OpenCloudOS-Kernel/net/mac80211/rate.c

775 lines
19 KiB
C
Raw Normal View History

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright (c) 2006 Jiri Benc <jbenc@suse.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/rtnetlink.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/module.h>
#include "rate.h"
#include "ieee80211_i.h"
#include "debugfs.h"
struct rate_control_alg {
struct list_head list;
struct rate_control_ops *ops;
};
static LIST_HEAD(rate_ctrl_algs);
static DEFINE_MUTEX(rate_ctrl_mutex);
static char *ieee80211_default_rc_algo = CONFIG_MAC80211_RC_DEFAULT;
module_param(ieee80211_default_rc_algo, charp, 0644);
MODULE_PARM_DESC(ieee80211_default_rc_algo,
"Default rate control algorithm for mac80211 to use");
int ieee80211_rate_control_register(struct rate_control_ops *ops)
{
struct rate_control_alg *alg;
if (!ops->name)
return -EINVAL;
mutex_lock(&rate_ctrl_mutex);
list_for_each_entry(alg, &rate_ctrl_algs, list) {
if (!strcmp(alg->ops->name, ops->name)) {
/* don't register an algorithm twice */
WARN_ON(1);
mutex_unlock(&rate_ctrl_mutex);
return -EALREADY;
}
}
2007-07-19 16:49:03 +08:00
alg = kzalloc(sizeof(*alg), GFP_KERNEL);
if (alg == NULL) {
mutex_unlock(&rate_ctrl_mutex);
return -ENOMEM;
}
alg->ops = ops;
list_add_tail(&alg->list, &rate_ctrl_algs);
mutex_unlock(&rate_ctrl_mutex);
return 0;
}
EXPORT_SYMBOL(ieee80211_rate_control_register);
void ieee80211_rate_control_unregister(struct rate_control_ops *ops)
{
struct rate_control_alg *alg;
mutex_lock(&rate_ctrl_mutex);
list_for_each_entry(alg, &rate_ctrl_algs, list) {
if (alg->ops == ops) {
list_del(&alg->list);
kfree(alg);
break;
}
}
mutex_unlock(&rate_ctrl_mutex);
}
EXPORT_SYMBOL(ieee80211_rate_control_unregister);
static struct rate_control_ops *
ieee80211_try_rate_control_ops_get(const char *name)
{
struct rate_control_alg *alg;
struct rate_control_ops *ops = NULL;
if (!name)
return NULL;
mutex_lock(&rate_ctrl_mutex);
list_for_each_entry(alg, &rate_ctrl_algs, list) {
if (!strcmp(alg->ops->name, name))
if (try_module_get(alg->ops->module)) {
ops = alg->ops;
break;
}
}
mutex_unlock(&rate_ctrl_mutex);
return ops;
}
/* Get the rate control algorithm. */
static struct rate_control_ops *
ieee80211_rate_control_ops_get(const char *name)
{
struct rate_control_ops *ops;
const char *alg_name;
kparam_block_sysfs_write(ieee80211_default_rc_algo);
if (!name)
alg_name = ieee80211_default_rc_algo;
else
alg_name = name;
ops = ieee80211_try_rate_control_ops_get(alg_name);
if (!ops) {
request_module("rc80211_%s", alg_name);
ops = ieee80211_try_rate_control_ops_get(alg_name);
}
if (!ops && name)
/* try default if specific alg requested but not found */
ops = ieee80211_try_rate_control_ops_get(ieee80211_default_rc_algo);
/* try built-in one if specific alg requested but not found */
if (!ops && strlen(CONFIG_MAC80211_RC_DEFAULT))
ops = ieee80211_try_rate_control_ops_get(CONFIG_MAC80211_RC_DEFAULT);
kparam_unblock_sysfs_write(ieee80211_default_rc_algo);
return ops;
}
static void ieee80211_rate_control_ops_put(struct rate_control_ops *ops)
{
module_put(ops->module);
}
#ifdef CONFIG_MAC80211_DEBUGFS
static ssize_t rcname_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct rate_control_ref *ref = file->private_data;
int len = strlen(ref->ops->name);
return simple_read_from_buffer(userbuf, count, ppos,
ref->ops->name, len);
}
static const struct file_operations rcname_ops = {
.read = rcname_read,
.open = simple_open,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-16 00:52:59 +08:00
.llseek = default_llseek,
};
#endif
static struct rate_control_ref *rate_control_alloc(const char *name,
struct ieee80211_local *local)
{
struct dentry *debugfsdir = NULL;
struct rate_control_ref *ref;
ref = kmalloc(sizeof(struct rate_control_ref), GFP_KERNEL);
if (!ref)
goto fail_ref;
ref->local = local;
ref->ops = ieee80211_rate_control_ops_get(name);
if (!ref->ops)
goto fail_ops;
#ifdef CONFIG_MAC80211_DEBUGFS
debugfsdir = debugfs_create_dir("rc", local->hw.wiphy->debugfsdir);
local->debugfs.rcdir = debugfsdir;
debugfs_create_file("name", 0400, debugfsdir, ref, &rcname_ops);
#endif
ref->priv = ref->ops->alloc(&local->hw, debugfsdir);
if (!ref->priv)
goto fail_priv;
return ref;
fail_priv:
ieee80211_rate_control_ops_put(ref->ops);
fail_ops:
kfree(ref);
fail_ref:
return NULL;
}
static void rate_control_free(struct rate_control_ref *ctrl_ref)
{
ctrl_ref->ops->free(ctrl_ref->priv);
#ifdef CONFIG_MAC80211_DEBUGFS
debugfs_remove_recursive(ctrl_ref->local->debugfs.rcdir);
ctrl_ref->local->debugfs.rcdir = NULL;
#endif
ieee80211_rate_control_ops_put(ctrl_ref->ops);
kfree(ctrl_ref);
}
static bool rc_no_data_or_no_ack_use_min(struct ieee80211_tx_rate_control *txrc)
{
struct sk_buff *skb = txrc->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
__le16 fc;
fc = hdr->frame_control;
return (info->flags & (IEEE80211_TX_CTL_NO_ACK |
IEEE80211_TX_CTL_USE_MINRATE)) ||
!ieee80211_is_data(fc);
}
static void rc_send_low_basicrate(s8 *idx, u32 basic_rates,
struct ieee80211_supported_band *sband)
{
u8 i;
if (basic_rates == 0)
return; /* assume basic rates unknown and accept rate */
if (*idx < 0)
return;
if (basic_rates & (1 << *idx))
return; /* selected rate is a basic rate */
for (i = *idx + 1; i <= sband->n_bitrates; i++) {
if (basic_rates & (1 << i)) {
*idx = i;
return;
}
}
/* could not find a basic rate; use original selection */
}
static void __rate_control_send_low(struct ieee80211_hw *hw,
struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta,
struct ieee80211_tx_info *info,
u32 rate_mask)
{
int i;
u32 rate_flags =
ieee80211_chandef_rate_flags(&hw->conf.chandef);
if ((sband->band == IEEE80211_BAND_2GHZ) &&
(info->flags & IEEE80211_TX_CTL_NO_CCK_RATE))
rate_flags |= IEEE80211_RATE_ERP_G;
info->control.rates[0].idx = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if (!(rate_mask & BIT(i)))
continue;
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
continue;
if (!rate_supported(sta, sband->band, i))
continue;
info->control.rates[0].idx = i;
break;
}
WARN_ON_ONCE(i == sband->n_bitrates);
info->control.rates[0].count =
(info->flags & IEEE80211_TX_CTL_NO_ACK) ?
1 : hw->max_rate_tries;
info->control.skip_table = 1;
}
bool rate_control_send_low(struct ieee80211_sta *pubsta,
void *priv_sta,
struct ieee80211_tx_rate_control *txrc)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
struct ieee80211_supported_band *sband = txrc->sband;
struct sta_info *sta;
int mcast_rate;
bool use_basicrate = false;
if (!pubsta || !priv_sta || rc_no_data_or_no_ack_use_min(txrc)) {
__rate_control_send_low(txrc->hw, sband, pubsta, info,
txrc->rate_idx_mask);
if (!pubsta && txrc->bss) {
mcast_rate = txrc->bss_conf->mcast_rate[sband->band];
if (mcast_rate > 0) {
info->control.rates[0].idx = mcast_rate - 1;
return true;
}
use_basicrate = true;
} else if (pubsta) {
sta = container_of(pubsta, struct sta_info, sta);
if (ieee80211_vif_is_mesh(&sta->sdata->vif))
use_basicrate = true;
}
if (use_basicrate)
rc_send_low_basicrate(&info->control.rates[0].idx,
txrc->bss_conf->basic_rates,
sband);
return true;
}
return false;
}
EXPORT_SYMBOL(rate_control_send_low);
static bool rate_idx_match_legacy_mask(struct ieee80211_tx_rate *rate,
int n_bitrates, u32 mask)
{
int j;
/* See whether the selected rate or anything below it is allowed. */
for (j = rate->idx; j >= 0; j--) {
if (mask & (1 << j)) {
/* Okay, found a suitable rate. Use it. */
rate->idx = j;
return true;
}
}
/* Try to find a higher rate that would be allowed */
for (j = rate->idx + 1; j < n_bitrates; j++) {
if (mask & (1 << j)) {
/* Okay, found a suitable rate. Use it. */
rate->idx = j;
return true;
}
}
return false;
}
static bool rate_idx_match_mcs_mask(struct ieee80211_tx_rate *rate,
u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
{
int i, j;
int ridx, rbit;
ridx = rate->idx / 8;
rbit = rate->idx % 8;
/* sanity check */
if (ridx < 0 || ridx >= IEEE80211_HT_MCS_MASK_LEN)
return false;
/* See whether the selected rate or anything below it is allowed. */
for (i = ridx; i >= 0; i--) {
for (j = rbit; j >= 0; j--)
if (mcs_mask[i] & BIT(j)) {
rate->idx = i * 8 + j;
return true;
}
rbit = 7;
}
/* Try to find a higher rate that would be allowed */
ridx = (rate->idx + 1) / 8;
rbit = (rate->idx + 1) % 8;
for (i = ridx; i < IEEE80211_HT_MCS_MASK_LEN; i++) {
for (j = rbit; j < 8; j++)
if (mcs_mask[i] & BIT(j)) {
rate->idx = i * 8 + j;
return true;
}
rbit = 0;
}
return false;
}
static void rate_idx_match_mask(struct ieee80211_tx_rate *rate,
struct ieee80211_supported_band *sband,
enum nl80211_chan_width chan_width,
u32 mask,
u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
{
struct ieee80211_tx_rate alt_rate;
/* handle HT rates */
if (rate->flags & IEEE80211_TX_RC_MCS) {
if (rate_idx_match_mcs_mask(rate, mcs_mask))
return;
/* also try the legacy rates. */
alt_rate.idx = 0;
/* keep protection flags */
alt_rate.flags = rate->flags &
(IEEE80211_TX_RC_USE_RTS_CTS |
IEEE80211_TX_RC_USE_CTS_PROTECT |
IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
alt_rate.count = rate->count;
if (rate_idx_match_legacy_mask(&alt_rate,
sband->n_bitrates, mask)) {
*rate = alt_rate;
return;
}
} else {
/* handle legacy rates */
if (rate_idx_match_legacy_mask(rate, sband->n_bitrates, mask))
return;
/* if HT BSS, and we handle a data frame, also try HT rates */
switch (chan_width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_5:
case NL80211_CHAN_WIDTH_10:
return;
default:
break;
}
alt_rate.idx = 0;
/* keep protection flags */
alt_rate.flags = rate->flags &
(IEEE80211_TX_RC_USE_RTS_CTS |
IEEE80211_TX_RC_USE_CTS_PROTECT |
IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
alt_rate.count = rate->count;
alt_rate.flags |= IEEE80211_TX_RC_MCS;
if (chan_width == NL80211_CHAN_WIDTH_40)
alt_rate.flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
if (rate_idx_match_mcs_mask(&alt_rate, mcs_mask)) {
*rate = alt_rate;
return;
}
}
/*
* Uh.. No suitable rate exists. This should not really happen with
* sane TX rate mask configurations. However, should someone manage to
* configure supported rates and TX rate mask in incompatible way,
* allow the frame to be transmitted with whatever the rate control
* selected.
*/
}
static void rate_fixup_ratelist(struct ieee80211_vif *vif,
struct ieee80211_supported_band *sband,
struct ieee80211_tx_info *info,
struct ieee80211_tx_rate *rates,
int max_rates)
{
struct ieee80211_rate *rate;
bool inval = false;
int i;
/*
* Set up the RTS/CTS rate as the fastest basic rate
* that is not faster than the data rate unless there
* is no basic rate slower than the data rate, in which
* case we pick the slowest basic rate
*
* XXX: Should this check all retry rates?
*/
if (!(rates[0].flags & IEEE80211_TX_RC_MCS)) {
u32 basic_rates = vif->bss_conf.basic_rates;
s8 baserate = basic_rates ? ffs(basic_rates - 1) : 0;
rate = &sband->bitrates[rates[0].idx];
for (i = 0; i < sband->n_bitrates; i++) {
/* must be a basic rate */
if (!(basic_rates & BIT(i)))
continue;
/* must not be faster than the data rate */
if (sband->bitrates[i].bitrate > rate->bitrate)
continue;
/* maximum */
if (sband->bitrates[baserate].bitrate <
sband->bitrates[i].bitrate)
baserate = i;
}
info->control.rts_cts_rate_idx = baserate;
}
for (i = 0; i < max_rates; i++) {
/*
* make sure there's no valid rate following
* an invalid one, just in case drivers don't
* take the API seriously to stop at -1.
*/
if (inval) {
rates[i].idx = -1;
continue;
}
if (rates[i].idx < 0) {
inval = true;
continue;
}
/*
* For now assume MCS is already set up correctly, this
* needs to be fixed.
*/
if (rates[i].flags & IEEE80211_TX_RC_MCS) {
WARN_ON(rates[i].idx > 76);
if (!(rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) &&
info->control.use_cts_prot)
rates[i].flags |=
IEEE80211_TX_RC_USE_CTS_PROTECT;
continue;
}
if (rates[i].flags & IEEE80211_TX_RC_VHT_MCS) {
WARN_ON(ieee80211_rate_get_vht_mcs(&rates[i]) > 9);
continue;
}
/* set up RTS protection if desired */
if (info->control.use_rts) {
rates[i].flags |= IEEE80211_TX_RC_USE_RTS_CTS;
info->control.use_cts_prot = false;
}
/* RC is busted */
if (WARN_ON_ONCE(rates[i].idx >= sband->n_bitrates)) {
rates[i].idx = -1;
continue;
}
rate = &sband->bitrates[rates[i].idx];
/* set up short preamble */
if (info->control.short_preamble &&
rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
rates[i].flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
/* set up G protection */
if (!(rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) &&
info->control.use_cts_prot &&
rate->flags & IEEE80211_RATE_ERP_G)
rates[i].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
}
}
static void rate_control_fill_sta_table(struct ieee80211_sta *sta,
struct ieee80211_tx_info *info,
struct ieee80211_tx_rate *rates,
int max_rates)
{
struct ieee80211_sta_rates *ratetbl = NULL;
int i;
if (sta && !info->control.skip_table)
ratetbl = rcu_dereference(sta->rates);
/* Fill remaining rate slots with data from the sta rate table. */
max_rates = min_t(int, max_rates, IEEE80211_TX_RATE_TABLE_SIZE);
for (i = 0; i < max_rates; i++) {
if (i < ARRAY_SIZE(info->control.rates) &&
info->control.rates[i].idx >= 0 &&
info->control.rates[i].count) {
if (rates != info->control.rates)
rates[i] = info->control.rates[i];
} else if (ratetbl) {
rates[i].idx = ratetbl->rate[i].idx;
rates[i].flags = ratetbl->rate[i].flags;
if (info->control.use_rts)
rates[i].count = ratetbl->rate[i].count_rts;
else if (info->control.use_cts_prot)
rates[i].count = ratetbl->rate[i].count_cts;
else
rates[i].count = ratetbl->rate[i].count;
} else {
rates[i].idx = -1;
rates[i].count = 0;
}
if (rates[i].idx < 0 || !rates[i].count)
break;
}
}
static void rate_control_apply_mask(struct ieee80211_sub_if_data *sdata,
struct ieee80211_sta *sta,
struct ieee80211_supported_band *sband,
struct ieee80211_tx_info *info,
struct ieee80211_tx_rate *rates,
int max_rates)
{
enum nl80211_chan_width chan_width;
u8 mcs_mask[IEEE80211_HT_MCS_MASK_LEN];
bool has_mcs_mask;
u32 mask;
u32 rate_flags;
int i;
/*
* Try to enforce the rateidx mask the user wanted. skip this if the
* default mask (allow all rates) is used to save some processing for
* the common case.
*/
mask = sdata->rc_rateidx_mask[info->band];
has_mcs_mask = sdata->rc_has_mcs_mask[info->band];
rate_flags =
ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
for (i = 0; i < sband->n_bitrates; i++)
if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
mask &= ~BIT(i);
if (mask == (1 << sband->n_bitrates) - 1 && !has_mcs_mask)
return;
if (has_mcs_mask)
memcpy(mcs_mask, sdata->rc_rateidx_mcs_mask[info->band],
sizeof(mcs_mask));
else
memset(mcs_mask, 0xff, sizeof(mcs_mask));
if (sta) {
/* Filter out rates that the STA does not support */
mask &= sta->supp_rates[info->band];
for (i = 0; i < sizeof(mcs_mask); i++)
mcs_mask[i] &= sta->ht_cap.mcs.rx_mask[i];
}
/*
* Make sure the rate index selected for each TX rate is
* included in the configured mask and change the rate indexes
* if needed.
*/
chan_width = sdata->vif.bss_conf.chandef.width;
for (i = 0; i < max_rates; i++) {
/* Skip invalid rates */
if (rates[i].idx < 0)
break;
rate_idx_match_mask(&rates[i], sband, chan_width, mask,
mcs_mask);
}
}
void ieee80211_get_tx_rates(struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct sk_buff *skb,
struct ieee80211_tx_rate *dest,
int max_rates)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_supported_band *sband;
rate_control_fill_sta_table(sta, info, dest, max_rates);
if (!vif)
return;
sdata = vif_to_sdata(vif);
sband = sdata->local->hw.wiphy->bands[info->band];
if (ieee80211_is_data(hdr->frame_control))
rate_control_apply_mask(sdata, sta, sband, info, dest, max_rates);
if (dest[0].idx < 0)
__rate_control_send_low(&sdata->local->hw, sband, sta, info,
sdata->rc_rateidx_mask[info->band]);
if (sta)
rate_fixup_ratelist(vif, sband, info, dest, max_rates);
}
EXPORT_SYMBOL(ieee80211_get_tx_rates);
void rate_control_get_rate(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
struct ieee80211_tx_rate_control *txrc)
{
struct rate_control_ref *ref = sdata->local->rate_ctrl;
void *priv_sta = NULL;
struct ieee80211_sta *ista = NULL;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
int i;
if (sta && test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) {
ista = &sta->sta;
priv_sta = sta->rate_ctrl_priv;
}
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
info->control.rates[i].idx = -1;
info->control.rates[i].flags = 0;
info->control.rates[i].count = 0;
}
if (sdata->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
return;
ref->ops->get_rate(ref->priv, ista, priv_sta, txrc);
if (sdata->local->hw.flags & IEEE80211_HW_SUPPORTS_RC_TABLE)
return;
ieee80211_get_tx_rates(&sdata->vif, ista, txrc->skb,
info->control.rates,
ARRAY_SIZE(info->control.rates));
}
int rate_control_set_rates(struct ieee80211_hw *hw,
struct ieee80211_sta *pubsta,
struct ieee80211_sta_rates *rates)
{
struct ieee80211_sta_rates *old;
/*
* mac80211 guarantees that this function will not be called
* concurrently, so the following RCU access is safe, even without
* extra locking. This can not be checked easily, so we just set
* the condition to true.
*/
old = rcu_dereference_protected(pubsta->rates, true);
rcu_assign_pointer(pubsta->rates, rates);
if (old)
kfree_rcu(old, rcu_head);
return 0;
}
EXPORT_SYMBOL(rate_control_set_rates);
int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local,
const char *name)
{
struct rate_control_ref *ref;
ASSERT_RTNL();
if (local->open_count)
return -EBUSY;
if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) {
if (WARN_ON(!local->ops->set_rts_threshold))
return -EINVAL;
return 0;
}
ref = rate_control_alloc(name, local);
if (!ref) {
wiphy_warn(local->hw.wiphy,
"Failed to select rate control algorithm\n");
return -ENOENT;
}
WARN_ON(local->rate_ctrl);
local->rate_ctrl = ref;
wiphy_debug(local->hw.wiphy, "Selected rate control algorithm '%s'\n",
ref->ops->name);
return 0;
}
void rate_control_deinitialize(struct ieee80211_local *local)
{
struct rate_control_ref *ref;
ref = local->rate_ctrl;
if (!ref)
return;
local->rate_ctrl = NULL;
rate_control_free(ref);
}