}
if (length != 0) {
length = mon_bin_get_data(rp, offset, urb, length,
&ep->flag_data);
if (length > 0) {
delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
ep->len_cap -= length;
delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
mon_buff_area_shrink(rp, delta);
}
} else {
ep->flag_data = data_tag;
}
spin_unlock_irqrestore(&rp->b_lock, flags);
wake_up(&rp->b_wait);
}
static void mon_bin_submit(void *data, struct urb *urb)
{
struct mon_reader_bin *rp = data;
mon_bin_event(rp, urb, 'S', -EINPROGRESS);
}
static void mon_bin_complete(void *data, struct urb *urb, int status)
{
struct mon_reader_bin *rp = data;
mon_bin_event(rp, urb, 'C', status);
}
static void mon_bin_error(void *data, struct urb *urb, int error)
{
struct mon_reader_bin *rp = data;
struct timeval ts;
unsigned long flags;
unsigned int offset;
struct mon_bin_hdr *ep;
do_gettimeofday(&ts);
spin_lock_irqsave(&rp->b_lock, flags);
offset = mon_buff_area_alloc(rp, PKT_SIZE);
if (offset == ~0) {
/* Not incrementing cnt_lost. Just because. */
spin_unlock_irqrestore(&rp->b_lock, flags);
return;
}
ep = MON_OFF2HDR(rp, offset);
memset(ep, 0, PKT_SIZE);
ep->type = 'E';
ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
ep->epnum |= usb_endpoint_num(&urb->ep->desc);
ep->devnum = urb->dev->devnum;
ep->busnum = urb->dev->bus->busnum;
ep->id = (unsigned long) urb;
ep->ts_sec = ts.tv_sec;
ep->ts_usec = ts.tv_usec;
ep->status = error;
ep->flag_setup = '-';
ep->flag_data = 'E';
spin_unlock_irqrestore(&rp->b_lock, flags);
wake_up(&rp->b_wait);
}
static int mon_bin_open(struct inode *inode, struct file *file)
{
struct mon_bus *mbus;
struct mon_reader_bin *rp;
size_t size;
int rc;
mutex_lock(&mon_lock);
mbus = mon_bus_lookup(iminor(inode));
if (mbus == NULL) {
mutex_unlock(&mon_lock);
return -ENODEV;
}
if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
printk(KERN_ERR TAG ": consistency error on open\n");
mutex_unlock(&mon_lock);
return -ENODEV;
}
rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
if (rp == NULL) {
rc = -ENOMEM;
goto err_alloc;
}
spin_lock_init(&rp->b_lock);
init_waitqueue_head(&rp->b_wait);
mutex_init(&rp->fetch_lock);
rp->b_size = BUFF_DFL;
size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
rc = -ENOMEM;
goto err_allocvec;
}
if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
goto err_allocbuff;
rp->r.m_bus = mbus;
rp->r.r_data = rp;
rp->r.rnf_submit = mon_bin_submit;
rp->r.rnf_error = mon_bin_error;
rp->r.rnf_complete = mon_bin_complete;
mon_reader_add(mbus, &rp->r);
file->private_data = rp;
mutex_unlock(&mon_lock);
return 0;
err_allocbuff:
kfree(rp->b_vec);
err_allocvec:
kfree(rp);
err_alloc:
mutex_unlock(&mon_lock);
return rc;
}
/*
* Extract an event from buffer and copy it to user space.
* Wait if there is no event ready.
* Returns zero or error.
*/
static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
void __user *data, unsigned int nbytes)
{
unsigned long flags;
struct mon_bin_hdr *ep;
size_t step_len;
unsigned int offset;
int rc;
mutex_lock(&rp->fetch_lock);
if ((rc = mon_bin_wait_event(file, rp)) < 0) {
mutex_unlock(&rp->fetch_lock);
return rc;
}
ep = MON_OFF2HDR(rp, rp->b_out);
if (copy_to_user(hdr, ep, hdrbytes)) {
mutex_unlock(&rp->fetch_lock);
return -EFAULT;
}
step_len = min(ep->len_cap, nbytes);
if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
if (copy_from_buf(rp, offset, data, step_len)) {
mutex_unlock(&rp->fetch_lock);
return -EFAULT;
}
spin_lock_irqsave(&rp->b_lock, flags);
mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
spin_unlock_irqrestore(&rp->b_lock, flags);
rp->b_read = 0;
mutex_unlock(&rp->fetch_lock);
return 0;
}
static int mon_bin_release(struct inode *inode, struct file *file)
{
struct mon_reader_bin *rp = file->private_data;
struct mon_bus* mbus = rp->r.m_bus;
mutex_lock(&mon_lock);
if (mbus->nreaders <= 0) {
printk(KERN_ERR TAG ": consistency error on close\n");
mutex_unlock(&mon_lock);
return 0;
}
mon_reader_del(mbus, &rp->r);
mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
kfree(rp->b_vec);
kfree(rp);
mutex_unlock(&mon_lock);
return 0;
}
static ssize_t mon_bin_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct mon_reader_bin *rp = file->private_data;
unsigned int hdrbytes = PKT_SZ_API0;
unsigned long flags;
struct mon_bin_hdr *ep;
unsigned int offset;
size_t step_len;
char *ptr;
ssize_t done = 0;
int rc;
mutex_lock(&rp->fetch_lock);
if ((rc = mon_bin_wait_event(file, rp)) < 0) {
mutex_unlock(&rp->fetch_lock);
return rc;
}
ep = MON_OFF2HDR(rp, rp->b_out);
if (rp->b_read < hdrbytes) {
step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
ptr = ((char *)ep) + rp->b_read;
if (step_len && copy_to_user(buf, ptr, step_len)) {
mutex_unlock(&rp->fetch_lock);
return -EFAULT;
}
nbytes -= step_len;
buf += step_len;
rp->b_read += step_len;
done += step_len;
}
if (rp->b_read >= hdrbytes) {
step_len = ep->len_cap;
step_len -= rp->b_read - hdrbytes;
if (step_len > nbytes)
step_len = nbytes;
offset = rp->b_out + PKT_SIZE;
offset += rp->b_read - hdrbytes;
if (offset >= rp->b_size)
offset -= rp->b_size;
if (copy_from_buf(rp, offset, buf, step_len)) {
mutex_unlock(&rp->fetch_lock);
return -EFAULT;
}
nbytes -= step_len;
buf += step_len;
rp->b_read += step_len;
done += step_len;
}
/*
* Check if whole packet was read, and if so, jump to the next one.
*/
if (rp->b_read >= hdrbytes + ep->len_cap) {
spin_lock_irqsave(&rp->b_lock, flags);
mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
spin_unlock_irqrestore(&rp->b_lock, flags);
rp->b_read = 0;
}
mutex_unlock(&rp->fetch_lock);
return done;
}
/*
* Remove at most nevents from chunked buffer.
* Returns the number of removed events.
*/
static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
{
unsigned long flags;
struct mon_bin_hdr *ep;
int i;
mutex_lock(&rp->fetch_lock);
spin_lock_irqsave(&rp->b_lock, flags);
for (i = 0; i < nevents; ++i) {
if (MON_RING_EMPTY(rp))
break;
ep = MON_OFF2HDR(rp, rp->b_out);
mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
}
spin_unlock_irqrestore(&rp->b_lock, flags);
rp->b_read = 0;
mutex_unlock(&rp->fetch_lock);
return i;
}
/*
* Fetch at most max event offsets into the buffer and put them into vec.
* The events are usually freed later with mon_bin_flush.
* Return the effective number of events fetched.
*/
static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
u32 __user *vec, unsigned int max)
{
unsigned int cur_out;
unsigned int bytes, avail;
unsigned int size;
unsigned int nevents;
struct mon_bin_hdr *ep;
unsigned long flags;
int rc;
mutex_lock(&rp->fetch_lock);
if ((rc = mon_bin_wait_event(file, rp)) < 0) {
mutex_unlock(&rp->fetch_lock);
return rc;
}
spin_lock_irqsave(&rp->b_lock, flags);
avail = rp->b_cnt;
spin_unlock_irqrestore(&rp->b_lock, flags);
cur_out = rp->b_out;
nevents = 0;
bytes = 0;
while (bytes < avail) {
if (nevents >= max)
break;
ep = MON_OFF2HDR(rp, cur_out);
if (put_user(cur_out, &vec[nevents])) {
mutex_unlock(&rp->fetch_lock);
return -EFAULT;
}
nevents++;
size = ep->len_cap + PKT_SIZE;
size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
if ((cur_out += size) >= rp->b_size)
cur_out -= rp->b_size;
bytes += size;
}
mutex_unlock(&rp->fetch_lock);
return nevents;
}
/*
* Count events. This is almost the same as the above mon_bin_fetch,
* only we do not store offsets into user vector, and we have no limit.
*/
static int mon_bin_queued(struct mon_reader_bin *rp)
{
unsigned int cur_out;
unsigned int bytes, avail;
unsigned int size;
unsigned int nevents;
struct mon_bin_hdr *ep;
unsigned long flags;
mutex_lock(&rp->fetch_lock);
spin_lock_irqsave(&rp->b_lock, flags);
avail = rp->b_cnt;
spin_unlock_irqrestore(&rp->b_lock, flags);
cur_out = rp->b_out;
nevents = 0;
bytes = 0;
while (bytes < avail) {
ep = MON_OFF2HDR(rp, cur_out);
nevents++;
size = ep->len_cap + PKT_SIZE;
size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
if ((cur_out += size) >= rp->b_size)
cur_out -= rp->b_size;
bytes += size;
}
mutex_unlock(&rp->fetch_lock);
return nevents;
}
/*
*/
static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct mon_reader_bin *rp = file->private_data;
// struct mon_bus* mbus = rp->r.m_bus;
int ret = 0;
struct mon_bin_hdr *ep;
unsigned long flags;
switch (cmd) {
case MON_IOCQ_URB_LEN:
/*
* N.B. This only returns the size of data, without the header.
*/
spin_lock_irqsave(&rp->b_lock, flags);
if (!MON_RING_EMPTY(rp)) {
ep = MON_OFF2HDR(rp, rp->b_out);
ret = ep->len_cap;
}
spin_unlock_irqrestore(&rp->b_lock, flags);
break;
case MON_IOCQ_RING_SIZE:
ret = rp->b_size;
break;
case MON_IOCT_RING_SIZE:
/*
* Changing the buffer size will flush it's contents; the new
* buffer is allocated before releasing the old one to be sure
* the device will stay functional also in case of memory
* pressure.
*/
{
int size;
struct mon_pgmap *vec;
if (arg < BUFF_MIN || arg > BUFF_MAX)
return -EINVAL;
size = CHUNK_ALIGN(arg);
vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
if (vec == NULL) {
ret = -ENOMEM;
break;
}
ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
if (ret < 0) {
kfree(vec);
break;
}
mutex_lock(&rp->fetch_lock);
spin_lock_irqsave(&rp->b_lock, flags);
mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
kfree(rp->b_vec);
rp->b_vec = vec;
rp->b_size = size;
rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
rp->cnt_lost = 0;
spin_unlock_irqrestore(&rp->b_lock, flags);
mutex_unlock(&rp->fetch_lock);
}
break;
case MON_IOCH_MFLUSH:
ret = mon_bin_flush(rp, arg);
break;
case MON_IOCX_GET:
case MON_IOCX_GETX:
{
struct mon_bin_get getb;
if (copy_from_user(&getb, (void __user *)arg,
sizeof(struct mon_bin_get)))
return -EFAULT;
if (getb.alloc > 0x10000000) /* Want to cast to u32 */
return -EINVAL;
ret = mon_bin_get_event(file, rp, getb.hdr,
(cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
getb.data, (unsigned int)getb.alloc);
}
break;
case MON_IOCX_MFETCH:
{
struct mon_bin_mfetch mfetch;
struct mon_bin_mfetch __user *uptr;
uptr = (struct mon_bin_mfetch __user *)arg;
if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
return -EFAULT;
if (mfetch.nflush) {
ret = mon_bin_flush(rp, mfetch.nflush);
if (ret < 0)
return ret;
if (put_user(ret, &uptr->nflush))
return -EFAULT;
}
ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
if (ret < 0)
return ret;
if (put_user(ret, &uptr->nfetch))
return -EFAULT;
ret = 0;
}
break;
case MON_IOCG_STATS: {
struct mon_bin_stats __user *sp;
unsigned int nevents;
unsigned int ndropped;
spin_lock_irqsave(&rp->b_lock, flags);
ndropped = rp->cnt_lost;
rp->cnt_lost = 0;
spin_unlock_irqrestore(&rp->b_lock, flags);
nevents = mon_bin_queued(rp);
sp = (struct mon_bin_stats __user *)arg;
if (put_user(ndropped, &sp->dropped))
return -EFAULT;
if (put_user(nevents, &sp->queued))
return -EFAULT;
}
break;
default:
return -ENOTTY;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long mon_bin_compat_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct mon_reader_bin *rp = file->private_data;
int ret;
switch (cmd) {
case MON_IOCX_GET32:
case MON_IOCX_GETX32:
{
struct mon_bin_get32 getb;
if (copy_from_user(&getb, (void __user *)arg,
sizeof(struct mon_bin_get32)))
return -EFAULT;
ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
(cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
compat_ptr(getb.data32), getb.alloc32);
if (ret < 0)
return ret;
}
return 0;
case MON_IOCX_MFETCH32:
{
struct mon_bin_mfetch32 mfetch;
struct mon_bin_mfetch32 __user *uptr;
uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
return -EFAULT;
if (mfetch.nflush32) {
ret = mon_bin_flush(rp, mfetch.nflush32);
if (ret < 0)
return ret;
if (put_user(ret, &uptr->nflush32))
return -EFAULT;
}
ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
mfetch.nfetch32);
if (ret < 0)
return ret;
if (put_user(ret, &uptr->nfetch32))
return -EFAULT;
}
return 0;
case MON_IOCG_STATS:
return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
case MON_IOCQ_URB_LEN:
case MON_IOCQ_RING_SIZE:
case MON_IOCT_RING_SIZE:
case MON_IOCH_MFLUSH:
return mon_bin_ioctl(file, cmd, arg);
default:
;
}
return -ENOTTY;
}
#endif /* CONFIG_COMPAT */
static unsigned int
mon_bin_poll(struct file *file, struct poll_table_struct *wait)
{
struct mon_reader_bin *rp = file->private_data;
unsigned int mask = 0;
unsigned long flags;
if (file->f_mode & FMODE_READ)
poll_wait(file, &rp->b_wait, wait);
spin_lock_irqsave(&rp->b_lock, flags);
if (!MON_RING_EMPTY(rp))
mask |= POLLIN | POLLRDNORM; /* readable */
spin_unlock_irqrestore(&rp->b_lock, flags);
return mask;
}
/*
* open and close: just keep track of how many times the device is
* mapped, to use the proper memory allocation function.
*/
static void mon_bin_vma_open(struct vm_area_struct *vma)
{
struct mon_reader_bin *rp = vma->vm_private_data;
rp->mmap_active++;
}
static void mon_bin_vma_close(struct vm_area_struct *vma)
{
struct mon_reader_bin *rp = vma->vm_private_data;
rp->mmap_active--;
}
/*
* Map ring pages to user space.
*/
static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct mon_reader_bin *rp = vma->vm_private_data;
unsigned long offset, chunk_idx;
struct page *pageptr;
offset = vmf->pgoff << PAGE_SHIFT;
if (offset >= rp->b_size)
return VM_FAULT_SIGBUS;
chunk_idx = offset / CHUNK_SIZE;
pageptr = rp->b_vec[chunk_idx].pg;
get_page(pageptr);
vmf->page = pageptr;
return 0;
}
static const struct vm_operations_struct mon_bin_vm_ops = {
.open = mon_bin_vma_open,
.close = mon_bin_vma_close,
.fault = mon_bin_vma_fault,
};
static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
{
/* don't do anything here: "fault" will set up page table entries */
vma->vm_ops = &mon_bin_vm_ops;
mm: kill vma flag VM_RESERVED and mm->reserved_vm counter A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA, currently it lost original meaning but still has some effects: | effect | alternative flags -+------------------------+--------------------------------------------- 1| account as reserved_vm | VM_IO 2| skip in core dump | VM_IO, VM_DONTDUMP 3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP 4| do not mlock | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP This patch removes reserved_vm counter from mm_struct. Seems like nobody cares about it, it does not exported into userspace directly, it only reduces total_vm showed in proc. Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP. remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP. remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP. [akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 07:29:02 +08:00
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_private_data = filp->private_data;
mon_bin_vma_open(vma);
return 0;
}
static const struct file_operations mon_fops_binary = {
.owner = THIS_MODULE,
.open = mon_bin_open,
.llseek = no_llseek,
.read = mon_bin_read,
/* .write = mon_text_write, */
.poll = mon_bin_poll,
.unlocked_ioctl = mon_bin_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mon_bin_compat_ioctl,
#endif
.release = mon_bin_release,
.mmap = mon_bin_mmap,
};
static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
{
DECLARE_WAITQUEUE(waita, current);
unsigned long flags;
add_wait_queue(&rp->b_wait, &waita);
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&rp->b_lock, flags);
while (MON_RING_EMPTY(rp)) {
spin_unlock_irqrestore(&rp->b_lock, flags);
if (file->f_flags & O_NONBLOCK) {
set_current_state(TASK_RUNNING);
remove_wait_queue(&rp->b_wait, &waita);
return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
}
schedule();
if (signal_pending(current)) {
remove_wait_queue(&rp->b_wait, &waita);
return -EINTR;
}
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&rp->b_lock, flags);
}
spin_unlock_irqrestore(&rp->b_lock, flags);
set_current_state(TASK_RUNNING);
remove_wait_queue(&rp->b_wait, &waita);
return 0;
}
static int mon_alloc_buff(struct mon_pgmap *map, int npages)
{
int n;
unsigned long vaddr;
for (n = 0; n < npages; n++) {
vaddr = get_zeroed_page(GFP_KERNEL);
if (vaddr == 0) {
while (n-- != 0)
free_page((unsigned long) map[n].ptr);
return -ENOMEM;
}
map[n].ptr = (unsigned char *) vaddr;
map[n].pg = virt_to_page((void *) vaddr);
}
return 0;
}
static void mon_free_buff(struct mon_pgmap *map, int npages)
{
int n;
for (n = 0; n < npages; n++)
free_page((unsigned long) map[n].ptr);
}
int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
{
struct device *dev;
unsigned minor = ubus? ubus->busnum: 0;
if (minor >= MON_BIN_MAX_MINOR)
return 0;
dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
"usbmon%d", minor);
if (IS_ERR(dev))
return 0;
mbus->classdev = dev;
return 1;
}
void mon_bin_del(struct mon_bus *mbus)
{
device_destroy(mon_bin_class, mbus->classdev->devt);
}
int __init mon_bin_init(void)
{
int rc;
mon_bin_class = class_create(THIS_MODULE, "usbmon");
if (IS_ERR(mon_bin_class)) {
rc = PTR_ERR(mon_bin_class);
goto err_class;
}
rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
if (rc < 0)
goto err_dev;
cdev_init(&mon_bin_cdev, &mon_fops_binary);
mon_bin_cdev.owner = THIS_MODULE;
rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
if (rc < 0)
goto err_add;
return 0;
err_add:
unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
err_dev:
class_destroy(mon_bin_class);
err_class:
return rc;
}
void mon_bin_exit(void)
{
cdev_del(&mon_bin_cdev);
unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
class_destroy(mon_bin_class);
}