OpenCloudOS-Kernel/drivers/tty/synclink.c

8128 lines
230 KiB
C
Raw Normal View History

/*
* $Id: synclink.c,v 4.38 2005/11/07 16:30:34 paulkf Exp $
*
* Device driver for Microgate SyncLink ISA and PCI
* high speed multiprotocol serial adapters.
*
* written by Paul Fulghum for Microgate Corporation
* paulkf@microgate.com
*
* Microgate and SyncLink are trademarks of Microgate Corporation
*
* Derived from serial.c written by Theodore Ts'o and Linus Torvalds
*
* Original release 01/11/99
*
* This code is released under the GNU General Public License (GPL)
*
* This driver is primarily intended for use in synchronous
* HDLC mode. Asynchronous mode is also provided.
*
* When operating in synchronous mode, each call to mgsl_write()
* contains exactly one complete HDLC frame. Calling mgsl_put_char
* will start assembling an HDLC frame that will not be sent until
* mgsl_flush_chars or mgsl_write is called.
*
* Synchronous receive data is reported as complete frames. To accomplish
* this, the TTY flip buffer is bypassed (too small to hold largest
* frame and may fragment frames) and the line discipline
* receive entry point is called directly.
*
* This driver has been tested with a slightly modified ppp.c driver
* for synchronous PPP.
*
* 2000/02/16
* Added interface for syncppp.c driver (an alternate synchronous PPP
* implementation that also supports Cisco HDLC). Each device instance
* registers as a tty device AND a network device (if dosyncppp option
* is set for the device). The functionality is determined by which
* device interface is opened.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(__i386__)
# define BREAKPOINT() asm(" int $3");
#else
# define BREAKPOINT() { }
#endif
#define MAX_ISA_DEVICES 10
#define MAX_PCI_DEVICES 10
#define MAX_TOTAL_DEVICES 20
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/synclink.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/dma.h>
#include <linux/bitops.h>
#include <asm/types.h>
#include <linux/termios.h>
#include <linux/workqueue.h>
#include <linux/hdlc.h>
#include <linux/dma-mapping.h>
#if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_MODULE))
#define SYNCLINK_GENERIC_HDLC 1
#else
#define SYNCLINK_GENERIC_HDLC 0
#endif
#define GET_USER(error,value,addr) error = get_user(value,addr)
#define COPY_FROM_USER(error,dest,src,size) error = copy_from_user(dest,src,size) ? -EFAULT : 0
#define PUT_USER(error,value,addr) error = put_user(value,addr)
#define COPY_TO_USER(error,dest,src,size) error = copy_to_user(dest,src,size) ? -EFAULT : 0
#include <asm/uaccess.h>
#define RCLRVALUE 0xffff
static MGSL_PARAMS default_params = {
MGSL_MODE_HDLC, /* unsigned long mode */
0, /* unsigned char loopback; */
HDLC_FLAG_UNDERRUN_ABORT15, /* unsigned short flags; */
HDLC_ENCODING_NRZI_SPACE, /* unsigned char encoding; */
0, /* unsigned long clock_speed; */
0xff, /* unsigned char addr_filter; */
HDLC_CRC_16_CCITT, /* unsigned short crc_type; */
HDLC_PREAMBLE_LENGTH_8BITS, /* unsigned char preamble_length; */
HDLC_PREAMBLE_PATTERN_NONE, /* unsigned char preamble; */
9600, /* unsigned long data_rate; */
8, /* unsigned char data_bits; */
1, /* unsigned char stop_bits; */
ASYNC_PARITY_NONE /* unsigned char parity; */
};
#define SHARED_MEM_ADDRESS_SIZE 0x40000
#define BUFFERLISTSIZE 4096
#define DMABUFFERSIZE 4096
#define MAXRXFRAMES 7
typedef struct _DMABUFFERENTRY
{
u32 phys_addr; /* 32-bit flat physical address of data buffer */
volatile u16 count; /* buffer size/data count */
volatile u16 status; /* Control/status field */
volatile u16 rcc; /* character count field */
u16 reserved; /* padding required by 16C32 */
u32 link; /* 32-bit flat link to next buffer entry */
char *virt_addr; /* virtual address of data buffer */
u32 phys_entry; /* physical address of this buffer entry */
dma_addr_t dma_addr;
} DMABUFFERENTRY, *DMAPBUFFERENTRY;
/* The queue of BH actions to be performed */
#define BH_RECEIVE 1
#define BH_TRANSMIT 2
#define BH_STATUS 4
#define IO_PIN_SHUTDOWN_LIMIT 100
struct _input_signal_events {
int ri_up;
int ri_down;
int dsr_up;
int dsr_down;
int dcd_up;
int dcd_down;
int cts_up;
int cts_down;
};
/* transmit holding buffer definitions*/
#define MAX_TX_HOLDING_BUFFERS 5
struct tx_holding_buffer {
int buffer_size;
unsigned char * buffer;
};
/*
* Device instance data structure
*/
struct mgsl_struct {
int magic;
struct tty_port port;
int line;
int hw_version;
struct mgsl_icount icount;
int timeout;
int x_char; /* xon/xoff character */
u16 read_status_mask;
u16 ignore_status_mask;
unsigned char *xmit_buf;
int xmit_head;
int xmit_tail;
int xmit_cnt;
wait_queue_head_t status_event_wait_q;
wait_queue_head_t event_wait_q;
struct timer_list tx_timer; /* HDLC transmit timeout timer */
struct mgsl_struct *next_device; /* device list link */
spinlock_t irq_spinlock; /* spinlock for synchronizing with ISR */
struct work_struct task; /* task structure for scheduling bh */
u32 EventMask; /* event trigger mask */
u32 RecordedEvents; /* pending events */
u32 max_frame_size; /* as set by device config */
u32 pending_bh;
bool bh_running; /* Protection from multiple */
int isr_overflow;
bool bh_requested;
int dcd_chkcount; /* check counts to prevent */
int cts_chkcount; /* too many IRQs if a signal */
int dsr_chkcount; /* is floating */
int ri_chkcount;
char *buffer_list; /* virtual address of Rx & Tx buffer lists */
u32 buffer_list_phys;
dma_addr_t buffer_list_dma_addr;
unsigned int rx_buffer_count; /* count of total allocated Rx buffers */
DMABUFFERENTRY *rx_buffer_list; /* list of receive buffer entries */
unsigned int current_rx_buffer;
int num_tx_dma_buffers; /* number of tx dma frames required */
int tx_dma_buffers_used;
unsigned int tx_buffer_count; /* count of total allocated Tx buffers */
DMABUFFERENTRY *tx_buffer_list; /* list of transmit buffer entries */
int start_tx_dma_buffer; /* tx dma buffer to start tx dma operation */
int current_tx_buffer; /* next tx dma buffer to be loaded */
unsigned char *intermediate_rxbuffer;
int num_tx_holding_buffers; /* number of tx holding buffer allocated */
int get_tx_holding_index; /* next tx holding buffer for adapter to load */
int put_tx_holding_index; /* next tx holding buffer to store user request */
int tx_holding_count; /* number of tx holding buffers waiting */
struct tx_holding_buffer tx_holding_buffers[MAX_TX_HOLDING_BUFFERS];
bool rx_enabled;
bool rx_overflow;
bool rx_rcc_underrun;
bool tx_enabled;
bool tx_active;
u32 idle_mode;
u16 cmr_value;
u16 tcsr_value;
char device_name[25]; /* device instance name */
unsigned int bus_type; /* expansion bus type (ISA,EISA,PCI) */
unsigned char bus; /* expansion bus number (zero based) */
unsigned char function; /* PCI device number */
unsigned int io_base; /* base I/O address of adapter */
unsigned int io_addr_size; /* size of the I/O address range */
bool io_addr_requested; /* true if I/O address requested */
unsigned int irq_level; /* interrupt level */
unsigned long irq_flags;
bool irq_requested; /* true if IRQ requested */
unsigned int dma_level; /* DMA channel */
bool dma_requested; /* true if dma channel requested */
u16 mbre_bit;
u16 loopback_bits;
u16 usc_idle_mode;
MGSL_PARAMS params; /* communications parameters */
unsigned char serial_signals; /* current serial signal states */
bool irq_occurred; /* for diagnostics use */
unsigned int init_error; /* Initialization startup error (DIAGS) */
int fDiagnosticsmode; /* Driver in Diagnostic mode? (DIAGS) */
u32 last_mem_alloc;
unsigned char* memory_base; /* shared memory address (PCI only) */
u32 phys_memory_base;
bool shared_mem_requested;
unsigned char* lcr_base; /* local config registers (PCI only) */
u32 phys_lcr_base;
u32 lcr_offset;
bool lcr_mem_requested;
u32 misc_ctrl_value;
char *flag_buf;
bool drop_rts_on_tx_done;
bool loopmode_insert_requested;
bool loopmode_send_done_requested;
struct _input_signal_events input_signal_events;
/* generic HDLC device parts */
int netcount;
spinlock_t netlock;
#if SYNCLINK_GENERIC_HDLC
struct net_device *netdev;
#endif
};
#define MGSL_MAGIC 0x5401
/*
* The size of the serial xmit buffer is 1 page, or 4096 bytes
*/
#ifndef SERIAL_XMIT_SIZE
#define SERIAL_XMIT_SIZE 4096
#endif
/*
* These macros define the offsets used in calculating the
* I/O address of the specified USC registers.
*/
#define DCPIN 2 /* Bit 1 of I/O address */
#define SDPIN 4 /* Bit 2 of I/O address */
#define DCAR 0 /* DMA command/address register */
#define CCAR SDPIN /* channel command/address register */
#define DATAREG DCPIN + SDPIN /* serial data register */
#define MSBONLY 0x41
#define LSBONLY 0x40
/*
* These macros define the register address (ordinal number)
* used for writing address/value pairs to the USC.
*/
#define CMR 0x02 /* Channel mode Register */
#define CCSR 0x04 /* Channel Command/status Register */
#define CCR 0x06 /* Channel Control Register */
#define PSR 0x08 /* Port status Register */
#define PCR 0x0a /* Port Control Register */
#define TMDR 0x0c /* Test mode Data Register */
#define TMCR 0x0e /* Test mode Control Register */
#define CMCR 0x10 /* Clock mode Control Register */
#define HCR 0x12 /* Hardware Configuration Register */
#define IVR 0x14 /* Interrupt Vector Register */
#define IOCR 0x16 /* Input/Output Control Register */
#define ICR 0x18 /* Interrupt Control Register */
#define DCCR 0x1a /* Daisy Chain Control Register */
#define MISR 0x1c /* Misc Interrupt status Register */
#define SICR 0x1e /* status Interrupt Control Register */
#define RDR 0x20 /* Receive Data Register */
#define RMR 0x22 /* Receive mode Register */
#define RCSR 0x24 /* Receive Command/status Register */
#define RICR 0x26 /* Receive Interrupt Control Register */
#define RSR 0x28 /* Receive Sync Register */
#define RCLR 0x2a /* Receive count Limit Register */
#define RCCR 0x2c /* Receive Character count Register */
#define TC0R 0x2e /* Time Constant 0 Register */
#define TDR 0x30 /* Transmit Data Register */
#define TMR 0x32 /* Transmit mode Register */
#define TCSR 0x34 /* Transmit Command/status Register */
#define TICR 0x36 /* Transmit Interrupt Control Register */
#define TSR 0x38 /* Transmit Sync Register */
#define TCLR 0x3a /* Transmit count Limit Register */
#define TCCR 0x3c /* Transmit Character count Register */
#define TC1R 0x3e /* Time Constant 1 Register */
/*
* MACRO DEFINITIONS FOR DMA REGISTERS
*/
#define DCR 0x06 /* DMA Control Register (shared) */
#define DACR 0x08 /* DMA Array count Register (shared) */
#define BDCR 0x12 /* Burst/Dwell Control Register (shared) */
#define DIVR 0x14 /* DMA Interrupt Vector Register (shared) */
#define DICR 0x18 /* DMA Interrupt Control Register (shared) */
#define CDIR 0x1a /* Clear DMA Interrupt Register (shared) */
#define SDIR 0x1c /* Set DMA Interrupt Register (shared) */
#define TDMR 0x02 /* Transmit DMA mode Register */
#define TDIAR 0x1e /* Transmit DMA Interrupt Arm Register */
#define TBCR 0x2a /* Transmit Byte count Register */
#define TARL 0x2c /* Transmit Address Register (low) */
#define TARU 0x2e /* Transmit Address Register (high) */
#define NTBCR 0x3a /* Next Transmit Byte count Register */
#define NTARL 0x3c /* Next Transmit Address Register (low) */
#define NTARU 0x3e /* Next Transmit Address Register (high) */
#define RDMR 0x82 /* Receive DMA mode Register (non-shared) */
#define RDIAR 0x9e /* Receive DMA Interrupt Arm Register */
#define RBCR 0xaa /* Receive Byte count Register */
#define RARL 0xac /* Receive Address Register (low) */
#define RARU 0xae /* Receive Address Register (high) */
#define NRBCR 0xba /* Next Receive Byte count Register */
#define NRARL 0xbc /* Next Receive Address Register (low) */
#define NRARU 0xbe /* Next Receive Address Register (high) */
/*
* MACRO DEFINITIONS FOR MODEM STATUS BITS
*/
#define MODEMSTATUS_DTR 0x80
#define MODEMSTATUS_DSR 0x40
#define MODEMSTATUS_RTS 0x20
#define MODEMSTATUS_CTS 0x10
#define MODEMSTATUS_RI 0x04
#define MODEMSTATUS_DCD 0x01
/*
* Channel Command/Address Register (CCAR) Command Codes
*/
#define RTCmd_Null 0x0000
#define RTCmd_ResetHighestIus 0x1000
#define RTCmd_TriggerChannelLoadDma 0x2000
#define RTCmd_TriggerRxDma 0x2800
#define RTCmd_TriggerTxDma 0x3000
#define RTCmd_TriggerRxAndTxDma 0x3800
#define RTCmd_PurgeRxFifo 0x4800
#define RTCmd_PurgeTxFifo 0x5000
#define RTCmd_PurgeRxAndTxFifo 0x5800
#define RTCmd_LoadRcc 0x6800
#define RTCmd_LoadTcc 0x7000
#define RTCmd_LoadRccAndTcc 0x7800
#define RTCmd_LoadTC0 0x8800
#define RTCmd_LoadTC1 0x9000
#define RTCmd_LoadTC0AndTC1 0x9800
#define RTCmd_SerialDataLSBFirst 0xa000
#define RTCmd_SerialDataMSBFirst 0xa800
#define RTCmd_SelectBigEndian 0xb000
#define RTCmd_SelectLittleEndian 0xb800
/*
* DMA Command/Address Register (DCAR) Command Codes
*/
#define DmaCmd_Null 0x0000
#define DmaCmd_ResetTxChannel 0x1000
#define DmaCmd_ResetRxChannel 0x1200
#define DmaCmd_StartTxChannel 0x2000
#define DmaCmd_StartRxChannel 0x2200
#define DmaCmd_ContinueTxChannel 0x3000
#define DmaCmd_ContinueRxChannel 0x3200
#define DmaCmd_PauseTxChannel 0x4000
#define DmaCmd_PauseRxChannel 0x4200
#define DmaCmd_AbortTxChannel 0x5000
#define DmaCmd_AbortRxChannel 0x5200
#define DmaCmd_InitTxChannel 0x7000
#define DmaCmd_InitRxChannel 0x7200
#define DmaCmd_ResetHighestDmaIus 0x8000
#define DmaCmd_ResetAllChannels 0x9000
#define DmaCmd_StartAllChannels 0xa000
#define DmaCmd_ContinueAllChannels 0xb000
#define DmaCmd_PauseAllChannels 0xc000
#define DmaCmd_AbortAllChannels 0xd000
#define DmaCmd_InitAllChannels 0xf000
#define TCmd_Null 0x0000
#define TCmd_ClearTxCRC 0x2000
#define TCmd_SelectTicrTtsaData 0x4000
#define TCmd_SelectTicrTxFifostatus 0x5000
#define TCmd_SelectTicrIntLevel 0x6000
#define TCmd_SelectTicrdma_level 0x7000
#define TCmd_SendFrame 0x8000
#define TCmd_SendAbort 0x9000
#define TCmd_EnableDleInsertion 0xc000
#define TCmd_DisableDleInsertion 0xd000
#define TCmd_ClearEofEom 0xe000
#define TCmd_SetEofEom 0xf000
#define RCmd_Null 0x0000
#define RCmd_ClearRxCRC 0x2000
#define RCmd_EnterHuntmode 0x3000
#define RCmd_SelectRicrRtsaData 0x4000
#define RCmd_SelectRicrRxFifostatus 0x5000
#define RCmd_SelectRicrIntLevel 0x6000
#define RCmd_SelectRicrdma_level 0x7000
/*
* Bits for enabling and disabling IRQs in Interrupt Control Register (ICR)
*/
#define RECEIVE_STATUS BIT5
#define RECEIVE_DATA BIT4
#define TRANSMIT_STATUS BIT3
#define TRANSMIT_DATA BIT2
#define IO_PIN BIT1
#define MISC BIT0
/*
* Receive status Bits in Receive Command/status Register RCSR
*/
#define RXSTATUS_SHORT_FRAME BIT8
#define RXSTATUS_CODE_VIOLATION BIT8
#define RXSTATUS_EXITED_HUNT BIT7
#define RXSTATUS_IDLE_RECEIVED BIT6
#define RXSTATUS_BREAK_RECEIVED BIT5
#define RXSTATUS_ABORT_RECEIVED BIT5
#define RXSTATUS_RXBOUND BIT4
#define RXSTATUS_CRC_ERROR BIT3
#define RXSTATUS_FRAMING_ERROR BIT3
#define RXSTATUS_ABORT BIT2
#define RXSTATUS_PARITY_ERROR BIT2
#define RXSTATUS_OVERRUN BIT1
#define RXSTATUS_DATA_AVAILABLE BIT0
#define RXSTATUS_ALL 0x01f6
#define usc_UnlatchRxstatusBits(a,b) usc_OutReg( (a), RCSR, (u16)((b) & RXSTATUS_ALL) )
/*
* Values for setting transmit idle mode in
* Transmit Control/status Register (TCSR)
*/
#define IDLEMODE_FLAGS 0x0000
#define IDLEMODE_ALT_ONE_ZERO 0x0100
#define IDLEMODE_ZERO 0x0200
#define IDLEMODE_ONE 0x0300
#define IDLEMODE_ALT_MARK_SPACE 0x0500
#define IDLEMODE_SPACE 0x0600
#define IDLEMODE_MARK 0x0700
#define IDLEMODE_MASK 0x0700
/*
* IUSC revision identifiers
*/
#define IUSC_SL1660 0x4d44
#define IUSC_PRE_SL1660 0x4553
/*
* Transmit status Bits in Transmit Command/status Register (TCSR)
*/
#define TCSR_PRESERVE 0x0F00
#define TCSR_UNDERWAIT BIT11
#define TXSTATUS_PREAMBLE_SENT BIT7
#define TXSTATUS_IDLE_SENT BIT6
#define TXSTATUS_ABORT_SENT BIT5
#define TXSTATUS_EOF_SENT BIT4
#define TXSTATUS_EOM_SENT BIT4
#define TXSTATUS_CRC_SENT BIT3
#define TXSTATUS_ALL_SENT BIT2
#define TXSTATUS_UNDERRUN BIT1
#define TXSTATUS_FIFO_EMPTY BIT0
#define TXSTATUS_ALL 0x00fa
#define usc_UnlatchTxstatusBits(a,b) usc_OutReg( (a), TCSR, (u16)((a)->tcsr_value + ((b) & 0x00FF)) )
#define MISCSTATUS_RXC_LATCHED BIT15
#define MISCSTATUS_RXC BIT14
#define MISCSTATUS_TXC_LATCHED BIT13
#define MISCSTATUS_TXC BIT12
#define MISCSTATUS_RI_LATCHED BIT11
#define MISCSTATUS_RI BIT10
#define MISCSTATUS_DSR_LATCHED BIT9
#define MISCSTATUS_DSR BIT8
#define MISCSTATUS_DCD_LATCHED BIT7
#define MISCSTATUS_DCD BIT6
#define MISCSTATUS_CTS_LATCHED BIT5
#define MISCSTATUS_CTS BIT4
#define MISCSTATUS_RCC_UNDERRUN BIT3
#define MISCSTATUS_DPLL_NO_SYNC BIT2
#define MISCSTATUS_BRG1_ZERO BIT1
#define MISCSTATUS_BRG0_ZERO BIT0
#define usc_UnlatchIostatusBits(a,b) usc_OutReg((a),MISR,(u16)((b) & 0xaaa0))
#define usc_UnlatchMiscstatusBits(a,b) usc_OutReg((a),MISR,(u16)((b) & 0x000f))
#define SICR_RXC_ACTIVE BIT15
#define SICR_RXC_INACTIVE BIT14
#define SICR_RXC (BIT15|BIT14)
#define SICR_TXC_ACTIVE BIT13
#define SICR_TXC_INACTIVE BIT12
#define SICR_TXC (BIT13|BIT12)
#define SICR_RI_ACTIVE BIT11
#define SICR_RI_INACTIVE BIT10
#define SICR_RI (BIT11|BIT10)
#define SICR_DSR_ACTIVE BIT9
#define SICR_DSR_INACTIVE BIT8
#define SICR_DSR (BIT9|BIT8)
#define SICR_DCD_ACTIVE BIT7
#define SICR_DCD_INACTIVE BIT6
#define SICR_DCD (BIT7|BIT6)
#define SICR_CTS_ACTIVE BIT5
#define SICR_CTS_INACTIVE BIT4
#define SICR_CTS (BIT5|BIT4)
#define SICR_RCC_UNDERFLOW BIT3
#define SICR_DPLL_NO_SYNC BIT2
#define SICR_BRG1_ZERO BIT1
#define SICR_BRG0_ZERO BIT0
void usc_DisableMasterIrqBit( struct mgsl_struct *info );
void usc_EnableMasterIrqBit( struct mgsl_struct *info );
void usc_EnableInterrupts( struct mgsl_struct *info, u16 IrqMask );
void usc_DisableInterrupts( struct mgsl_struct *info, u16 IrqMask );
void usc_ClearIrqPendingBits( struct mgsl_struct *info, u16 IrqMask );
#define usc_EnableInterrupts( a, b ) \
usc_OutReg( (a), ICR, (u16)((usc_InReg((a),ICR) & 0xff00) + 0xc0 + (b)) )
#define usc_DisableInterrupts( a, b ) \
usc_OutReg( (a), ICR, (u16)((usc_InReg((a),ICR) & 0xff00) + 0x80 + (b)) )
#define usc_EnableMasterIrqBit(a) \
usc_OutReg( (a), ICR, (u16)((usc_InReg((a),ICR) & 0x0f00) + 0xb000) )
#define usc_DisableMasterIrqBit(a) \
usc_OutReg( (a), ICR, (u16)(usc_InReg((a),ICR) & 0x7f00) )
#define usc_ClearIrqPendingBits( a, b ) usc_OutReg( (a), DCCR, 0x40 + (b) )
/*
* Transmit status Bits in Transmit Control status Register (TCSR)
* and Transmit Interrupt Control Register (TICR) (except BIT2, BIT0)
*/
#define TXSTATUS_PREAMBLE_SENT BIT7
#define TXSTATUS_IDLE_SENT BIT6
#define TXSTATUS_ABORT_SENT BIT5
#define TXSTATUS_EOF BIT4
#define TXSTATUS_CRC_SENT BIT3
#define TXSTATUS_ALL_SENT BIT2
#define TXSTATUS_UNDERRUN BIT1
#define TXSTATUS_FIFO_EMPTY BIT0
#define DICR_MASTER BIT15
#define DICR_TRANSMIT BIT0
#define DICR_RECEIVE BIT1
#define usc_EnableDmaInterrupts(a,b) \
usc_OutDmaReg( (a), DICR, (u16)(usc_InDmaReg((a),DICR) | (b)) )
#define usc_DisableDmaInterrupts(a,b) \
usc_OutDmaReg( (a), DICR, (u16)(usc_InDmaReg((a),DICR) & ~(b)) )
#define usc_EnableStatusIrqs(a,b) \
usc_OutReg( (a), SICR, (u16)(usc_InReg((a),SICR) | (b)) )
#define usc_DisablestatusIrqs(a,b) \
usc_OutReg( (a), SICR, (u16)(usc_InReg((a),SICR) & ~(b)) )
/* Transmit status Bits in Transmit Control status Register (TCSR) */
/* and Transmit Interrupt Control Register (TICR) (except BIT2, BIT0) */
#define DISABLE_UNCONDITIONAL 0
#define DISABLE_END_OF_FRAME 1
#define ENABLE_UNCONDITIONAL 2
#define ENABLE_AUTO_CTS 3
#define ENABLE_AUTO_DCD 3
#define usc_EnableTransmitter(a,b) \
usc_OutReg( (a), TMR, (u16)((usc_InReg((a),TMR) & 0xfffc) | (b)) )
#define usc_EnableReceiver(a,b) \
usc_OutReg( (a), RMR, (u16)((usc_InReg((a),RMR) & 0xfffc) | (b)) )
static u16 usc_InDmaReg( struct mgsl_struct *info, u16 Port );
static void usc_OutDmaReg( struct mgsl_struct *info, u16 Port, u16 Value );
static void usc_DmaCmd( struct mgsl_struct *info, u16 Cmd );
static u16 usc_InReg( struct mgsl_struct *info, u16 Port );
static void usc_OutReg( struct mgsl_struct *info, u16 Port, u16 Value );
static void usc_RTCmd( struct mgsl_struct *info, u16 Cmd );
void usc_RCmd( struct mgsl_struct *info, u16 Cmd );
void usc_TCmd( struct mgsl_struct *info, u16 Cmd );
#define usc_TCmd(a,b) usc_OutReg((a), TCSR, (u16)((a)->tcsr_value + (b)))
#define usc_RCmd(a,b) usc_OutReg((a), RCSR, (b))
#define usc_SetTransmitSyncChars(a,s0,s1) usc_OutReg((a), TSR, (u16)(((u16)s0<<8)|(u16)s1))
static void usc_process_rxoverrun_sync( struct mgsl_struct *info );
static void usc_start_receiver( struct mgsl_struct *info );
static void usc_stop_receiver( struct mgsl_struct *info );
static void usc_start_transmitter( struct mgsl_struct *info );
static void usc_stop_transmitter( struct mgsl_struct *info );
static void usc_set_txidle( struct mgsl_struct *info );
static void usc_load_txfifo( struct mgsl_struct *info );
static void usc_enable_aux_clock( struct mgsl_struct *info, u32 DataRate );
static void usc_enable_loopback( struct mgsl_struct *info, int enable );
static void usc_get_serial_signals( struct mgsl_struct *info );
static void usc_set_serial_signals( struct mgsl_struct *info );
static void usc_reset( struct mgsl_struct *info );
static void usc_set_sync_mode( struct mgsl_struct *info );
static void usc_set_sdlc_mode( struct mgsl_struct *info );
static void usc_set_async_mode( struct mgsl_struct *info );
static void usc_enable_async_clock( struct mgsl_struct *info, u32 DataRate );
static void usc_loopback_frame( struct mgsl_struct *info );
static void mgsl_tx_timeout(unsigned long context);
static void usc_loopmode_cancel_transmit( struct mgsl_struct * info );
static void usc_loopmode_insert_request( struct mgsl_struct * info );
static int usc_loopmode_active( struct mgsl_struct * info);
static void usc_loopmode_send_done( struct mgsl_struct * info );
static int mgsl_ioctl_common(struct mgsl_struct *info, unsigned int cmd, unsigned long arg);
#if SYNCLINK_GENERIC_HDLC
#define dev_to_port(D) (dev_to_hdlc(D)->priv)
static void hdlcdev_tx_done(struct mgsl_struct *info);
static void hdlcdev_rx(struct mgsl_struct *info, char *buf, int size);
static int hdlcdev_init(struct mgsl_struct *info);
static void hdlcdev_exit(struct mgsl_struct *info);
#endif
/*
* Defines a BUS descriptor value for the PCI adapter
* local bus address ranges.
*/
#define BUS_DESCRIPTOR( WrHold, WrDly, RdDly, Nwdd, Nwad, Nxda, Nrdd, Nrad ) \
(0x00400020 + \
((WrHold) << 30) + \
((WrDly) << 28) + \
((RdDly) << 26) + \
((Nwdd) << 20) + \
((Nwad) << 15) + \
((Nxda) << 13) + \
((Nrdd) << 11) + \
((Nrad) << 6) )
static void mgsl_trace_block(struct mgsl_struct *info,const char* data, int count, int xmit);
/*
* Adapter diagnostic routines
*/
static bool mgsl_register_test( struct mgsl_struct *info );
static bool mgsl_irq_test( struct mgsl_struct *info );
static bool mgsl_dma_test( struct mgsl_struct *info );
static bool mgsl_memory_test( struct mgsl_struct *info );
static int mgsl_adapter_test( struct mgsl_struct *info );
/*
* device and resource management routines
*/
static int mgsl_claim_resources(struct mgsl_struct *info);
static void mgsl_release_resources(struct mgsl_struct *info);
static void mgsl_add_device(struct mgsl_struct *info);
static struct mgsl_struct* mgsl_allocate_device(void);
/*
* DMA buffer manupulation functions.
*/
static void mgsl_free_rx_frame_buffers( struct mgsl_struct *info, unsigned int StartIndex, unsigned int EndIndex );
static bool mgsl_get_rx_frame( struct mgsl_struct *info );
static bool mgsl_get_raw_rx_frame( struct mgsl_struct *info );
static void mgsl_reset_rx_dma_buffers( struct mgsl_struct *info );
static void mgsl_reset_tx_dma_buffers( struct mgsl_struct *info );
static int num_free_tx_dma_buffers(struct mgsl_struct *info);
static void mgsl_load_tx_dma_buffer( struct mgsl_struct *info, const char *Buffer, unsigned int BufferSize);
static void mgsl_load_pci_memory(char* TargetPtr, const char* SourcePtr, unsigned short count);
/*
* DMA and Shared Memory buffer allocation and formatting
*/
static int mgsl_allocate_dma_buffers(struct mgsl_struct *info);
static void mgsl_free_dma_buffers(struct mgsl_struct *info);
static int mgsl_alloc_frame_memory(struct mgsl_struct *info, DMABUFFERENTRY *BufferList,int Buffercount);
static void mgsl_free_frame_memory(struct mgsl_struct *info, DMABUFFERENTRY *BufferList,int Buffercount);
static int mgsl_alloc_buffer_list_memory(struct mgsl_struct *info);
static void mgsl_free_buffer_list_memory(struct mgsl_struct *info);
static int mgsl_alloc_intermediate_rxbuffer_memory(struct mgsl_struct *info);
static void mgsl_free_intermediate_rxbuffer_memory(struct mgsl_struct *info);
static int mgsl_alloc_intermediate_txbuffer_memory(struct mgsl_struct *info);
static void mgsl_free_intermediate_txbuffer_memory(struct mgsl_struct *info);
static bool load_next_tx_holding_buffer(struct mgsl_struct *info);
static int save_tx_buffer_request(struct mgsl_struct *info,const char *Buffer, unsigned int BufferSize);
/*
* Bottom half interrupt handlers
*/
static void mgsl_bh_handler(struct work_struct *work);
static void mgsl_bh_receive(struct mgsl_struct *info);
static void mgsl_bh_transmit(struct mgsl_struct *info);
static void mgsl_bh_status(struct mgsl_struct *info);
/*
* Interrupt handler routines and dispatch table.
*/
static void mgsl_isr_null( struct mgsl_struct *info );
static void mgsl_isr_transmit_data( struct mgsl_struct *info );
static void mgsl_isr_receive_data( struct mgsl_struct *info );
static void mgsl_isr_receive_status( struct mgsl_struct *info );
static void mgsl_isr_transmit_status( struct mgsl_struct *info );
static void mgsl_isr_io_pin( struct mgsl_struct *info );
static void mgsl_isr_misc( struct mgsl_struct *info );
static void mgsl_isr_receive_dma( struct mgsl_struct *info );
static void mgsl_isr_transmit_dma( struct mgsl_struct *info );
typedef void (*isr_dispatch_func)(struct mgsl_struct *);
static isr_dispatch_func UscIsrTable[7] =
{
mgsl_isr_null,
mgsl_isr_misc,
mgsl_isr_io_pin,
mgsl_isr_transmit_data,
mgsl_isr_transmit_status,
mgsl_isr_receive_data,
mgsl_isr_receive_status
};
/*
* ioctl call handlers
*/
static int tiocmget(struct tty_struct *tty);
static int tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear);
static int mgsl_get_stats(struct mgsl_struct * info, struct mgsl_icount
__user *user_icount);
static int mgsl_get_params(struct mgsl_struct * info, MGSL_PARAMS __user *user_params);
static int mgsl_set_params(struct mgsl_struct * info, MGSL_PARAMS __user *new_params);
static int mgsl_get_txidle(struct mgsl_struct * info, int __user *idle_mode);
static int mgsl_set_txidle(struct mgsl_struct * info, int idle_mode);
static int mgsl_txenable(struct mgsl_struct * info, int enable);
static int mgsl_txabort(struct mgsl_struct * info);
static int mgsl_rxenable(struct mgsl_struct * info, int enable);
static int mgsl_wait_event(struct mgsl_struct * info, int __user *mask);
static int mgsl_loopmode_send_done( struct mgsl_struct * info );
/* set non-zero on successful registration with PCI subsystem */
static bool pci_registered;
/*
* Global linked list of SyncLink devices
*/
static struct mgsl_struct *mgsl_device_list;
static int mgsl_device_count;
/*
* Set this param to non-zero to load eax with the
* .text section address and breakpoint on module load.
* This is useful for use with gdb and add-symbol-file command.
*/
static bool break_on_load;
/*
* Driver major number, defaults to zero to get auto
* assigned major number. May be forced as module parameter.
*/
static int ttymajor;
/*
* Array of user specified options for ISA adapters.
*/
static int io[MAX_ISA_DEVICES];
static int irq[MAX_ISA_DEVICES];
static int dma[MAX_ISA_DEVICES];
static int debug_level;
static int maxframe[MAX_TOTAL_DEVICES];
static int txdmabufs[MAX_TOTAL_DEVICES];
static int txholdbufs[MAX_TOTAL_DEVICES];
module_param(break_on_load, bool, 0);
module_param(ttymajor, int, 0);
module_param_array(io, int, NULL, 0);
module_param_array(irq, int, NULL, 0);
module_param_array(dma, int, NULL, 0);
module_param(debug_level, int, 0);
module_param_array(maxframe, int, NULL, 0);
module_param_array(txdmabufs, int, NULL, 0);
module_param_array(txholdbufs, int, NULL, 0);
static char *driver_name = "SyncLink serial driver";
static char *driver_version = "$Revision: 4.38 $";
static int synclink_init_one (struct pci_dev *dev,
const struct pci_device_id *ent);
static void synclink_remove_one (struct pci_dev *dev);
static struct pci_device_id synclink_pci_tbl[] = {
{ PCI_VENDOR_ID_MICROGATE, PCI_DEVICE_ID_MICROGATE_USC, PCI_ANY_ID, PCI_ANY_ID, },
{ PCI_VENDOR_ID_MICROGATE, 0x0210, PCI_ANY_ID, PCI_ANY_ID, },
{ 0, }, /* terminate list */
};
MODULE_DEVICE_TABLE(pci, synclink_pci_tbl);
MODULE_LICENSE("GPL");
static struct pci_driver synclink_pci_driver = {
.name = "synclink",
.id_table = synclink_pci_tbl,
.probe = synclink_init_one,
.remove = synclink_remove_one,
};
static struct tty_driver *serial_driver;
/* number of characters left in xmit buffer before we ask for more */
#define WAKEUP_CHARS 256
static void mgsl_change_params(struct mgsl_struct *info);
static void mgsl_wait_until_sent(struct tty_struct *tty, int timeout);
/*
* 1st function defined in .text section. Calling this function in
* init_module() followed by a breakpoint allows a remote debugger
* (gdb) to get the .text address for the add-symbol-file command.
* This allows remote debugging of dynamically loadable modules.
*/
static void* mgsl_get_text_ptr(void)
{
return mgsl_get_text_ptr;
}
static inline int mgsl_paranoia_check(struct mgsl_struct *info,
char *name, const char *routine)
{
#ifdef MGSL_PARANOIA_CHECK
static const char *badmagic =
"Warning: bad magic number for mgsl struct (%s) in %s\n";
static const char *badinfo =
"Warning: null mgsl_struct for (%s) in %s\n";
if (!info) {
printk(badinfo, name, routine);
return 1;
}
if (info->magic != MGSL_MAGIC) {
printk(badmagic, name, routine);
return 1;
}
#else
if (!info)
return 1;
#endif
return 0;
}
/**
* line discipline callback wrappers
*
* The wrappers maintain line discipline references
* while calling into the line discipline.
*
* ldisc_receive_buf - pass receive data to line discipline
*/
static void ldisc_receive_buf(struct tty_struct *tty,
const __u8 *data, char *flags, int count)
{
struct tty_ldisc *ld;
if (!tty)
return;
ld = tty_ldisc_ref(tty);
if (ld) {
if (ld->ops->receive_buf)
ld->ops->receive_buf(tty, data, flags, count);
tty_ldisc_deref(ld);
}
}
/* mgsl_stop() throttle (stop) transmitter
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static void mgsl_stop(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (mgsl_paranoia_check(info, tty->name, "mgsl_stop"))
return;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk("mgsl_stop(%s)\n",info->device_name);
spin_lock_irqsave(&info->irq_spinlock,flags);
if (info->tx_enabled)
usc_stop_transmitter(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
} /* end of mgsl_stop() */
/* mgsl_start() release (start) transmitter
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static void mgsl_start(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (mgsl_paranoia_check(info, tty->name, "mgsl_start"))
return;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk("mgsl_start(%s)\n",info->device_name);
spin_lock_irqsave(&info->irq_spinlock,flags);
if (!info->tx_enabled)
usc_start_transmitter(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
} /* end of mgsl_start() */
/*
* Bottom half work queue access functions
*/
/* mgsl_bh_action() Return next bottom half action to perform.
* Return Value: BH action code or 0 if nothing to do.
*/
static int mgsl_bh_action(struct mgsl_struct *info)
{
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&info->irq_spinlock,flags);
if (info->pending_bh & BH_RECEIVE) {
info->pending_bh &= ~BH_RECEIVE;
rc = BH_RECEIVE;
} else if (info->pending_bh & BH_TRANSMIT) {
info->pending_bh &= ~BH_TRANSMIT;
rc = BH_TRANSMIT;
} else if (info->pending_bh & BH_STATUS) {
info->pending_bh &= ~BH_STATUS;
rc = BH_STATUS;
}
if (!rc) {
/* Mark BH routine as complete */
info->bh_running = false;
info->bh_requested = false;
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return rc;
}
/*
* Perform bottom half processing of work items queued by ISR.
*/
static void mgsl_bh_handler(struct work_struct *work)
{
struct mgsl_struct *info =
container_of(work, struct mgsl_struct, task);
int action;
if ( debug_level >= DEBUG_LEVEL_BH )
printk( "%s(%d):mgsl_bh_handler(%s) entry\n",
__FILE__,__LINE__,info->device_name);
info->bh_running = true;
while((action = mgsl_bh_action(info)) != 0) {
/* Process work item */
if ( debug_level >= DEBUG_LEVEL_BH )
printk( "%s(%d):mgsl_bh_handler() work item action=%d\n",
__FILE__,__LINE__,action);
switch (action) {
case BH_RECEIVE:
mgsl_bh_receive(info);
break;
case BH_TRANSMIT:
mgsl_bh_transmit(info);
break;
case BH_STATUS:
mgsl_bh_status(info);
break;
default:
/* unknown work item ID */
printk("Unknown work item ID=%08X!\n", action);
break;
}
}
if ( debug_level >= DEBUG_LEVEL_BH )
printk( "%s(%d):mgsl_bh_handler(%s) exit\n",
__FILE__,__LINE__,info->device_name);
}
static void mgsl_bh_receive(struct mgsl_struct *info)
{
bool (*get_rx_frame)(struct mgsl_struct *info) =
(info->params.mode == MGSL_MODE_HDLC ? mgsl_get_rx_frame : mgsl_get_raw_rx_frame);
if ( debug_level >= DEBUG_LEVEL_BH )
printk( "%s(%d):mgsl_bh_receive(%s)\n",
__FILE__,__LINE__,info->device_name);
do
{
if (info->rx_rcc_underrun) {
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_start_receiver(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return;
}
} while(get_rx_frame(info));
}
static void mgsl_bh_transmit(struct mgsl_struct *info)
{
struct tty_struct *tty = info->port.tty;
unsigned long flags;
if ( debug_level >= DEBUG_LEVEL_BH )
printk( "%s(%d):mgsl_bh_transmit() entry on %s\n",
__FILE__,__LINE__,info->device_name);
if (tty)
tty_wakeup(tty);
/* if transmitter idle and loopmode_send_done_requested
* then start echoing RxD to TxD
*/
spin_lock_irqsave(&info->irq_spinlock,flags);
if ( !info->tx_active && info->loopmode_send_done_requested )
usc_loopmode_send_done( info );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
static void mgsl_bh_status(struct mgsl_struct *info)
{
if ( debug_level >= DEBUG_LEVEL_BH )
printk( "%s(%d):mgsl_bh_status() entry on %s\n",
__FILE__,__LINE__,info->device_name);
info->ri_chkcount = 0;
info->dsr_chkcount = 0;
info->dcd_chkcount = 0;
info->cts_chkcount = 0;
}
/* mgsl_isr_receive_status()
*
* Service a receive status interrupt. The type of status
* interrupt is indicated by the state of the RCSR.
* This is only used for HDLC mode.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_receive_status( struct mgsl_struct *info )
{
u16 status = usc_InReg( info, RCSR );
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_receive_status status=%04X\n",
__FILE__,__LINE__,status);
if ( (status & RXSTATUS_ABORT_RECEIVED) &&
info->loopmode_insert_requested &&
usc_loopmode_active(info) )
{
++info->icount.rxabort;
info->loopmode_insert_requested = false;
/* clear CMR:13 to start echoing RxD to TxD */
info->cmr_value &= ~BIT13;
usc_OutReg(info, CMR, info->cmr_value);
/* disable received abort irq (no longer required) */
usc_OutReg(info, RICR,
(usc_InReg(info, RICR) & ~RXSTATUS_ABORT_RECEIVED));
}
if (status & (RXSTATUS_EXITED_HUNT | RXSTATUS_IDLE_RECEIVED)) {
if (status & RXSTATUS_EXITED_HUNT)
info->icount.exithunt++;
if (status & RXSTATUS_IDLE_RECEIVED)
info->icount.rxidle++;
wake_up_interruptible(&info->event_wait_q);
}
if (status & RXSTATUS_OVERRUN){
info->icount.rxover++;
usc_process_rxoverrun_sync( info );
}
usc_ClearIrqPendingBits( info, RECEIVE_STATUS );
usc_UnlatchRxstatusBits( info, status );
} /* end of mgsl_isr_receive_status() */
/* mgsl_isr_transmit_status()
*
* Service a transmit status interrupt
* HDLC mode :end of transmit frame
* Async mode:all data is sent
* transmit status is indicated by bits in the TCSR.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_transmit_status( struct mgsl_struct *info )
{
u16 status = usc_InReg( info, TCSR );
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_transmit_status status=%04X\n",
__FILE__,__LINE__,status);
usc_ClearIrqPendingBits( info, TRANSMIT_STATUS );
usc_UnlatchTxstatusBits( info, status );
if ( status & (TXSTATUS_UNDERRUN | TXSTATUS_ABORT_SENT) )
{
/* finished sending HDLC abort. This may leave */
/* the TxFifo with data from the aborted frame */
/* so purge the TxFifo. Also shutdown the DMA */
/* channel in case there is data remaining in */
/* the DMA buffer */
usc_DmaCmd( info, DmaCmd_ResetTxChannel );
usc_RTCmd( info, RTCmd_PurgeTxFifo );
}
if ( status & TXSTATUS_EOF_SENT )
info->icount.txok++;
else if ( status & TXSTATUS_UNDERRUN )
info->icount.txunder++;
else if ( status & TXSTATUS_ABORT_SENT )
info->icount.txabort++;
else
info->icount.txunder++;
info->tx_active = false;
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
del_timer(&info->tx_timer);
if ( info->drop_rts_on_tx_done ) {
usc_get_serial_signals( info );
if ( info->serial_signals & SerialSignal_RTS ) {
info->serial_signals &= ~SerialSignal_RTS;
usc_set_serial_signals( info );
}
info->drop_rts_on_tx_done = false;
}
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_tx_done(info);
else
#endif
{
if (info->port.tty->stopped || info->port.tty->hw_stopped) {
usc_stop_transmitter(info);
return;
}
info->pending_bh |= BH_TRANSMIT;
}
} /* end of mgsl_isr_transmit_status() */
/* mgsl_isr_io_pin()
*
* Service an Input/Output pin interrupt. The type of
* interrupt is indicated by bits in the MISR
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_io_pin( struct mgsl_struct *info )
{
struct mgsl_icount *icount;
u16 status = usc_InReg( info, MISR );
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_io_pin status=%04X\n",
__FILE__,__LINE__,status);
usc_ClearIrqPendingBits( info, IO_PIN );
usc_UnlatchIostatusBits( info, status );
if (status & (MISCSTATUS_CTS_LATCHED | MISCSTATUS_DCD_LATCHED |
MISCSTATUS_DSR_LATCHED | MISCSTATUS_RI_LATCHED) ) {
icount = &info->icount;
/* update input line counters */
if (status & MISCSTATUS_RI_LATCHED) {
if ((info->ri_chkcount)++ >= IO_PIN_SHUTDOWN_LIMIT)
usc_DisablestatusIrqs(info,SICR_RI);
icount->rng++;
if ( status & MISCSTATUS_RI )
info->input_signal_events.ri_up++;
else
info->input_signal_events.ri_down++;
}
if (status & MISCSTATUS_DSR_LATCHED) {
if ((info->dsr_chkcount)++ >= IO_PIN_SHUTDOWN_LIMIT)
usc_DisablestatusIrqs(info,SICR_DSR);
icount->dsr++;
if ( status & MISCSTATUS_DSR )
info->input_signal_events.dsr_up++;
else
info->input_signal_events.dsr_down++;
}
if (status & MISCSTATUS_DCD_LATCHED) {
if ((info->dcd_chkcount)++ >= IO_PIN_SHUTDOWN_LIMIT)
usc_DisablestatusIrqs(info,SICR_DCD);
icount->dcd++;
if (status & MISCSTATUS_DCD) {
info->input_signal_events.dcd_up++;
} else
info->input_signal_events.dcd_down++;
#if SYNCLINK_GENERIC_HDLC
if (info->netcount) {
if (status & MISCSTATUS_DCD)
netif_carrier_on(info->netdev);
else
netif_carrier_off(info->netdev);
}
#endif
}
if (status & MISCSTATUS_CTS_LATCHED)
{
if ((info->cts_chkcount)++ >= IO_PIN_SHUTDOWN_LIMIT)
usc_DisablestatusIrqs(info,SICR_CTS);
icount->cts++;
if ( status & MISCSTATUS_CTS )
info->input_signal_events.cts_up++;
else
info->input_signal_events.cts_down++;
}
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
if ( (info->port.flags & ASYNC_CHECK_CD) &&
(status & MISCSTATUS_DCD_LATCHED) ) {
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s CD now %s...", info->device_name,
(status & MISCSTATUS_DCD) ? "on" : "off");
if (status & MISCSTATUS_DCD)
wake_up_interruptible(&info->port.open_wait);
else {
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("doing serial hangup...");
if (info->port.tty)
tty_hangup(info->port.tty);
}
}
if (tty_port_cts_enabled(&info->port) &&
(status & MISCSTATUS_CTS_LATCHED) ) {
if (info->port.tty->hw_stopped) {
if (status & MISCSTATUS_CTS) {
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("CTS tx start...");
if (info->port.tty)
info->port.tty->hw_stopped = 0;
usc_start_transmitter(info);
info->pending_bh |= BH_TRANSMIT;
return;
}
} else {
if (!(status & MISCSTATUS_CTS)) {
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("CTS tx stop...");
if (info->port.tty)
info->port.tty->hw_stopped = 1;
usc_stop_transmitter(info);
}
}
}
}
info->pending_bh |= BH_STATUS;
/* for diagnostics set IRQ flag */
if ( status & MISCSTATUS_TXC_LATCHED ){
usc_OutReg( info, SICR,
(unsigned short)(usc_InReg(info,SICR) & ~(SICR_TXC_ACTIVE+SICR_TXC_INACTIVE)) );
usc_UnlatchIostatusBits( info, MISCSTATUS_TXC_LATCHED );
info->irq_occurred = true;
}
} /* end of mgsl_isr_io_pin() */
/* mgsl_isr_transmit_data()
*
* Service a transmit data interrupt (async mode only).
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_transmit_data( struct mgsl_struct *info )
{
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_transmit_data xmit_cnt=%d\n",
__FILE__,__LINE__,info->xmit_cnt);
usc_ClearIrqPendingBits( info, TRANSMIT_DATA );
if (info->port.tty->stopped || info->port.tty->hw_stopped) {
usc_stop_transmitter(info);
return;
}
if ( info->xmit_cnt )
usc_load_txfifo( info );
else
info->tx_active = false;
if (info->xmit_cnt < WAKEUP_CHARS)
info->pending_bh |= BH_TRANSMIT;
} /* end of mgsl_isr_transmit_data() */
/* mgsl_isr_receive_data()
*
* Service a receive data interrupt. This occurs
* when operating in asynchronous interrupt transfer mode.
* The receive data FIFO is flushed to the receive data buffers.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_receive_data( struct mgsl_struct *info )
{
int Fifocount;
u16 status;
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
int work = 0;
unsigned char DataByte;
struct mgsl_icount *icount = &info->icount;
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_receive_data\n",
__FILE__,__LINE__);
usc_ClearIrqPendingBits( info, RECEIVE_DATA );
/* select FIFO status for RICR readback */
usc_RCmd( info, RCmd_SelectRicrRxFifostatus );
/* clear the Wordstatus bit so that status readback */
/* only reflects the status of this byte */
usc_OutReg( info, RICR+LSBONLY, (u16)(usc_InReg(info, RICR+LSBONLY) & ~BIT3 ));
/* flush the receive FIFO */
while( (Fifocount = (usc_InReg(info,RICR) >> 8)) ) {
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
int flag;
/* read one byte from RxFIFO */
outw( (inw(info->io_base + CCAR) & 0x0780) | (RDR+LSBONLY),
info->io_base + CCAR );
DataByte = inb( info->io_base + CCAR );
/* get the status of the received byte */
status = usc_InReg(info, RCSR);
if ( status & (RXSTATUS_FRAMING_ERROR | RXSTATUS_PARITY_ERROR |
RXSTATUS_OVERRUN | RXSTATUS_BREAK_RECEIVED) )
usc_UnlatchRxstatusBits(info,RXSTATUS_ALL);
icount->rx++;
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
flag = 0;
if ( status & (RXSTATUS_FRAMING_ERROR | RXSTATUS_PARITY_ERROR |
RXSTATUS_OVERRUN | RXSTATUS_BREAK_RECEIVED) ) {
printk("rxerr=%04X\n",status);
/* update error statistics */
if ( status & RXSTATUS_BREAK_RECEIVED ) {
status &= ~(RXSTATUS_FRAMING_ERROR | RXSTATUS_PARITY_ERROR);
icount->brk++;
} else if (status & RXSTATUS_PARITY_ERROR)
icount->parity++;
else if (status & RXSTATUS_FRAMING_ERROR)
icount->frame++;
else if (status & RXSTATUS_OVERRUN) {
/* must issue purge fifo cmd before */
/* 16C32 accepts more receive chars */
usc_RTCmd(info,RTCmd_PurgeRxFifo);
icount->overrun++;
}
/* discard char if tty control flags say so */
if (status & info->ignore_status_mask)
continue;
status &= info->read_status_mask;
if (status & RXSTATUS_BREAK_RECEIVED) {
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
flag = TTY_BREAK;
if (info->port.flags & ASYNC_SAK)
do_SAK(info->port.tty);
} else if (status & RXSTATUS_PARITY_ERROR)
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
flag = TTY_PARITY;
else if (status & RXSTATUS_FRAMING_ERROR)
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
flag = TTY_FRAME;
} /* end of if (error) */
tty_insert_flip_char(&info->port, DataByte, flag);
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
if (status & RXSTATUS_OVERRUN) {
/* Overrun is special, since it's
* reported immediately, and doesn't
* affect the current character
*/
work += tty_insert_flip_char(&info->port, 0, TTY_OVERRUN);
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
}
}
if ( debug_level >= DEBUG_LEVEL_ISR ) {
printk("%s(%d):rx=%d brk=%d parity=%d frame=%d overrun=%d\n",
__FILE__,__LINE__,icount->rx,icount->brk,
icount->parity,icount->frame,icount->overrun);
}
[PATCH] TTY layer buffering revamp The API and code have been through various bits of initial review by serial driver people but they definitely need to live somewhere for a while so the unconverted drivers can get knocked into shape, existing drivers that have been updated can be better tuned and bugs whacked out. This replaces the tty flip buffers with kmalloc objects in rings. In the normal situation for an IRQ driven serial port at typical speeds the behaviour is pretty much the same, two buffers end up allocated and the kernel cycles between them as before. When there are delays or at high speed we now behave far better as the buffer pool can grow a bit rather than lose characters. This also means that we can operate at higher speeds reliably. For drivers that receive characters in blocks (DMA based, USB and especially virtualisation) the layer allows a lot of driver specific code that works around the tty layer with private secondary queues to be removed. The IBM folks need this sort of layer, the smart serial port people do, the virtualisers do (because a virtualised tty typically operates at infinite speed rather than emulating 9600 baud). Finally many drivers had invalid and unsafe attempts to avoid buffer overflows by directly invoking tty methods extracted out of the innards of work queue structs. These are no longer needed and all go away. That fixes various random hangs with serial ports on overflow. The other change in here is to optimise the receive_room path that is used by some callers. It turns out that only one ldisc uses receive room except asa constant and it updates it far far less than the value is read. We thus make it a variable not a function call. I expect the code to contain bugs due to the size alone but I'll be watching and squashing them and feeding out new patches as it goes. Because the buffers now dynamically expand you should only run out of buffering when the kernel runs out of memory for real. That means a lot of the horrible hacks high performance drivers used to do just aren't needed any more. Description: tty_insert_flip_char is an old API and continues to work as before, as does tty_flip_buffer_push() [this is why many drivers dont need modification]. It does now also return the number of chars inserted There are also tty_buffer_request_room(tty, len) which asks for a buffer block of the length requested and returns the space found. This improves efficiency with hardware that knows how much to transfer. and tty_insert_flip_string_flags(tty, str, flags, len) to insert a string of characters and flags For a smart interface the usual code is len = tty_request_buffer_room(tty, amount_hardware_says); tty_insert_flip_string(tty, buffer_from_card, len); More description! At the moment tty buffers are attached directly to the tty. This is causing a lot of the problems related to tty layer locking, also problems at high speed and also with bursty data (such as occurs in virtualised environments) I'm working on ripping out the flip buffers and replacing them with a pool of dynamically allocated buffers. This allows both for old style "byte I/O" devices and also helps virtualisation and smart devices where large blocks of data suddenely materialise and need storing. So far so good. Lots of drivers reference tty->flip.*. Several of them also call directly and unsafely into function pointers it provides. This will all break. Most drivers can use tty_insert_flip_char which can be kept as an API but others need more. At the moment I've added the following interfaces, if people think more will be needed now is a good time to say int tty_buffer_request_room(tty, size) Try and ensure at least size bytes are available, returns actual room (may be zero). At the moment it just uses the flipbuf space but that will change. Repeated calls without characters being added are not cumulative. (ie if you call it with 1, 1, 1, and then 4 you'll have four characters of space. The other functions will also try and grow buffers in future but this will be a more efficient way when you know block sizes. int tty_insert_flip_char(tty, ch, flag) As before insert a character if there is room. Now returns 1 for success, 0 for failure. int tty_insert_flip_string(tty, str, len) Insert a block of non error characters. Returns the number inserted. int tty_prepare_flip_string(tty, strptr, len) Adjust the buffer to allow len characters to be added. Returns a buffer pointer in strptr and the length available. This allows for hardware that needs to use functions like insl or mencpy_fromio. Signed-off-by: Alan Cox <alan@redhat.com> Cc: Paul Fulghum <paulkf@microgate.com> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-10 12:54:13 +08:00
if(work)
tty_flip_buffer_push(&info->port);
}
/* mgsl_isr_misc()
*
* Service a miscellaneous interrupt source.
*
* Arguments: info pointer to device extension (instance data)
* Return Value: None
*/
static void mgsl_isr_misc( struct mgsl_struct *info )
{
u16 status = usc_InReg( info, MISR );
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_misc status=%04X\n",
__FILE__,__LINE__,status);
if ((status & MISCSTATUS_RCC_UNDERRUN) &&
(info->params.mode == MGSL_MODE_HDLC)) {
/* turn off receiver and rx DMA */
usc_EnableReceiver(info,DISABLE_UNCONDITIONAL);
usc_DmaCmd(info, DmaCmd_ResetRxChannel);
usc_UnlatchRxstatusBits(info, RXSTATUS_ALL);
usc_ClearIrqPendingBits(info, RECEIVE_DATA | RECEIVE_STATUS);
usc_DisableInterrupts(info, RECEIVE_DATA | RECEIVE_STATUS);
/* schedule BH handler to restart receiver */
info->pending_bh |= BH_RECEIVE;
info->rx_rcc_underrun = true;
}
usc_ClearIrqPendingBits( info, MISC );
usc_UnlatchMiscstatusBits( info, status );
} /* end of mgsl_isr_misc() */
/* mgsl_isr_null()
*
* Services undefined interrupt vectors from the
* USC. (hence this function SHOULD never be called)
*
* Arguments: info pointer to device extension (instance data)
* Return Value: None
*/
static void mgsl_isr_null( struct mgsl_struct *info )
{
} /* end of mgsl_isr_null() */
/* mgsl_isr_receive_dma()
*
* Service a receive DMA channel interrupt.
* For this driver there are two sources of receive DMA interrupts
* as identified in the Receive DMA mode Register (RDMR):
*
* BIT3 EOA/EOL End of List, all receive buffers in receive
* buffer list have been filled (no more free buffers
* available). The DMA controller has shut down.
*
* BIT2 EOB End of Buffer. This interrupt occurs when a receive
* DMA buffer is terminated in response to completion
* of a good frame or a frame with errors. The status
* of the frame is stored in the buffer entry in the
* list of receive buffer entries.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_receive_dma( struct mgsl_struct *info )
{
u16 status;
/* clear interrupt pending and IUS bit for Rx DMA IRQ */
usc_OutDmaReg( info, CDIR, BIT9 | BIT1 );
/* Read the receive DMA status to identify interrupt type. */
/* This also clears the status bits. */
status = usc_InDmaReg( info, RDMR );
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_receive_dma(%s) status=%04X\n",
__FILE__,__LINE__,info->device_name,status);
info->pending_bh |= BH_RECEIVE;
if ( status & BIT3 ) {
info->rx_overflow = true;
info->icount.buf_overrun++;
}
} /* end of mgsl_isr_receive_dma() */
/* mgsl_isr_transmit_dma()
*
* This function services a transmit DMA channel interrupt.
*
* For this driver there is one source of transmit DMA interrupts
* as identified in the Transmit DMA Mode Register (TDMR):
*
* BIT2 EOB End of Buffer. This interrupt occurs when a
* transmit DMA buffer has been emptied.
*
* The driver maintains enough transmit DMA buffers to hold at least
* one max frame size transmit frame. When operating in a buffered
* transmit mode, there may be enough transmit DMA buffers to hold at
* least two or more max frame size frames. On an EOB condition,
* determine if there are any queued transmit buffers and copy into
* transmit DMA buffers if we have room.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_isr_transmit_dma( struct mgsl_struct *info )
{
u16 status;
/* clear interrupt pending and IUS bit for Tx DMA IRQ */
usc_OutDmaReg(info, CDIR, BIT8 | BIT0 );
/* Read the transmit DMA status to identify interrupt type. */
/* This also clears the status bits. */
status = usc_InDmaReg( info, TDMR );
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):mgsl_isr_transmit_dma(%s) status=%04X\n",
__FILE__,__LINE__,info->device_name,status);
if ( status & BIT2 ) {
--info->tx_dma_buffers_used;
/* if there are transmit frames queued,
* try to load the next one
*/
if ( load_next_tx_holding_buffer(info) ) {
/* if call returns non-zero value, we have
* at least one free tx holding buffer
*/
info->pending_bh |= BH_TRANSMIT;
}
}
} /* end of mgsl_isr_transmit_dma() */
/* mgsl_interrupt()
*
* Interrupt service routine entry point.
*
* Arguments:
*
* irq interrupt number that caused interrupt
* dev_id device ID supplied during interrupt registration
*
* Return Value: None
*/
static irqreturn_t mgsl_interrupt(int dummy, void *dev_id)
{
struct mgsl_struct *info = dev_id;
u16 UscVector;
u16 DmaVector;
if ( debug_level >= DEBUG_LEVEL_ISR )
printk(KERN_DEBUG "%s(%d):mgsl_interrupt(%d)entry.\n",
__FILE__, __LINE__, info->irq_level);
spin_lock(&info->irq_spinlock);
for(;;) {
/* Read the interrupt vectors from hardware. */
UscVector = usc_InReg(info, IVR) >> 9;
DmaVector = usc_InDmaReg(info, DIVR);
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):%s UscVector=%08X DmaVector=%08X\n",
__FILE__,__LINE__,info->device_name,UscVector,DmaVector);
if ( !UscVector && !DmaVector )
break;
/* Dispatch interrupt vector */
if ( UscVector )
(*UscIsrTable[UscVector])(info);
else if ( (DmaVector&(BIT10|BIT9)) == BIT10)
mgsl_isr_transmit_dma(info);
else
mgsl_isr_receive_dma(info);
if ( info->isr_overflow ) {
printk(KERN_ERR "%s(%d):%s isr overflow irq=%d\n",
__FILE__, __LINE__, info->device_name, info->irq_level);
usc_DisableMasterIrqBit(info);
usc_DisableDmaInterrupts(info,DICR_MASTER);
break;
}
}
/* Request bottom half processing if there's something
* for it to do and the bh is not already running
*/
if ( info->pending_bh && !info->bh_running && !info->bh_requested ) {
if ( debug_level >= DEBUG_LEVEL_ISR )
printk("%s(%d):%s queueing bh task.\n",
__FILE__,__LINE__,info->device_name);
schedule_work(&info->task);
info->bh_requested = true;
}
spin_unlock(&info->irq_spinlock);
if ( debug_level >= DEBUG_LEVEL_ISR )
printk(KERN_DEBUG "%s(%d):mgsl_interrupt(%d)exit.\n",
__FILE__, __LINE__, info->irq_level);
return IRQ_HANDLED;
} /* end of mgsl_interrupt() */
/* startup()
*
* Initialize and start device.
*
* Arguments: info pointer to device instance data
* Return Value: 0 if success, otherwise error code
*/
static int startup(struct mgsl_struct * info)
{
int retval = 0;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk("%s(%d):mgsl_startup(%s)\n",__FILE__,__LINE__,info->device_name);
if (info->port.flags & ASYNC_INITIALIZED)
return 0;
if (!info->xmit_buf) {
/* allocate a page of memory for a transmit buffer */
info->xmit_buf = (unsigned char *)get_zeroed_page(GFP_KERNEL);
if (!info->xmit_buf) {
printk(KERN_ERR"%s(%d):%s can't allocate transmit buffer\n",
__FILE__,__LINE__,info->device_name);
return -ENOMEM;
}
}
info->pending_bh = 0;
memset(&info->icount, 0, sizeof(info->icount));
setup_timer(&info->tx_timer, mgsl_tx_timeout, (unsigned long)info);
/* Allocate and claim adapter resources */
retval = mgsl_claim_resources(info);
/* perform existence check and diagnostics */
if ( !retval )
retval = mgsl_adapter_test(info);
if ( retval ) {
if (capable(CAP_SYS_ADMIN) && info->port.tty)
set_bit(TTY_IO_ERROR, &info->port.tty->flags);
mgsl_release_resources(info);
return retval;
}
/* program hardware for current parameters */
mgsl_change_params(info);
if (info->port.tty)
clear_bit(TTY_IO_ERROR, &info->port.tty->flags);
info->port.flags |= ASYNC_INITIALIZED;
return 0;
} /* end of startup() */
/* shutdown()
*
* Called by mgsl_close() and mgsl_hangup() to shutdown hardware
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void shutdown(struct mgsl_struct * info)
{
unsigned long flags;
if (!(info->port.flags & ASYNC_INITIALIZED))
return;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_shutdown(%s)\n",
__FILE__,__LINE__, info->device_name );
/* clear status wait queue because status changes */
/* can't happen after shutting down the hardware */
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
del_timer_sync(&info->tx_timer);
if (info->xmit_buf) {
free_page((unsigned long) info->xmit_buf);
info->xmit_buf = NULL;
}
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_DisableMasterIrqBit(info);
usc_stop_receiver(info);
usc_stop_transmitter(info);
usc_DisableInterrupts(info,RECEIVE_DATA | RECEIVE_STATUS |
TRANSMIT_DATA | TRANSMIT_STATUS | IO_PIN | MISC );
usc_DisableDmaInterrupts(info,DICR_MASTER + DICR_TRANSMIT + DICR_RECEIVE);
/* Disable DMAEN (Port 7, Bit 14) */
/* This disconnects the DMA request signal from the ISA bus */
/* on the ISA adapter. This has no effect for the PCI adapter */
usc_OutReg(info, PCR, (u16)((usc_InReg(info, PCR) | BIT15) | BIT14));
/* Disable INTEN (Port 6, Bit12) */
/* This disconnects the IRQ request signal to the ISA bus */
/* on the ISA adapter. This has no effect for the PCI adapter */
usc_OutReg(info, PCR, (u16)((usc_InReg(info, PCR) | BIT13) | BIT12));
if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) {
info->serial_signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
usc_set_serial_signals(info);
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
mgsl_release_resources(info);
if (info->port.tty)
set_bit(TTY_IO_ERROR, &info->port.tty->flags);
info->port.flags &= ~ASYNC_INITIALIZED;
} /* end of shutdown() */
static void mgsl_program_hw(struct mgsl_struct *info)
{
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_stop_receiver(info);
usc_stop_transmitter(info);
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
if (info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ||
info->netcount)
usc_set_sync_mode(info);
else
usc_set_async_mode(info);
usc_set_serial_signals(info);
info->dcd_chkcount = 0;
info->cts_chkcount = 0;
info->ri_chkcount = 0;
info->dsr_chkcount = 0;
usc_EnableStatusIrqs(info,SICR_CTS+SICR_DSR+SICR_DCD+SICR_RI);
usc_EnableInterrupts(info, IO_PIN);
usc_get_serial_signals(info);
if (info->netcount || info->port.tty->termios.c_cflag & CREAD)
usc_start_receiver(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
/* Reconfigure adapter based on new parameters
*/
static void mgsl_change_params(struct mgsl_struct *info)
{
unsigned cflag;
int bits_per_char;
if (!info->port.tty)
return;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_change_params(%s)\n",
__FILE__,__LINE__, info->device_name );
cflag = info->port.tty->termios.c_cflag;
/* if B0 rate (hangup) specified then negate RTS and DTR */
/* otherwise assert RTS and DTR */
if (cflag & CBAUD)
info->serial_signals |= SerialSignal_RTS | SerialSignal_DTR;
else
info->serial_signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: info->params.data_bits = 5; break;
case CS6: info->params.data_bits = 6; break;
case CS7: info->params.data_bits = 7; break;
case CS8: info->params.data_bits = 8; break;
/* Never happens, but GCC is too dumb to figure it out */
default: info->params.data_bits = 7; break;
}
if (cflag & CSTOPB)
info->params.stop_bits = 2;
else
info->params.stop_bits = 1;
info->params.parity = ASYNC_PARITY_NONE;
if (cflag & PARENB) {
if (cflag & PARODD)
info->params.parity = ASYNC_PARITY_ODD;
else
info->params.parity = ASYNC_PARITY_EVEN;
#ifdef CMSPAR
if (cflag & CMSPAR)
info->params.parity = ASYNC_PARITY_SPACE;
#endif
}
/* calculate number of jiffies to transmit a full
* FIFO (32 bytes) at specified data rate
*/
bits_per_char = info->params.data_bits +
info->params.stop_bits + 1;
/* if port data rate is set to 460800 or less then
* allow tty settings to override, otherwise keep the
* current data rate.
*/
if (info->params.data_rate <= 460800)
info->params.data_rate = tty_get_baud_rate(info->port.tty);
if ( info->params.data_rate ) {
info->timeout = (32*HZ*bits_per_char) /
info->params.data_rate;
}
info->timeout += HZ/50; /* Add .02 seconds of slop */
if (cflag & CRTSCTS)
info->port.flags |= ASYNC_CTS_FLOW;
else
info->port.flags &= ~ASYNC_CTS_FLOW;
if (cflag & CLOCAL)
info->port.flags &= ~ASYNC_CHECK_CD;
else
info->port.flags |= ASYNC_CHECK_CD;
/* process tty input control flags */
info->read_status_mask = RXSTATUS_OVERRUN;
if (I_INPCK(info->port.tty))
info->read_status_mask |= RXSTATUS_PARITY_ERROR | RXSTATUS_FRAMING_ERROR;
if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty))
info->read_status_mask |= RXSTATUS_BREAK_RECEIVED;
if (I_IGNPAR(info->port.tty))
info->ignore_status_mask |= RXSTATUS_PARITY_ERROR | RXSTATUS_FRAMING_ERROR;
if (I_IGNBRK(info->port.tty)) {
info->ignore_status_mask |= RXSTATUS_BREAK_RECEIVED;
/* If ignoring parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->port.tty))
info->ignore_status_mask |= RXSTATUS_OVERRUN;
}
mgsl_program_hw(info);
} /* end of mgsl_change_params() */
/* mgsl_put_char()
*
* Add a character to the transmit buffer.
*
* Arguments: tty pointer to tty information structure
* ch character to add to transmit buffer
*
* Return Value: None
*/
static int mgsl_put_char(struct tty_struct *tty, unsigned char ch)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
int ret = 0;
if (debug_level >= DEBUG_LEVEL_INFO) {
printk(KERN_DEBUG "%s(%d):mgsl_put_char(%d) on %s\n",
__FILE__, __LINE__, ch, info->device_name);
}
if (mgsl_paranoia_check(info, tty->name, "mgsl_put_char"))
return 0;
if (!info->xmit_buf)
return 0;
spin_lock_irqsave(&info->irq_spinlock, flags);
if ((info->params.mode == MGSL_MODE_ASYNC ) || !info->tx_active) {
if (info->xmit_cnt < SERIAL_XMIT_SIZE - 1) {
info->xmit_buf[info->xmit_head++] = ch;
info->xmit_head &= SERIAL_XMIT_SIZE-1;
info->xmit_cnt++;
ret = 1;
}
}
spin_unlock_irqrestore(&info->irq_spinlock, flags);
return ret;
} /* end of mgsl_put_char() */
/* mgsl_flush_chars()
*
* Enable transmitter so remaining characters in the
* transmit buffer are sent.
*
* Arguments: tty pointer to tty information structure
* Return Value: None
*/
static void mgsl_flush_chars(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_flush_chars() entry on %s xmit_cnt=%d\n",
__FILE__,__LINE__,info->device_name,info->xmit_cnt);
if (mgsl_paranoia_check(info, tty->name, "mgsl_flush_chars"))
return;
if (info->xmit_cnt <= 0 || tty->stopped || tty->hw_stopped ||
!info->xmit_buf)
return;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_flush_chars() entry on %s starting transmitter\n",
__FILE__,__LINE__,info->device_name );
spin_lock_irqsave(&info->irq_spinlock,flags);
if (!info->tx_active) {
if ( (info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW) && info->xmit_cnt ) {
/* operating in synchronous (frame oriented) mode */
/* copy data from circular xmit_buf to */
/* transmit DMA buffer. */
mgsl_load_tx_dma_buffer(info,
info->xmit_buf,info->xmit_cnt);
}
usc_start_transmitter(info);
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
} /* end of mgsl_flush_chars() */
/* mgsl_write()
*
* Send a block of data
*
* Arguments:
*
* tty pointer to tty information structure
* buf pointer to buffer containing send data
* count size of send data in bytes
*
* Return Value: number of characters written
*/
static int mgsl_write(struct tty_struct * tty,
const unsigned char *buf, int count)
{
int c, ret = 0;
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_write(%s) count=%d\n",
__FILE__,__LINE__,info->device_name,count);
if (mgsl_paranoia_check(info, tty->name, "mgsl_write"))
goto cleanup;
if (!info->xmit_buf)
goto cleanup;
if ( info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ) {
/* operating in synchronous (frame oriented) mode */
if (info->tx_active) {
if ( info->params.mode == MGSL_MODE_HDLC ) {
ret = 0;
goto cleanup;
}
/* transmitter is actively sending data -
* if we have multiple transmit dma and
* holding buffers, attempt to queue this
* frame for transmission at a later time.
*/
if (info->tx_holding_count >= info->num_tx_holding_buffers ) {
/* no tx holding buffers available */
ret = 0;
goto cleanup;
}
/* queue transmit frame request */
ret = count;
save_tx_buffer_request(info,buf,count);
/* if we have sufficient tx dma buffers,
* load the next buffered tx request
*/
spin_lock_irqsave(&info->irq_spinlock,flags);
load_next_tx_holding_buffer(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
goto cleanup;
}
/* if operating in HDLC LoopMode and the adapter */
/* has yet to be inserted into the loop, we can't */
/* transmit */
if ( (info->params.flags & HDLC_FLAG_HDLC_LOOPMODE) &&
!usc_loopmode_active(info) )
{
ret = 0;
goto cleanup;
}
if ( info->xmit_cnt ) {
/* Send accumulated from send_char() calls */
/* as frame and wait before accepting more data. */
ret = 0;
/* copy data from circular xmit_buf to */
/* transmit DMA buffer. */
mgsl_load_tx_dma_buffer(info,
info->xmit_buf,info->xmit_cnt);
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_write(%s) sync xmit_cnt flushing\n",
__FILE__,__LINE__,info->device_name);
} else {
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_write(%s) sync transmit accepted\n",
__FILE__,__LINE__,info->device_name);
ret = count;
info->xmit_cnt = count;
mgsl_load_tx_dma_buffer(info,buf,count);
}
} else {
while (1) {
spin_lock_irqsave(&info->irq_spinlock,flags);
c = min_t(int, count,
min(SERIAL_XMIT_SIZE - info->xmit_cnt - 1,
SERIAL_XMIT_SIZE - info->xmit_head));
if (c <= 0) {
spin_unlock_irqrestore(&info->irq_spinlock,flags);
break;
}
memcpy(info->xmit_buf + info->xmit_head, buf, c);
info->xmit_head = ((info->xmit_head + c) &
(SERIAL_XMIT_SIZE-1));
info->xmit_cnt += c;
spin_unlock_irqrestore(&info->irq_spinlock,flags);
buf += c;
count -= c;
ret += c;
}
}
if (info->xmit_cnt && !tty->stopped && !tty->hw_stopped) {
spin_lock_irqsave(&info->irq_spinlock,flags);
if (!info->tx_active)
usc_start_transmitter(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
cleanup:
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_write(%s) returning=%d\n",
__FILE__,__LINE__,info->device_name,ret);
return ret;
} /* end of mgsl_write() */
/* mgsl_write_room()
*
* Return the count of free bytes in transmit buffer
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static int mgsl_write_room(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
int ret;
if (mgsl_paranoia_check(info, tty->name, "mgsl_write_room"))
return 0;
ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1;
if (ret < 0)
ret = 0;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_write_room(%s)=%d\n",
__FILE__,__LINE__, info->device_name,ret );
if ( info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ) {
/* operating in synchronous (frame oriented) mode */
if ( info->tx_active )
return 0;
else
return HDLC_MAX_FRAME_SIZE;
}
return ret;
} /* end of mgsl_write_room() */
/* mgsl_chars_in_buffer()
*
* Return the count of bytes in transmit buffer
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static int mgsl_chars_in_buffer(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_chars_in_buffer(%s)\n",
__FILE__,__LINE__, info->device_name );
if (mgsl_paranoia_check(info, tty->name, "mgsl_chars_in_buffer"))
return 0;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_chars_in_buffer(%s)=%d\n",
__FILE__,__LINE__, info->device_name,info->xmit_cnt );
if ( info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ) {
/* operating in synchronous (frame oriented) mode */
if ( info->tx_active )
return info->max_frame_size;
else
return 0;
}
return info->xmit_cnt;
} /* end of mgsl_chars_in_buffer() */
/* mgsl_flush_buffer()
*
* Discard all data in the send buffer
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static void mgsl_flush_buffer(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_flush_buffer(%s) entry\n",
__FILE__,__LINE__, info->device_name );
if (mgsl_paranoia_check(info, tty->name, "mgsl_flush_buffer"))
return;
spin_lock_irqsave(&info->irq_spinlock,flags);
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
del_timer(&info->tx_timer);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
tty_wakeup(tty);
}
/* mgsl_send_xchar()
*
* Send a high-priority XON/XOFF character
*
* Arguments: tty pointer to tty info structure
* ch character to send
* Return Value: None
*/
static void mgsl_send_xchar(struct tty_struct *tty, char ch)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_send_xchar(%s,%d)\n",
__FILE__,__LINE__, info->device_name, ch );
if (mgsl_paranoia_check(info, tty->name, "mgsl_send_xchar"))
return;
info->x_char = ch;
if (ch) {
/* Make sure transmit interrupts are on */
spin_lock_irqsave(&info->irq_spinlock,flags);
if (!info->tx_enabled)
usc_start_transmitter(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
} /* end of mgsl_send_xchar() */
/* mgsl_throttle()
*
* Signal remote device to throttle send data (our receive data)
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static void mgsl_throttle(struct tty_struct * tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_throttle(%s) entry\n",
__FILE__,__LINE__, info->device_name );
if (mgsl_paranoia_check(info, tty->name, "mgsl_throttle"))
return;
if (I_IXOFF(tty))
mgsl_send_xchar(tty, STOP_CHAR(tty));
if (tty->termios.c_cflag & CRTSCTS) {
spin_lock_irqsave(&info->irq_spinlock,flags);
info->serial_signals &= ~SerialSignal_RTS;
usc_set_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
} /* end of mgsl_throttle() */
/* mgsl_unthrottle()
*
* Signal remote device to stop throttling send data (our receive data)
*
* Arguments: tty pointer to tty info structure
* Return Value: None
*/
static void mgsl_unthrottle(struct tty_struct * tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_unthrottle(%s) entry\n",
__FILE__,__LINE__, info->device_name );
if (mgsl_paranoia_check(info, tty->name, "mgsl_unthrottle"))
return;
if (I_IXOFF(tty)) {
if (info->x_char)
info->x_char = 0;
else
mgsl_send_xchar(tty, START_CHAR(tty));
}
if (tty->termios.c_cflag & CRTSCTS) {
spin_lock_irqsave(&info->irq_spinlock,flags);
info->serial_signals |= SerialSignal_RTS;
usc_set_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
} /* end of mgsl_unthrottle() */
/* mgsl_get_stats()
*
* get the current serial parameters information
*
* Arguments: info pointer to device instance data
* user_icount pointer to buffer to hold returned stats
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_get_stats(struct mgsl_struct * info, struct mgsl_icount __user *user_icount)
{
int err;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_get_params(%s)\n",
__FILE__,__LINE__, info->device_name);
if (!user_icount) {
memset(&info->icount, 0, sizeof(info->icount));
} else {
mutex_lock(&info->port.mutex);
COPY_TO_USER(err, user_icount, &info->icount, sizeof(struct mgsl_icount));
mutex_unlock(&info->port.mutex);
if (err)
return -EFAULT;
}
return 0;
} /* end of mgsl_get_stats() */
/* mgsl_get_params()
*
* get the current serial parameters information
*
* Arguments: info pointer to device instance data
* user_params pointer to buffer to hold returned params
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_get_params(struct mgsl_struct * info, MGSL_PARAMS __user *user_params)
{
int err;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_get_params(%s)\n",
__FILE__,__LINE__, info->device_name);
mutex_lock(&info->port.mutex);
COPY_TO_USER(err,user_params, &info->params, sizeof(MGSL_PARAMS));
mutex_unlock(&info->port.mutex);
if (err) {
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_get_params(%s) user buffer copy failed\n",
__FILE__,__LINE__,info->device_name);
return -EFAULT;
}
return 0;
} /* end of mgsl_get_params() */
/* mgsl_set_params()
*
* set the serial parameters
*
* Arguments:
*
* info pointer to device instance data
* new_params user buffer containing new serial params
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_set_params(struct mgsl_struct * info, MGSL_PARAMS __user *new_params)
{
unsigned long flags;
MGSL_PARAMS tmp_params;
int err;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_set_params %s\n", __FILE__,__LINE__,
info->device_name );
COPY_FROM_USER(err,&tmp_params, new_params, sizeof(MGSL_PARAMS));
if (err) {
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_set_params(%s) user buffer copy failed\n",
__FILE__,__LINE__,info->device_name);
return -EFAULT;
}
mutex_lock(&info->port.mutex);
spin_lock_irqsave(&info->irq_spinlock,flags);
memcpy(&info->params,&tmp_params,sizeof(MGSL_PARAMS));
spin_unlock_irqrestore(&info->irq_spinlock,flags);
mgsl_change_params(info);
mutex_unlock(&info->port.mutex);
return 0;
} /* end of mgsl_set_params() */
/* mgsl_get_txidle()
*
* get the current transmit idle mode
*
* Arguments: info pointer to device instance data
* idle_mode pointer to buffer to hold returned idle mode
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_get_txidle(struct mgsl_struct * info, int __user *idle_mode)
{
int err;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_get_txidle(%s)=%d\n",
__FILE__,__LINE__, info->device_name, info->idle_mode);
COPY_TO_USER(err,idle_mode, &info->idle_mode, sizeof(int));
if (err) {
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_get_txidle(%s) user buffer copy failed\n",
__FILE__,__LINE__,info->device_name);
return -EFAULT;
}
return 0;
} /* end of mgsl_get_txidle() */
/* mgsl_set_txidle() service ioctl to set transmit idle mode
*
* Arguments: info pointer to device instance data
* idle_mode new idle mode
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_set_txidle(struct mgsl_struct * info, int idle_mode)
{
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_set_txidle(%s,%d)\n", __FILE__,__LINE__,
info->device_name, idle_mode );
spin_lock_irqsave(&info->irq_spinlock,flags);
info->idle_mode = idle_mode;
usc_set_txidle( info );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
} /* end of mgsl_set_txidle() */
/* mgsl_txenable()
*
* enable or disable the transmitter
*
* Arguments:
*
* info pointer to device instance data
* enable 1 = enable, 0 = disable
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_txenable(struct mgsl_struct * info, int enable)
{
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_txenable(%s,%d)\n", __FILE__,__LINE__,
info->device_name, enable);
spin_lock_irqsave(&info->irq_spinlock,flags);
if ( enable ) {
if ( !info->tx_enabled ) {
usc_start_transmitter(info);
/*--------------------------------------------------
* if HDLC/SDLC Loop mode, attempt to insert the
* station in the 'loop' by setting CMR:13. Upon
* receipt of the next GoAhead (RxAbort) sequence,
* the OnLoop indicator (CCSR:7) should go active
* to indicate that we are on the loop
*--------------------------------------------------*/
if ( info->params.flags & HDLC_FLAG_HDLC_LOOPMODE )
usc_loopmode_insert_request( info );
}
} else {
if ( info->tx_enabled )
usc_stop_transmitter(info);
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
} /* end of mgsl_txenable() */
/* mgsl_txabort() abort send HDLC frame
*
* Arguments: info pointer to device instance data
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_txabort(struct mgsl_struct * info)
{
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_txabort(%s)\n", __FILE__,__LINE__,
info->device_name);
spin_lock_irqsave(&info->irq_spinlock,flags);
if ( info->tx_active && info->params.mode == MGSL_MODE_HDLC )
{
if ( info->params.flags & HDLC_FLAG_HDLC_LOOPMODE )
usc_loopmode_cancel_transmit( info );
else
usc_TCmd(info,TCmd_SendAbort);
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
} /* end of mgsl_txabort() */
/* mgsl_rxenable() enable or disable the receiver
*
* Arguments: info pointer to device instance data
* enable 1 = enable, 0 = disable
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_rxenable(struct mgsl_struct * info, int enable)
{
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_rxenable(%s,%d)\n", __FILE__,__LINE__,
info->device_name, enable);
spin_lock_irqsave(&info->irq_spinlock,flags);
if ( enable ) {
if ( !info->rx_enabled )
usc_start_receiver(info);
} else {
if ( info->rx_enabled )
usc_stop_receiver(info);
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
} /* end of mgsl_rxenable() */
/* mgsl_wait_event() wait for specified event to occur
*
* Arguments: info pointer to device instance data
* mask pointer to bitmask of events to wait for
* Return Value: 0 if successful and bit mask updated with
* of events triggerred,
* otherwise error code
*/
static int mgsl_wait_event(struct mgsl_struct * info, int __user * mask_ptr)
{
unsigned long flags;
int s;
int rc=0;
struct mgsl_icount cprev, cnow;
int events;
int mask;
struct _input_signal_events oldsigs, newsigs;
DECLARE_WAITQUEUE(wait, current);
COPY_FROM_USER(rc,&mask, mask_ptr, sizeof(int));
if (rc) {
return -EFAULT;
}
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_wait_event(%s,%d)\n", __FILE__,__LINE__,
info->device_name, mask);
spin_lock_irqsave(&info->irq_spinlock,flags);
/* return immediately if state matches requested events */
usc_get_serial_signals(info);
s = info->serial_signals;
events = mask &
( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) +
((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) +
((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) +
((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) );
if (events) {
spin_unlock_irqrestore(&info->irq_spinlock,flags);
goto exit;
}
/* save current irq counts */
cprev = info->icount;
oldsigs = info->input_signal_events;
/* enable hunt and idle irqs if needed */
if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) {
u16 oldreg = usc_InReg(info,RICR);
u16 newreg = oldreg +
(mask & MgslEvent_ExitHuntMode ? RXSTATUS_EXITED_HUNT:0) +
(mask & MgslEvent_IdleReceived ? RXSTATUS_IDLE_RECEIVED:0);
if (oldreg != newreg)
usc_OutReg(info, RICR, newreg);
}
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&info->event_wait_q, &wait);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
for(;;) {
schedule();
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* get current irq counts */
spin_lock_irqsave(&info->irq_spinlock,flags);
cnow = info->icount;
newsigs = info->input_signal_events;
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/* if no change, wait aborted for some reason */
if (newsigs.dsr_up == oldsigs.dsr_up &&
newsigs.dsr_down == oldsigs.dsr_down &&
newsigs.dcd_up == oldsigs.dcd_up &&
newsigs.dcd_down == oldsigs.dcd_down &&
newsigs.cts_up == oldsigs.cts_up &&
newsigs.cts_down == oldsigs.cts_down &&
newsigs.ri_up == oldsigs.ri_up &&
newsigs.ri_down == oldsigs.ri_down &&
cnow.exithunt == cprev.exithunt &&
cnow.rxidle == cprev.rxidle) {
rc = -EIO;
break;
}
events = mask &
( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) +
(newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) +
(newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) +
(newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) +
(newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) +
(newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) +
(newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) +
(newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) +
(cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) +
(cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) );
if (events)
break;
cprev = cnow;
oldsigs = newsigs;
}
remove_wait_queue(&info->event_wait_q, &wait);
set_current_state(TASK_RUNNING);
if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) {
spin_lock_irqsave(&info->irq_spinlock,flags);
if (!waitqueue_active(&info->event_wait_q)) {
/* disable enable exit hunt mode/idle rcvd IRQs */
usc_OutReg(info, RICR, usc_InReg(info,RICR) &
~(RXSTATUS_EXITED_HUNT | RXSTATUS_IDLE_RECEIVED));
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
exit:
if ( rc == 0 )
PUT_USER(rc, events, mask_ptr);
return rc;
} /* end of mgsl_wait_event() */
static int modem_input_wait(struct mgsl_struct *info,int arg)
{
unsigned long flags;
int rc;
struct mgsl_icount cprev, cnow;
DECLARE_WAITQUEUE(wait, current);
/* save current irq counts */
spin_lock_irqsave(&info->irq_spinlock,flags);
cprev = info->icount;
add_wait_queue(&info->status_event_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
for(;;) {
schedule();
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* get new irq counts */
spin_lock_irqsave(&info->irq_spinlock,flags);
cnow = info->icount;
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/* if no change, wait aborted for some reason */
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) {
rc = -EIO;
break;
}
/* check for change in caller specified modem input */
if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) ||
(arg & TIOCM_DSR && cnow.dsr != cprev.dsr) ||
(arg & TIOCM_CD && cnow.dcd != cprev.dcd) ||
(arg & TIOCM_CTS && cnow.cts != cprev.cts)) {
rc = 0;
break;
}
cprev = cnow;
}
remove_wait_queue(&info->status_event_wait_q, &wait);
set_current_state(TASK_RUNNING);
return rc;
}
/* return the state of the serial control and status signals
*/
static int tiocmget(struct tty_struct *tty)
{
struct mgsl_struct *info = tty->driver_data;
unsigned int result;
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_get_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
result = ((info->serial_signals & SerialSignal_RTS) ? TIOCM_RTS:0) +
((info->serial_signals & SerialSignal_DTR) ? TIOCM_DTR:0) +
((info->serial_signals & SerialSignal_DCD) ? TIOCM_CAR:0) +
((info->serial_signals & SerialSignal_RI) ? TIOCM_RNG:0) +
((info->serial_signals & SerialSignal_DSR) ? TIOCM_DSR:0) +
((info->serial_signals & SerialSignal_CTS) ? TIOCM_CTS:0);
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):%s tiocmget() value=%08X\n",
__FILE__,__LINE__, info->device_name, result );
return result;
}
/* set modem control signals (DTR/RTS)
*/
static int tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):%s tiocmset(%x,%x)\n",
__FILE__,__LINE__,info->device_name, set, clear);
if (set & TIOCM_RTS)
info->serial_signals |= SerialSignal_RTS;
if (set & TIOCM_DTR)
info->serial_signals |= SerialSignal_DTR;
if (clear & TIOCM_RTS)
info->serial_signals &= ~SerialSignal_RTS;
if (clear & TIOCM_DTR)
info->serial_signals &= ~SerialSignal_DTR;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_set_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
}
/* mgsl_break() Set or clear transmit break condition
*
* Arguments: tty pointer to tty instance data
* break_state -1=set break condition, 0=clear
* Return Value: error code
*/
static int mgsl_break(struct tty_struct *tty, int break_state)
{
struct mgsl_struct * info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_break(%s,%d)\n",
__FILE__,__LINE__, info->device_name, break_state);
if (mgsl_paranoia_check(info, tty->name, "mgsl_break"))
return -EINVAL;
spin_lock_irqsave(&info->irq_spinlock,flags);
if (break_state == -1)
usc_OutReg(info,IOCR,(u16)(usc_InReg(info,IOCR) | BIT7));
else
usc_OutReg(info,IOCR,(u16)(usc_InReg(info,IOCR) & ~BIT7));
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
} /* end of mgsl_break() */
/*
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
* Return: write counters to the user passed counter struct
* NB: both 1->0 and 0->1 transitions are counted except for
* RI where only 0->1 is counted.
*/
static int msgl_get_icount(struct tty_struct *tty,
struct serial_icounter_struct *icount)
{
struct mgsl_struct * info = tty->driver_data;
struct mgsl_icount cnow; /* kernel counter temps */
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
cnow = info->icount;
spin_unlock_irqrestore(&info->irq_spinlock,flags);
icount->cts = cnow.cts;
icount->dsr = cnow.dsr;
icount->rng = cnow.rng;
icount->dcd = cnow.dcd;
icount->rx = cnow.rx;
icount->tx = cnow.tx;
icount->frame = cnow.frame;
icount->overrun = cnow.overrun;
icount->parity = cnow.parity;
icount->brk = cnow.brk;
icount->buf_overrun = cnow.buf_overrun;
return 0;
}
/* mgsl_ioctl() Service an IOCTL request
*
* Arguments:
*
* tty pointer to tty instance data
* cmd IOCTL command code
* arg command argument/context
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
struct mgsl_struct * info = tty->driver_data;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_ioctl %s cmd=%08X\n", __FILE__,__LINE__,
info->device_name, cmd );
if (mgsl_paranoia_check(info, tty->name, "mgsl_ioctl"))
return -ENODEV;
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCMIWAIT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
return mgsl_ioctl_common(info, cmd, arg);
}
static int mgsl_ioctl_common(struct mgsl_struct *info, unsigned int cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
switch (cmd) {
case MGSL_IOCGPARAMS:
return mgsl_get_params(info, argp);
case MGSL_IOCSPARAMS:
return mgsl_set_params(info, argp);
case MGSL_IOCGTXIDLE:
return mgsl_get_txidle(info, argp);
case MGSL_IOCSTXIDLE:
return mgsl_set_txidle(info,(int)arg);
case MGSL_IOCTXENABLE:
return mgsl_txenable(info,(int)arg);
case MGSL_IOCRXENABLE:
return mgsl_rxenable(info,(int)arg);
case MGSL_IOCTXABORT:
return mgsl_txabort(info);
case MGSL_IOCGSTATS:
return mgsl_get_stats(info, argp);
case MGSL_IOCWAITEVENT:
return mgsl_wait_event(info, argp);
case MGSL_IOCLOOPTXDONE:
return mgsl_loopmode_send_done(info);
/* Wait for modem input (DCD,RI,DSR,CTS) change
* as specified by mask in arg (TIOCM_RNG/DSR/CD/CTS)
*/
case TIOCMIWAIT:
return modem_input_wait(info,(int)arg);
default:
return -ENOIOCTLCMD;
}
return 0;
}
/* mgsl_set_termios()
*
* Set new termios settings
*
* Arguments:
*
* tty pointer to tty structure
* termios pointer to buffer to hold returned old termios
*
* Return Value: None
*/
static void mgsl_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_set_termios %s\n", __FILE__,__LINE__,
tty->driver->name );
mgsl_change_params(info);
/* Handle transition to B0 status */
if (old_termios->c_cflag & CBAUD &&
!(tty->termios.c_cflag & CBAUD)) {
info->serial_signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_set_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) &&
tty->termios.c_cflag & CBAUD) {
info->serial_signals |= SerialSignal_DTR;
if (!(tty->termios.c_cflag & CRTSCTS) ||
!test_bit(TTY_THROTTLED, &tty->flags)) {
info->serial_signals |= SerialSignal_RTS;
}
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_set_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
/* Handle turning off CRTSCTS */
if (old_termios->c_cflag & CRTSCTS &&
!(tty->termios.c_cflag & CRTSCTS)) {
tty->hw_stopped = 0;
mgsl_start(tty);
}
} /* end of mgsl_set_termios() */
/* mgsl_close()
*
* Called when port is closed. Wait for remaining data to be
* sent. Disable port and free resources.
*
* Arguments:
*
* tty pointer to open tty structure
* filp pointer to open file object
*
* Return Value: None
*/
static void mgsl_close(struct tty_struct *tty, struct file * filp)
{
struct mgsl_struct * info = tty->driver_data;
if (mgsl_paranoia_check(info, tty->name, "mgsl_close"))
return;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_close(%s) entry, count=%d\n",
__FILE__,__LINE__, info->device_name, info->port.count);
if (tty_port_close_start(&info->port, tty, filp) == 0)
goto cleanup;
mutex_lock(&info->port.mutex);
if (info->port.flags & ASYNC_INITIALIZED)
mgsl_wait_until_sent(tty, info->timeout);
mgsl_flush_buffer(tty);
tty_ldisc_flush(tty);
shutdown(info);
mutex_unlock(&info->port.mutex);
tty_port_close_end(&info->port, tty);
info->port.tty = NULL;
cleanup:
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_close(%s) exit, count=%d\n", __FILE__,__LINE__,
tty->driver->name, info->port.count);
} /* end of mgsl_close() */
/* mgsl_wait_until_sent()
*
* Wait until the transmitter is empty.
*
* Arguments:
*
* tty pointer to tty info structure
* timeout time to wait for send completion
*
* Return Value: None
*/
static void mgsl_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct mgsl_struct * info = tty->driver_data;
unsigned long orig_jiffies, char_time;
if (!info )
return;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_wait_until_sent(%s) entry\n",
__FILE__,__LINE__, info->device_name );
if (mgsl_paranoia_check(info, tty->name, "mgsl_wait_until_sent"))
return;
if (!(info->port.flags & ASYNC_INITIALIZED))
goto exit;
orig_jiffies = jiffies;
/* Set check interval to 1/5 of estimated time to
* send a character, and make it at least 1. The check
* interval should also be less than the timeout.
* Note: use tight timings here to satisfy the NIST-PCTS.
*/
if ( info->params.data_rate ) {
char_time = info->timeout/(32 * 5);
if (!char_time)
char_time++;
} else
char_time = 1;
if (timeout)
char_time = min_t(unsigned long, char_time, timeout);
if ( info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ) {
while (info->tx_active) {
msleep_interruptible(jiffies_to_msecs(char_time));
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
} else {
while (!(usc_InReg(info,TCSR) & TXSTATUS_ALL_SENT) &&
info->tx_enabled) {
msleep_interruptible(jiffies_to_msecs(char_time));
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
}
exit:
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_wait_until_sent(%s) exit\n",
__FILE__,__LINE__, info->device_name );
} /* end of mgsl_wait_until_sent() */
/* mgsl_hangup()
*
* Called by tty_hangup() when a hangup is signaled.
* This is the same as to closing all open files for the port.
*
* Arguments: tty pointer to associated tty object
* Return Value: None
*/
static void mgsl_hangup(struct tty_struct *tty)
{
struct mgsl_struct * info = tty->driver_data;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_hangup(%s)\n",
__FILE__,__LINE__, info->device_name );
if (mgsl_paranoia_check(info, tty->name, "mgsl_hangup"))
return;
mgsl_flush_buffer(tty);
shutdown(info);
info->port.count = 0;
info->port.flags &= ~ASYNC_NORMAL_ACTIVE;
info->port.tty = NULL;
wake_up_interruptible(&info->port.open_wait);
} /* end of mgsl_hangup() */
/*
* carrier_raised()
*
* Return true if carrier is raised
*/
static int carrier_raised(struct tty_port *port)
{
unsigned long flags;
struct mgsl_struct *info = container_of(port, struct mgsl_struct, port);
spin_lock_irqsave(&info->irq_spinlock, flags);
usc_get_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock, flags);
return (info->serial_signals & SerialSignal_DCD) ? 1 : 0;
}
static void dtr_rts(struct tty_port *port, int on)
{
struct mgsl_struct *info = container_of(port, struct mgsl_struct, port);
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
if (on)
info->serial_signals |= SerialSignal_RTS | SerialSignal_DTR;
else
info->serial_signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
usc_set_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
/* block_til_ready()
*
* Block the current process until the specified port
* is ready to be opened.
*
* Arguments:
*
* tty pointer to tty info structure
* filp pointer to open file object
* info pointer to device instance data
*
* Return Value: 0 if success, otherwise error code
*/
static int block_til_ready(struct tty_struct *tty, struct file * filp,
struct mgsl_struct *info)
{
DECLARE_WAITQUEUE(wait, current);
int retval;
bool do_clocal = false;
bool extra_count = false;
unsigned long flags;
int dcd;
struct tty_port *port = &info->port;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):block_til_ready on %s\n",
__FILE__,__LINE__, tty->driver->name );
if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
/* nonblock mode is set or port is not enabled */
port->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (tty->termios.c_cflag & CLOCAL)
do_clocal = true;
/* Wait for carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, port->count is dropped by one, so that
* mgsl_close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&port->open_wait, &wait);
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):block_til_ready before block on %s count=%d\n",
__FILE__,__LINE__, tty->driver->name, port->count );
spin_lock_irqsave(&info->irq_spinlock, flags);
if (!tty_hung_up_p(filp)) {
extra_count = true;
port->count--;
}
spin_unlock_irqrestore(&info->irq_spinlock, flags);
port->blocked_open++;
while (1) {
if (C_BAUD(tty) && test_bit(ASYNCB_INITIALIZED, &port->flags))
tty_port_raise_dtr_rts(port);
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) || !(port->flags & ASYNC_INITIALIZED)){
retval = (port->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS;
break;
}
dcd = tty_port_carrier_raised(&info->port);
if (!(port->flags & ASYNC_CLOSING) && (do_clocal || dcd))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):block_til_ready blocking on %s count=%d\n",
__FILE__,__LINE__, tty->driver->name, port->count );
tty_unlock(tty);
schedule();
tty_lock(tty);
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&port->open_wait, &wait);
/* FIXME: Racy on hangup during close wait */
if (extra_count)
port->count++;
port->blocked_open--;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):block_til_ready after blocking on %s count=%d\n",
__FILE__,__LINE__, tty->driver->name, port->count );
if (!retval)
port->flags |= ASYNC_NORMAL_ACTIVE;
return retval;
} /* end of block_til_ready() */
static int mgsl_install(struct tty_driver *driver, struct tty_struct *tty)
{
struct mgsl_struct *info;
int line = tty->index;
/* verify range of specified line number */
if (line >= mgsl_device_count) {
printk("%s(%d):mgsl_open with invalid line #%d.\n",
__FILE__, __LINE__, line);
return -ENODEV;
}
/* find the info structure for the specified line */
info = mgsl_device_list;
while (info && info->line != line)
info = info->next_device;
if (mgsl_paranoia_check(info, tty->name, "mgsl_open"))
return -ENODEV;
tty->driver_data = info;
return tty_port_install(&info->port, driver, tty);
}
/* mgsl_open()
*
* Called when a port is opened. Init and enable port.
* Perform serial-specific initialization for the tty structure.
*
* Arguments: tty pointer to tty info structure
* filp associated file pointer
*
* Return Value: 0 if success, otherwise error code
*/
static int mgsl_open(struct tty_struct *tty, struct file * filp)
{
struct mgsl_struct *info = tty->driver_data;
unsigned long flags;
int retval;
info->port.tty = tty;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_open(%s), old ref count = %d\n",
__FILE__,__LINE__,tty->driver->name, info->port.count);
/* If port is closing, signal caller to try again */
if (tty_hung_up_p(filp) || info->port.flags & ASYNC_CLOSING){
wait_event_interruptible_tty(tty, info->port.close_wait,
!(info->port.flags & ASYNC_CLOSING));
retval = ((info->port.flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
goto cleanup;
}
info->port.low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0;
spin_lock_irqsave(&info->netlock, flags);
if (info->netcount) {
retval = -EBUSY;
spin_unlock_irqrestore(&info->netlock, flags);
goto cleanup;
}
info->port.count++;
spin_unlock_irqrestore(&info->netlock, flags);
if (info->port.count == 1) {
/* 1st open on this device, init hardware */
retval = startup(info);
if (retval < 0)
goto cleanup;
}
retval = block_til_ready(tty, filp, info);
if (retval) {
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):block_til_ready(%s) returned %d\n",
__FILE__,__LINE__, info->device_name, retval);
goto cleanup;
}
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s(%d):mgsl_open(%s) success\n",
__FILE__,__LINE__, info->device_name);
retval = 0;
cleanup:
if (retval) {
if (tty->count == 1)
info->port.tty = NULL; /* tty layer will release tty struct */
if(info->port.count)
info->port.count--;
}
return retval;
} /* end of mgsl_open() */
/*
* /proc fs routines....
*/
static inline void line_info(struct seq_file *m, struct mgsl_struct *info)
{
char stat_buf[30];
unsigned long flags;
if (info->bus_type == MGSL_BUS_TYPE_PCI) {
seq_printf(m, "%s:PCI io:%04X irq:%d mem:%08X lcr:%08X",
info->device_name, info->io_base, info->irq_level,
info->phys_memory_base, info->phys_lcr_base);
} else {
seq_printf(m, "%s:(E)ISA io:%04X irq:%d dma:%d",
info->device_name, info->io_base,
info->irq_level, info->dma_level);
}
/* output current serial signal states */
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_get_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
stat_buf[0] = 0;
stat_buf[1] = 0;
if (info->serial_signals & SerialSignal_RTS)
strcat(stat_buf, "|RTS");
if (info->serial_signals & SerialSignal_CTS)
strcat(stat_buf, "|CTS");
if (info->serial_signals & SerialSignal_DTR)
strcat(stat_buf, "|DTR");
if (info->serial_signals & SerialSignal_DSR)
strcat(stat_buf, "|DSR");
if (info->serial_signals & SerialSignal_DCD)
strcat(stat_buf, "|CD");
if (info->serial_signals & SerialSignal_RI)
strcat(stat_buf, "|RI");
if (info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ) {
seq_printf(m, " HDLC txok:%d rxok:%d",
info->icount.txok, info->icount.rxok);
if (info->icount.txunder)
seq_printf(m, " txunder:%d", info->icount.txunder);
if (info->icount.txabort)
seq_printf(m, " txabort:%d", info->icount.txabort);
if (info->icount.rxshort)
seq_printf(m, " rxshort:%d", info->icount.rxshort);
if (info->icount.rxlong)
seq_printf(m, " rxlong:%d", info->icount.rxlong);
if (info->icount.rxover)
seq_printf(m, " rxover:%d", info->icount.rxover);
if (info->icount.rxcrc)
seq_printf(m, " rxcrc:%d", info->icount.rxcrc);
} else {
seq_printf(m, " ASYNC tx:%d rx:%d",
info->icount.tx, info->icount.rx);
if (info->icount.frame)
seq_printf(m, " fe:%d", info->icount.frame);
if (info->icount.parity)
seq_printf(m, " pe:%d", info->icount.parity);
if (info->icount.brk)
seq_printf(m, " brk:%d", info->icount.brk);
if (info->icount.overrun)
seq_printf(m, " oe:%d", info->icount.overrun);
}
/* Append serial signal status to end */
seq_printf(m, " %s\n", stat_buf+1);
seq_printf(m, "txactive=%d bh_req=%d bh_run=%d pending_bh=%x\n",
info->tx_active,info->bh_requested,info->bh_running,
info->pending_bh);
spin_lock_irqsave(&info->irq_spinlock,flags);
{
u16 Tcsr = usc_InReg( info, TCSR );
u16 Tdmr = usc_InDmaReg( info, TDMR );
u16 Ticr = usc_InReg( info, TICR );
u16 Rscr = usc_InReg( info, RCSR );
u16 Rdmr = usc_InDmaReg( info, RDMR );
u16 Ricr = usc_InReg( info, RICR );
u16 Icr = usc_InReg( info, ICR );
u16 Dccr = usc_InReg( info, DCCR );
u16 Tmr = usc_InReg( info, TMR );
u16 Tccr = usc_InReg( info, TCCR );
u16 Ccar = inw( info->io_base + CCAR );
seq_printf(m, "tcsr=%04X tdmr=%04X ticr=%04X rcsr=%04X rdmr=%04X\n"
"ricr=%04X icr =%04X dccr=%04X tmr=%04X tccr=%04X ccar=%04X\n",
Tcsr,Tdmr,Ticr,Rscr,Rdmr,Ricr,Icr,Dccr,Tmr,Tccr,Ccar );
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
/* Called to print information about devices */
static int mgsl_proc_show(struct seq_file *m, void *v)
{
struct mgsl_struct *info;
seq_printf(m, "synclink driver:%s\n", driver_version);
info = mgsl_device_list;
while( info ) {
line_info(m, info);
info = info->next_device;
}
return 0;
}
static int mgsl_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, mgsl_proc_show, NULL);
}
static const struct file_operations mgsl_proc_fops = {
.owner = THIS_MODULE,
.open = mgsl_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/* mgsl_allocate_dma_buffers()
*
* Allocate and format DMA buffers (ISA adapter)
* or format shared memory buffers (PCI adapter).
*
* Arguments: info pointer to device instance data
* Return Value: 0 if success, otherwise error
*/
static int mgsl_allocate_dma_buffers(struct mgsl_struct *info)
{
unsigned short BuffersPerFrame;
info->last_mem_alloc = 0;
/* Calculate the number of DMA buffers necessary to hold the */
/* largest allowable frame size. Note: If the max frame size is */
/* not an even multiple of the DMA buffer size then we need to */
/* round the buffer count per frame up one. */
BuffersPerFrame = (unsigned short)(info->max_frame_size/DMABUFFERSIZE);
if ( info->max_frame_size % DMABUFFERSIZE )
BuffersPerFrame++;
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
/*
* The PCI adapter has 256KBytes of shared memory to use.
* This is 64 PAGE_SIZE buffers.
*
* The first page is used for padding at this time so the
* buffer list does not begin at offset 0 of the PCI
* adapter's shared memory.
*
* The 2nd page is used for the buffer list. A 4K buffer
* list can hold 128 DMA_BUFFER structures at 32 bytes
* each.
*
* This leaves 62 4K pages.
*
* The next N pages are used for transmit frame(s). We
* reserve enough 4K page blocks to hold the required
* number of transmit dma buffers (num_tx_dma_buffers),
* each of MaxFrameSize size.
*
* Of the remaining pages (62-N), determine how many can
* be used to receive full MaxFrameSize inbound frames
*/
info->tx_buffer_count = info->num_tx_dma_buffers * BuffersPerFrame;
info->rx_buffer_count = 62 - info->tx_buffer_count;
} else {
/* Calculate the number of PAGE_SIZE buffers needed for */
/* receive and transmit DMA buffers. */
/* Calculate the number of DMA buffers necessary to */
/* hold 7 max size receive frames and one max size transmit frame. */
/* The receive buffer count is bumped by one so we avoid an */
/* End of List condition if all receive buffers are used when */
/* using linked list DMA buffers. */
info->tx_buffer_count = info->num_tx_dma_buffers * BuffersPerFrame;
info->rx_buffer_count = (BuffersPerFrame * MAXRXFRAMES) + 6;
/*
* limit total TxBuffers & RxBuffers to 62 4K total
* (ala PCI Allocation)
*/
if ( (info->tx_buffer_count + info->rx_buffer_count) > 62 )
info->rx_buffer_count = 62 - info->tx_buffer_count;
}
if ( debug_level >= DEBUG_LEVEL_INFO )
printk("%s(%d):Allocating %d TX and %d RX DMA buffers.\n",
__FILE__,__LINE__, info->tx_buffer_count,info->rx_buffer_count);
if ( mgsl_alloc_buffer_list_memory( info ) < 0 ||
mgsl_alloc_frame_memory(info, info->rx_buffer_list, info->rx_buffer_count) < 0 ||
mgsl_alloc_frame_memory(info, info->tx_buffer_list, info->tx_buffer_count) < 0 ||
mgsl_alloc_intermediate_rxbuffer_memory(info) < 0 ||
mgsl_alloc_intermediate_txbuffer_memory(info) < 0 ) {
printk("%s(%d):Can't allocate DMA buffer memory\n",__FILE__,__LINE__);
return -ENOMEM;
}
mgsl_reset_rx_dma_buffers( info );
mgsl_reset_tx_dma_buffers( info );
return 0;
} /* end of mgsl_allocate_dma_buffers() */
/*
* mgsl_alloc_buffer_list_memory()
*
* Allocate a common DMA buffer for use as the
* receive and transmit buffer lists.
*
* A buffer list is a set of buffer entries where each entry contains
* a pointer to an actual buffer and a pointer to the next buffer entry
* (plus some other info about the buffer).
*
* The buffer entries for a list are built to form a circular list so
* that when the entire list has been traversed you start back at the
* beginning.
*
* This function allocates memory for just the buffer entries.
* The links (pointer to next entry) are filled in with the physical
* address of the next entry so the adapter can navigate the list
* using bus master DMA. The pointers to the actual buffers are filled
* out later when the actual buffers are allocated.
*
* Arguments: info pointer to device instance data
* Return Value: 0 if success, otherwise error
*/
static int mgsl_alloc_buffer_list_memory( struct mgsl_struct *info )
{
unsigned int i;
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
/* PCI adapter uses shared memory. */
info->buffer_list = info->memory_base + info->last_mem_alloc;
info->buffer_list_phys = info->last_mem_alloc;
info->last_mem_alloc += BUFFERLISTSIZE;
} else {
/* ISA adapter uses system memory. */
/* The buffer lists are allocated as a common buffer that both */
/* the processor and adapter can access. This allows the driver to */
/* inspect portions of the buffer while other portions are being */
/* updated by the adapter using Bus Master DMA. */
info->buffer_list = dma_alloc_coherent(NULL, BUFFERLISTSIZE, &info->buffer_list_dma_addr, GFP_KERNEL);
if (info->buffer_list == NULL)
return -ENOMEM;
info->buffer_list_phys = (u32)(info->buffer_list_dma_addr);
}
/* We got the memory for the buffer entry lists. */
/* Initialize the memory block to all zeros. */
memset( info->buffer_list, 0, BUFFERLISTSIZE );
/* Save virtual address pointers to the receive and */
/* transmit buffer lists. (Receive 1st). These pointers will */
/* be used by the processor to access the lists. */
info->rx_buffer_list = (DMABUFFERENTRY *)info->buffer_list;
info->tx_buffer_list = (DMABUFFERENTRY *)info->buffer_list;
info->tx_buffer_list += info->rx_buffer_count;
/*
* Build the links for the buffer entry lists such that
* two circular lists are built. (Transmit and Receive).
*
* Note: the links are physical addresses
* which are read by the adapter to determine the next
* buffer entry to use.
*/
for ( i = 0; i < info->rx_buffer_count; i++ ) {
/* calculate and store physical address of this buffer entry */
info->rx_buffer_list[i].phys_entry =
info->buffer_list_phys + (i * sizeof(DMABUFFERENTRY));
/* calculate and store physical address of */
/* next entry in cirular list of entries */
info->rx_buffer_list[i].link = info->buffer_list_phys;
if ( i < info->rx_buffer_count - 1 )
info->rx_buffer_list[i].link += (i + 1) * sizeof(DMABUFFERENTRY);
}
for ( i = 0; i < info->tx_buffer_count; i++ ) {
/* calculate and store physical address of this buffer entry */
info->tx_buffer_list[i].phys_entry = info->buffer_list_phys +
((info->rx_buffer_count + i) * sizeof(DMABUFFERENTRY));
/* calculate and store physical address of */
/* next entry in cirular list of entries */
info->tx_buffer_list[i].link = info->buffer_list_phys +
info->rx_buffer_count * sizeof(DMABUFFERENTRY);
if ( i < info->tx_buffer_count - 1 )
info->tx_buffer_list[i].link += (i + 1) * sizeof(DMABUFFERENTRY);
}
return 0;
} /* end of mgsl_alloc_buffer_list_memory() */
/* Free DMA buffers allocated for use as the
* receive and transmit buffer lists.
* Warning:
*
* The data transfer buffers associated with the buffer list
* MUST be freed before freeing the buffer list itself because
* the buffer list contains the information necessary to free
* the individual buffers!
*/
static void mgsl_free_buffer_list_memory( struct mgsl_struct *info )
{
if (info->buffer_list && info->bus_type != MGSL_BUS_TYPE_PCI)
dma_free_coherent(NULL, BUFFERLISTSIZE, info->buffer_list, info->buffer_list_dma_addr);
info->buffer_list = NULL;
info->rx_buffer_list = NULL;
info->tx_buffer_list = NULL;
} /* end of mgsl_free_buffer_list_memory() */
/*
* mgsl_alloc_frame_memory()
*
* Allocate the frame DMA buffers used by the specified buffer list.
* Each DMA buffer will be one memory page in size. This is necessary
* because memory can fragment enough that it may be impossible
* contiguous pages.
*
* Arguments:
*
* info pointer to device instance data
* BufferList pointer to list of buffer entries
* Buffercount count of buffer entries in buffer list
*
* Return Value: 0 if success, otherwise -ENOMEM
*/
static int mgsl_alloc_frame_memory(struct mgsl_struct *info,DMABUFFERENTRY *BufferList,int Buffercount)
{
int i;
u32 phys_addr;
/* Allocate page sized buffers for the receive buffer list */
for ( i = 0; i < Buffercount; i++ ) {
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
/* PCI adapter uses shared memory buffers. */
BufferList[i].virt_addr = info->memory_base + info->last_mem_alloc;
phys_addr = info->last_mem_alloc;
info->last_mem_alloc += DMABUFFERSIZE;
} else {
/* ISA adapter uses system memory. */
BufferList[i].virt_addr = dma_alloc_coherent(NULL, DMABUFFERSIZE, &BufferList[i].dma_addr, GFP_KERNEL);
if (BufferList[i].virt_addr == NULL)
return -ENOMEM;
phys_addr = (u32)(BufferList[i].dma_addr);
}
BufferList[i].phys_addr = phys_addr;
}
return 0;
} /* end of mgsl_alloc_frame_memory() */
/*
* mgsl_free_frame_memory()
*
* Free the buffers associated with
* each buffer entry of a buffer list.
*
* Arguments:
*
* info pointer to device instance data
* BufferList pointer to list of buffer entries
* Buffercount count of buffer entries in buffer list
*
* Return Value: None
*/
static void mgsl_free_frame_memory(struct mgsl_struct *info, DMABUFFERENTRY *BufferList, int Buffercount)
{
int i;
if ( BufferList ) {
for ( i = 0 ; i < Buffercount ; i++ ) {
if ( BufferList[i].virt_addr ) {
if ( info->bus_type != MGSL_BUS_TYPE_PCI )
dma_free_coherent(NULL, DMABUFFERSIZE, BufferList[i].virt_addr, BufferList[i].dma_addr);
BufferList[i].virt_addr = NULL;
}
}
}
} /* end of mgsl_free_frame_memory() */
/* mgsl_free_dma_buffers()
*
* Free DMA buffers
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_free_dma_buffers( struct mgsl_struct *info )
{
mgsl_free_frame_memory( info, info->rx_buffer_list, info->rx_buffer_count );
mgsl_free_frame_memory( info, info->tx_buffer_list, info->tx_buffer_count );
mgsl_free_buffer_list_memory( info );
} /* end of mgsl_free_dma_buffers() */
/*
* mgsl_alloc_intermediate_rxbuffer_memory()
*
* Allocate a buffer large enough to hold max_frame_size. This buffer
* is used to pass an assembled frame to the line discipline.
*
* Arguments:
*
* info pointer to device instance data
*
* Return Value: 0 if success, otherwise -ENOMEM
*/
static int mgsl_alloc_intermediate_rxbuffer_memory(struct mgsl_struct *info)
{
info->intermediate_rxbuffer = kmalloc(info->max_frame_size, GFP_KERNEL | GFP_DMA);
if ( info->intermediate_rxbuffer == NULL )
return -ENOMEM;
/* unused flag buffer to satisfy receive_buf calling interface */
info->flag_buf = kzalloc(info->max_frame_size, GFP_KERNEL);
if (!info->flag_buf) {
kfree(info->intermediate_rxbuffer);
info->intermediate_rxbuffer = NULL;
return -ENOMEM;
}
return 0;
} /* end of mgsl_alloc_intermediate_rxbuffer_memory() */
/*
* mgsl_free_intermediate_rxbuffer_memory()
*
*
* Arguments:
*
* info pointer to device instance data
*
* Return Value: None
*/
static void mgsl_free_intermediate_rxbuffer_memory(struct mgsl_struct *info)
{
kfree(info->intermediate_rxbuffer);
info->intermediate_rxbuffer = NULL;
kfree(info->flag_buf);
info->flag_buf = NULL;
} /* end of mgsl_free_intermediate_rxbuffer_memory() */
/*
* mgsl_alloc_intermediate_txbuffer_memory()
*
* Allocate intermdiate transmit buffer(s) large enough to hold max_frame_size.
* This buffer is used to load transmit frames into the adapter's dma transfer
* buffers when there is sufficient space.
*
* Arguments:
*
* info pointer to device instance data
*
* Return Value: 0 if success, otherwise -ENOMEM
*/
static int mgsl_alloc_intermediate_txbuffer_memory(struct mgsl_struct *info)
{
int i;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk("%s %s(%d) allocating %d tx holding buffers\n",
info->device_name, __FILE__,__LINE__,info->num_tx_holding_buffers);
memset(info->tx_holding_buffers,0,sizeof(info->tx_holding_buffers));
for ( i=0; i<info->num_tx_holding_buffers; ++i) {
info->tx_holding_buffers[i].buffer =
kmalloc(info->max_frame_size, GFP_KERNEL);
if (info->tx_holding_buffers[i].buffer == NULL) {
for (--i; i >= 0; i--) {
kfree(info->tx_holding_buffers[i].buffer);
info->tx_holding_buffers[i].buffer = NULL;
}
return -ENOMEM;
}
}
return 0;
} /* end of mgsl_alloc_intermediate_txbuffer_memory() */
/*
* mgsl_free_intermediate_txbuffer_memory()
*
*
* Arguments:
*
* info pointer to device instance data
*
* Return Value: None
*/
static void mgsl_free_intermediate_txbuffer_memory(struct mgsl_struct *info)
{
int i;
for ( i=0; i<info->num_tx_holding_buffers; ++i ) {
kfree(info->tx_holding_buffers[i].buffer);
info->tx_holding_buffers[i].buffer = NULL;
}
info->get_tx_holding_index = 0;
info->put_tx_holding_index = 0;
info->tx_holding_count = 0;
} /* end of mgsl_free_intermediate_txbuffer_memory() */
/*
* load_next_tx_holding_buffer()
*
* attempts to load the next buffered tx request into the
* tx dma buffers
*
* Arguments:
*
* info pointer to device instance data
*
* Return Value: true if next buffered tx request loaded
* into adapter's tx dma buffer,
* false otherwise
*/
static bool load_next_tx_holding_buffer(struct mgsl_struct *info)
{
bool ret = false;
if ( info->tx_holding_count ) {
/* determine if we have enough tx dma buffers
* to accommodate the next tx frame
*/
struct tx_holding_buffer *ptx =
&info->tx_holding_buffers[info->get_tx_holding_index];
int num_free = num_free_tx_dma_buffers(info);
int num_needed = ptx->buffer_size / DMABUFFERSIZE;
if ( ptx->buffer_size % DMABUFFERSIZE )
++num_needed;
if (num_needed <= num_free) {
info->xmit_cnt = ptx->buffer_size;
mgsl_load_tx_dma_buffer(info,ptx->buffer,ptx->buffer_size);
--info->tx_holding_count;
if ( ++info->get_tx_holding_index >= info->num_tx_holding_buffers)
info->get_tx_holding_index=0;
/* restart transmit timer */
mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(5000));
ret = true;
}
}
return ret;
}
/*
* save_tx_buffer_request()
*
* attempt to store transmit frame request for later transmission
*
* Arguments:
*
* info pointer to device instance data
* Buffer pointer to buffer containing frame to load
* BufferSize size in bytes of frame in Buffer
*
* Return Value: 1 if able to store, 0 otherwise
*/
static int save_tx_buffer_request(struct mgsl_struct *info,const char *Buffer, unsigned int BufferSize)
{
struct tx_holding_buffer *ptx;
if ( info->tx_holding_count >= info->num_tx_holding_buffers ) {
return 0; /* all buffers in use */
}
ptx = &info->tx_holding_buffers[info->put_tx_holding_index];
ptx->buffer_size = BufferSize;
memcpy( ptx->buffer, Buffer, BufferSize);
++info->tx_holding_count;
if ( ++info->put_tx_holding_index >= info->num_tx_holding_buffers)
info->put_tx_holding_index=0;
return 1;
}
static int mgsl_claim_resources(struct mgsl_struct *info)
{
if (request_region(info->io_base,info->io_addr_size,"synclink") == NULL) {
printk( "%s(%d):I/O address conflict on device %s Addr=%08X\n",
__FILE__,__LINE__,info->device_name, info->io_base);
return -ENODEV;
}
info->io_addr_requested = true;
if ( request_irq(info->irq_level,mgsl_interrupt,info->irq_flags,
info->device_name, info ) < 0 ) {
printk( "%s(%d):Can't request interrupt on device %s IRQ=%d\n",
__FILE__,__LINE__,info->device_name, info->irq_level );
goto errout;
}
info->irq_requested = true;
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
if (request_mem_region(info->phys_memory_base,0x40000,"synclink") == NULL) {
printk( "%s(%d):mem addr conflict device %s Addr=%08X\n",
__FILE__,__LINE__,info->device_name, info->phys_memory_base);
goto errout;
}
info->shared_mem_requested = true;
if (request_mem_region(info->phys_lcr_base + info->lcr_offset,128,"synclink") == NULL) {
printk( "%s(%d):lcr mem addr conflict device %s Addr=%08X\n",
__FILE__,__LINE__,info->device_name, info->phys_lcr_base + info->lcr_offset);
goto errout;
}
info->lcr_mem_requested = true;
info->memory_base = ioremap_nocache(info->phys_memory_base,
0x40000);
if (!info->memory_base) {
printk( "%s(%d):Can't map shared memory on device %s MemAddr=%08X\n",
__FILE__,__LINE__,info->device_name, info->phys_memory_base );
goto errout;
}
if ( !mgsl_memory_test(info) ) {
printk( "%s(%d):Failed shared memory test %s MemAddr=%08X\n",
__FILE__,__LINE__,info->device_name, info->phys_memory_base );
goto errout;
}
info->lcr_base = ioremap_nocache(info->phys_lcr_base,
PAGE_SIZE);
if (!info->lcr_base) {
printk( "%s(%d):Can't map LCR memory on device %s MemAddr=%08X\n",
__FILE__,__LINE__,info->device_name, info->phys_lcr_base );
goto errout;
}
info->lcr_base += info->lcr_offset;
} else {
/* claim DMA channel */
if (request_dma(info->dma_level,info->device_name) < 0){
printk( "%s(%d):Can't request DMA channel on device %s DMA=%d\n",
__FILE__,__LINE__,info->device_name, info->dma_level );
mgsl_release_resources( info );
return -ENODEV;
}
info->dma_requested = true;
/* ISA adapter uses bus master DMA */
set_dma_mode(info->dma_level,DMA_MODE_CASCADE);
enable_dma(info->dma_level);
}
if ( mgsl_allocate_dma_buffers(info) < 0 ) {
printk( "%s(%d):Can't allocate DMA buffers on device %s DMA=%d\n",
__FILE__,__LINE__,info->device_name, info->dma_level );
goto errout;
}
return 0;
errout:
mgsl_release_resources(info);
return -ENODEV;
} /* end of mgsl_claim_resources() */
static void mgsl_release_resources(struct mgsl_struct *info)
{
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_release_resources(%s) entry\n",
__FILE__,__LINE__,info->device_name );
if ( info->irq_requested ) {
free_irq(info->irq_level, info);
info->irq_requested = false;
}
if ( info->dma_requested ) {
disable_dma(info->dma_level);
free_dma(info->dma_level);
info->dma_requested = false;
}
mgsl_free_dma_buffers(info);
mgsl_free_intermediate_rxbuffer_memory(info);
mgsl_free_intermediate_txbuffer_memory(info);
if ( info->io_addr_requested ) {
release_region(info->io_base,info->io_addr_size);
info->io_addr_requested = false;
}
if ( info->shared_mem_requested ) {
release_mem_region(info->phys_memory_base,0x40000);
info->shared_mem_requested = false;
}
if ( info->lcr_mem_requested ) {
release_mem_region(info->phys_lcr_base + info->lcr_offset,128);
info->lcr_mem_requested = false;
}
if (info->memory_base){
iounmap(info->memory_base);
info->memory_base = NULL;
}
if (info->lcr_base){
iounmap(info->lcr_base - info->lcr_offset);
info->lcr_base = NULL;
}
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_release_resources(%s) exit\n",
__FILE__,__LINE__,info->device_name );
} /* end of mgsl_release_resources() */
/* mgsl_add_device()
*
* Add the specified device instance data structure to the
* global linked list of devices and increment the device count.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_add_device( struct mgsl_struct *info )
{
info->next_device = NULL;
info->line = mgsl_device_count;
sprintf(info->device_name,"ttySL%d",info->line);
if (info->line < MAX_TOTAL_DEVICES) {
if (maxframe[info->line])
info->max_frame_size = maxframe[info->line];
if (txdmabufs[info->line]) {
info->num_tx_dma_buffers = txdmabufs[info->line];
if (info->num_tx_dma_buffers < 1)
info->num_tx_dma_buffers = 1;
}
if (txholdbufs[info->line]) {
info->num_tx_holding_buffers = txholdbufs[info->line];
if (info->num_tx_holding_buffers < 1)
info->num_tx_holding_buffers = 1;
else if (info->num_tx_holding_buffers > MAX_TX_HOLDING_BUFFERS)
info->num_tx_holding_buffers = MAX_TX_HOLDING_BUFFERS;
}
}
mgsl_device_count++;
if ( !mgsl_device_list )
mgsl_device_list = info;
else {
struct mgsl_struct *current_dev = mgsl_device_list;
while( current_dev->next_device )
current_dev = current_dev->next_device;
current_dev->next_device = info;
}
if ( info->max_frame_size < 4096 )
info->max_frame_size = 4096;
else if ( info->max_frame_size > 65535 )
info->max_frame_size = 65535;
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
printk( "SyncLink PCI v%d %s: IO=%04X IRQ=%d Mem=%08X,%08X MaxFrameSize=%u\n",
info->hw_version + 1, info->device_name, info->io_base, info->irq_level,
info->phys_memory_base, info->phys_lcr_base,
info->max_frame_size );
} else {
printk( "SyncLink ISA %s: IO=%04X IRQ=%d DMA=%d MaxFrameSize=%u\n",
info->device_name, info->io_base, info->irq_level, info->dma_level,
info->max_frame_size );
}
#if SYNCLINK_GENERIC_HDLC
hdlcdev_init(info);
#endif
} /* end of mgsl_add_device() */
static const struct tty_port_operations mgsl_port_ops = {
.carrier_raised = carrier_raised,
.dtr_rts = dtr_rts,
};
/* mgsl_allocate_device()
*
* Allocate and initialize a device instance structure
*
* Arguments: none
* Return Value: pointer to mgsl_struct if success, otherwise NULL
*/
static struct mgsl_struct* mgsl_allocate_device(void)
{
struct mgsl_struct *info;
2007-07-19 16:49:03 +08:00
info = kzalloc(sizeof(struct mgsl_struct),
GFP_KERNEL);
if (!info) {
printk("Error can't allocate device instance data\n");
} else {
tty_port_init(&info->port);
info->port.ops = &mgsl_port_ops;
info->magic = MGSL_MAGIC;
INIT_WORK(&info->task, mgsl_bh_handler);
info->max_frame_size = 4096;
info->port.close_delay = 5*HZ/10;
info->port.closing_wait = 30*HZ;
init_waitqueue_head(&info->status_event_wait_q);
init_waitqueue_head(&info->event_wait_q);
spin_lock_init(&info->irq_spinlock);
spin_lock_init(&info->netlock);
memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS));
info->idle_mode = HDLC_TXIDLE_FLAGS;
info->num_tx_dma_buffers = 1;
info->num_tx_holding_buffers = 0;
}
return info;
} /* end of mgsl_allocate_device()*/
static const struct tty_operations mgsl_ops = {
.install = mgsl_install,
.open = mgsl_open,
.close = mgsl_close,
.write = mgsl_write,
.put_char = mgsl_put_char,
.flush_chars = mgsl_flush_chars,
.write_room = mgsl_write_room,
.chars_in_buffer = mgsl_chars_in_buffer,
.flush_buffer = mgsl_flush_buffer,
.ioctl = mgsl_ioctl,
.throttle = mgsl_throttle,
.unthrottle = mgsl_unthrottle,
.send_xchar = mgsl_send_xchar,
.break_ctl = mgsl_break,
.wait_until_sent = mgsl_wait_until_sent,
.set_termios = mgsl_set_termios,
.stop = mgsl_stop,
.start = mgsl_start,
.hangup = mgsl_hangup,
.tiocmget = tiocmget,
.tiocmset = tiocmset,
.get_icount = msgl_get_icount,
.proc_fops = &mgsl_proc_fops,
};
/*
* perform tty device initialization
*/
static int mgsl_init_tty(void)
{
int rc;
serial_driver = alloc_tty_driver(128);
if (!serial_driver)
return -ENOMEM;
serial_driver->driver_name = "synclink";
serial_driver->name = "ttySL";
serial_driver->major = ttymajor;
serial_driver->minor_start = 64;
serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
serial_driver->subtype = SERIAL_TYPE_NORMAL;
serial_driver->init_termios = tty_std_termios;
serial_driver->init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver->init_termios.c_ispeed = 9600;
serial_driver->init_termios.c_ospeed = 9600;
serial_driver->flags = TTY_DRIVER_REAL_RAW;
tty_set_operations(serial_driver, &mgsl_ops);
if ((rc = tty_register_driver(serial_driver)) < 0) {
printk("%s(%d):Couldn't register serial driver\n",
__FILE__,__LINE__);
put_tty_driver(serial_driver);
serial_driver = NULL;
return rc;
}
printk("%s %s, tty major#%d\n",
driver_name, driver_version,
serial_driver->major);
return 0;
}
/* enumerate user specified ISA adapters
*/
static void mgsl_enum_isa_devices(void)
{
struct mgsl_struct *info;
int i;
/* Check for user specified ISA devices */
for (i=0 ;(i < MAX_ISA_DEVICES) && io[i] && irq[i]; i++){
if ( debug_level >= DEBUG_LEVEL_INFO )
printk("ISA device specified io=%04X,irq=%d,dma=%d\n",
io[i], irq[i], dma[i] );
info = mgsl_allocate_device();
if ( !info ) {
/* error allocating device instance data */
if ( debug_level >= DEBUG_LEVEL_ERROR )
printk( "can't allocate device instance data.\n");
continue;
}
/* Copy user configuration info to device instance data */
info->io_base = (unsigned int)io[i];
info->irq_level = (unsigned int)irq[i];
info->irq_level = irq_canonicalize(info->irq_level);
info->dma_level = (unsigned int)dma[i];
info->bus_type = MGSL_BUS_TYPE_ISA;
info->io_addr_size = 16;
info->irq_flags = 0;
mgsl_add_device( info );
}
}
static void synclink_cleanup(void)
{
int rc;
struct mgsl_struct *info;
struct mgsl_struct *tmp;
printk("Unloading %s: %s\n", driver_name, driver_version);
if (serial_driver) {
if ((rc = tty_unregister_driver(serial_driver)))
printk("%s(%d) failed to unregister tty driver err=%d\n",
__FILE__,__LINE__,rc);
put_tty_driver(serial_driver);
}
info = mgsl_device_list;
while(info) {
#if SYNCLINK_GENERIC_HDLC
hdlcdev_exit(info);
#endif
mgsl_release_resources(info);
tmp = info;
info = info->next_device;
tty_port_destroy(&tmp->port);
kfree(tmp);
}
if (pci_registered)
pci_unregister_driver(&synclink_pci_driver);
}
static int __init synclink_init(void)
{
int rc;
if (break_on_load) {
mgsl_get_text_ptr();
BREAKPOINT();
}
printk("%s %s\n", driver_name, driver_version);
mgsl_enum_isa_devices();
if ((rc = pci_register_driver(&synclink_pci_driver)) < 0)
printk("%s:failed to register PCI driver, error=%d\n",__FILE__,rc);
else
pci_registered = true;
if ((rc = mgsl_init_tty()) < 0)
goto error;
return 0;
error:
synclink_cleanup();
return rc;
}
static void __exit synclink_exit(void)
{
synclink_cleanup();
}
module_init(synclink_init);
module_exit(synclink_exit);
/*
* usc_RTCmd()
*
* Issue a USC Receive/Transmit command to the
* Channel Command/Address Register (CCAR).
*
* Notes:
*
* The command is encoded in the most significant 5 bits <15..11>
* of the CCAR value. Bits <10..7> of the CCAR must be preserved
* and Bits <6..0> must be written as zeros.
*
* Arguments:
*
* info pointer to device information structure
* Cmd command mask (use symbolic macros)
*
* Return Value:
*
* None
*/
static void usc_RTCmd( struct mgsl_struct *info, u16 Cmd )
{
/* output command to CCAR in bits <15..11> */
/* preserve bits <10..7>, bits <6..0> must be zero */
outw( Cmd + info->loopback_bits, info->io_base + CCAR );
/* Read to flush write to CCAR */
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
inw( info->io_base + CCAR );
} /* end of usc_RTCmd() */
/*
* usc_DmaCmd()
*
* Issue a DMA command to the DMA Command/Address Register (DCAR).
*
* Arguments:
*
* info pointer to device information structure
* Cmd DMA command mask (usc_DmaCmd_XX Macros)
*
* Return Value:
*
* None
*/
static void usc_DmaCmd( struct mgsl_struct *info, u16 Cmd )
{
/* write command mask to DCAR */
outw( Cmd + info->mbre_bit, info->io_base );
/* Read to flush write to DCAR */
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
inw( info->io_base );
} /* end of usc_DmaCmd() */
/*
* usc_OutDmaReg()
*
* Write a 16-bit value to a USC DMA register
*
* Arguments:
*
* info pointer to device info structure
* RegAddr register address (number) for write
* RegValue 16-bit value to write to register
*
* Return Value:
*
* None
*
*/
static void usc_OutDmaReg( struct mgsl_struct *info, u16 RegAddr, u16 RegValue )
{
/* Note: The DCAR is located at the adapter base address */
/* Note: must preserve state of BIT8 in DCAR */
outw( RegAddr + info->mbre_bit, info->io_base );
outw( RegValue, info->io_base );
/* Read to flush write to DCAR */
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
inw( info->io_base );
} /* end of usc_OutDmaReg() */
/*
* usc_InDmaReg()
*
* Read a 16-bit value from a DMA register
*
* Arguments:
*
* info pointer to device info structure
* RegAddr register address (number) to read from
*
* Return Value:
*
* The 16-bit value read from register
*
*/
static u16 usc_InDmaReg( struct mgsl_struct *info, u16 RegAddr )
{
/* Note: The DCAR is located at the adapter base address */
/* Note: must preserve state of BIT8 in DCAR */
outw( RegAddr + info->mbre_bit, info->io_base );
return inw( info->io_base );
} /* end of usc_InDmaReg() */
/*
*
* usc_OutReg()
*
* Write a 16-bit value to a USC serial channel register
*
* Arguments:
*
* info pointer to device info structure
* RegAddr register address (number) to write to
* RegValue 16-bit value to write to register
*
* Return Value:
*
* None
*
*/
static void usc_OutReg( struct mgsl_struct *info, u16 RegAddr, u16 RegValue )
{
outw( RegAddr + info->loopback_bits, info->io_base + CCAR );
outw( RegValue, info->io_base + CCAR );
/* Read to flush write to CCAR */
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
inw( info->io_base + CCAR );
} /* end of usc_OutReg() */
/*
* usc_InReg()
*
* Reads a 16-bit value from a USC serial channel register
*
* Arguments:
*
* info pointer to device extension
* RegAddr register address (number) to read from
*
* Return Value:
*
* 16-bit value read from register
*/
static u16 usc_InReg( struct mgsl_struct *info, u16 RegAddr )
{
outw( RegAddr + info->loopback_bits, info->io_base + CCAR );
return inw( info->io_base + CCAR );
} /* end of usc_InReg() */
/* usc_set_sdlc_mode()
*
* Set up the adapter for SDLC DMA communications.
*
* Arguments: info pointer to device instance data
* Return Value: NONE
*/
static void usc_set_sdlc_mode( struct mgsl_struct *info )
{
u16 RegValue;
bool PreSL1660;
/*
* determine if the IUSC on the adapter is pre-SL1660. If
* not, take advantage of the UnderWait feature of more
* modern chips. If an underrun occurs and this bit is set,
* the transmitter will idle the programmed idle pattern
* until the driver has time to service the underrun. Otherwise,
* the dma controller may get the cycles previously requested
* and begin transmitting queued tx data.
*/
usc_OutReg(info,TMCR,0x1f);
RegValue=usc_InReg(info,TMDR);
PreSL1660 = (RegValue == IUSC_PRE_SL1660);
if ( info->params.flags & HDLC_FLAG_HDLC_LOOPMODE )
{
/*
** Channel Mode Register (CMR)
**
** <15..14> 10 Tx Sub Modes, Send Flag on Underrun
** <13> 0 0 = Transmit Disabled (initially)
** <12> 0 1 = Consecutive Idles share common 0
** <11..8> 1110 Transmitter Mode = HDLC/SDLC Loop
** <7..4> 0000 Rx Sub Modes, addr/ctrl field handling
** <3..0> 0110 Receiver Mode = HDLC/SDLC
**
** 1000 1110 0000 0110 = 0x8e06
*/
RegValue = 0x8e06;
/*--------------------------------------------------
* ignore user options for UnderRun Actions and
* preambles
*--------------------------------------------------*/
}
else
{
/* Channel mode Register (CMR)
*
* <15..14> 00 Tx Sub modes, Underrun Action
* <13> 0 1 = Send Preamble before opening flag
* <12> 0 1 = Consecutive Idles share common 0
* <11..8> 0110 Transmitter mode = HDLC/SDLC
* <7..4> 0000 Rx Sub modes, addr/ctrl field handling
* <3..0> 0110 Receiver mode = HDLC/SDLC
*
* 0000 0110 0000 0110 = 0x0606
*/
if (info->params.mode == MGSL_MODE_RAW) {
RegValue = 0x0001; /* Set Receive mode = external sync */
usc_OutReg( info, IOCR, /* Set IOCR DCD is RxSync Detect Input */
(unsigned short)((usc_InReg(info, IOCR) & ~(BIT13|BIT12)) | BIT12));
/*
* TxSubMode:
* CMR <15> 0 Don't send CRC on Tx Underrun
* CMR <14> x undefined
* CMR <13> 0 Send preamble before openning sync
* CMR <12> 0 Send 8-bit syncs, 1=send Syncs per TxLength
*
* TxMode:
* CMR <11-8) 0100 MonoSync
*
* 0x00 0100 xxxx xxxx 04xx
*/
RegValue |= 0x0400;
}
else {
RegValue = 0x0606;
if ( info->params.flags & HDLC_FLAG_UNDERRUN_ABORT15 )
RegValue |= BIT14;
else if ( info->params.flags & HDLC_FLAG_UNDERRUN_FLAG )
RegValue |= BIT15;
else if ( info->params.flags & HDLC_FLAG_UNDERRUN_CRC )
RegValue |= BIT15 | BIT14;
}
if ( info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE )
RegValue |= BIT13;
}
if ( info->params.mode == MGSL_MODE_HDLC &&
(info->params.flags & HDLC_FLAG_SHARE_ZERO) )
RegValue |= BIT12;
if ( info->params.addr_filter != 0xff )
{
/* set up receive address filtering */
usc_OutReg( info, RSR, info->params.addr_filter );
RegValue |= BIT4;
}
usc_OutReg( info, CMR, RegValue );
info->cmr_value = RegValue;
/* Receiver mode Register (RMR)
*
* <15..13> 000 encoding
* <12..11> 00 FCS = 16bit CRC CCITT (x15 + x12 + x5 + 1)
* <10> 1 1 = Set CRC to all 1s (use for SDLC/HDLC)
* <9> 0 1 = Include Receive chars in CRC
* <8> 1 1 = Use Abort/PE bit as abort indicator
* <7..6> 00 Even parity
* <5> 0 parity disabled
* <4..2> 000 Receive Char Length = 8 bits
* <1..0> 00 Disable Receiver
*
* 0000 0101 0000 0000 = 0x0500
*/
RegValue = 0x0500;
switch ( info->params.encoding ) {
case HDLC_ENCODING_NRZB: RegValue |= BIT13; break;
case HDLC_ENCODING_NRZI_MARK: RegValue |= BIT14; break;
case HDLC_ENCODING_NRZI_SPACE: RegValue |= BIT14 | BIT13; break;
case HDLC_ENCODING_BIPHASE_MARK: RegValue |= BIT15; break;
case HDLC_ENCODING_BIPHASE_SPACE: RegValue |= BIT15 | BIT13; break;
case HDLC_ENCODING_BIPHASE_LEVEL: RegValue |= BIT15 | BIT14; break;
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: RegValue |= BIT15 | BIT14 | BIT13; break;
}
if ( (info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_16_CCITT )
RegValue |= BIT9;
else if ( (info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_32_CCITT )
RegValue |= ( BIT12 | BIT10 | BIT9 );
usc_OutReg( info, RMR, RegValue );
/* Set the Receive count Limit Register (RCLR) to 0xffff. */
/* When an opening flag of an SDLC frame is recognized the */
/* Receive Character count (RCC) is loaded with the value in */
/* RCLR. The RCC is decremented for each received byte. The */
/* value of RCC is stored after the closing flag of the frame */
/* allowing the frame size to be computed. */
usc_OutReg( info, RCLR, RCLRVALUE );
usc_RCmd( info, RCmd_SelectRicrdma_level );
/* Receive Interrupt Control Register (RICR)
*
* <15..8> ? RxFIFO DMA Request Level
* <7> 0 Exited Hunt IA (Interrupt Arm)
* <6> 0 Idle Received IA
* <5> 0 Break/Abort IA
* <4> 0 Rx Bound IA
* <3> 1 Queued status reflects oldest 2 bytes in FIFO
* <2> 0 Abort/PE IA
* <1> 1 Rx Overrun IA
* <0> 0 Select TC0 value for readback
*
* 0000 0000 0000 1000 = 0x000a
*/
/* Carry over the Exit Hunt and Idle Received bits */
/* in case they have been armed by usc_ArmEvents. */
RegValue = usc_InReg( info, RICR ) & 0xc0;
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
usc_OutReg( info, RICR, (u16)(0x030a | RegValue) );
else
usc_OutReg( info, RICR, (u16)(0x140a | RegValue) );
/* Unlatch all Rx status bits and clear Rx status IRQ Pending */
usc_UnlatchRxstatusBits( info, RXSTATUS_ALL );
usc_ClearIrqPendingBits( info, RECEIVE_STATUS );
/* Transmit mode Register (TMR)
*
* <15..13> 000 encoding
* <12..11> 00 FCS = 16bit CRC CCITT (x15 + x12 + x5 + 1)
* <10> 1 1 = Start CRC as all 1s (use for SDLC/HDLC)
* <9> 0 1 = Tx CRC Enabled
* <8> 0 1 = Append CRC to end of transmit frame
* <7..6> 00 Transmit parity Even
* <5> 0 Transmit parity Disabled
* <4..2> 000 Tx Char Length = 8 bits
* <1..0> 00 Disable Transmitter
*
* 0000 0100 0000 0000 = 0x0400
*/
RegValue = 0x0400;
switch ( info->params.encoding ) {
case HDLC_ENCODING_NRZB: RegValue |= BIT13; break;
case HDLC_ENCODING_NRZI_MARK: RegValue |= BIT14; break;
case HDLC_ENCODING_NRZI_SPACE: RegValue |= BIT14 | BIT13; break;
case HDLC_ENCODING_BIPHASE_MARK: RegValue |= BIT15; break;
case HDLC_ENCODING_BIPHASE_SPACE: RegValue |= BIT15 | BIT13; break;
case HDLC_ENCODING_BIPHASE_LEVEL: RegValue |= BIT15 | BIT14; break;
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: RegValue |= BIT15 | BIT14 | BIT13; break;
}
if ( (info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_16_CCITT )
RegValue |= BIT9 | BIT8;
else if ( (info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_32_CCITT )
RegValue |= ( BIT12 | BIT10 | BIT9 | BIT8);
usc_OutReg( info, TMR, RegValue );
usc_set_txidle( info );
usc_TCmd( info, TCmd_SelectTicrdma_level );
/* Transmit Interrupt Control Register (TICR)
*
* <15..8> ? Transmit FIFO DMA Level
* <7> 0 Present IA (Interrupt Arm)
* <6> 0 Idle Sent IA
* <5> 1 Abort Sent IA
* <4> 1 EOF/EOM Sent IA
* <3> 0 CRC Sent IA
* <2> 1 1 = Wait for SW Trigger to Start Frame
* <1> 1 Tx Underrun IA
* <0> 0 TC0 constant on read back
*
* 0000 0000 0011 0110 = 0x0036
*/
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
usc_OutReg( info, TICR, 0x0736 );
else
usc_OutReg( info, TICR, 0x1436 );
usc_UnlatchTxstatusBits( info, TXSTATUS_ALL );
usc_ClearIrqPendingBits( info, TRANSMIT_STATUS );
/*
** Transmit Command/Status Register (TCSR)
**
** <15..12> 0000 TCmd
** <11> 0/1 UnderWait
** <10..08> 000 TxIdle
** <7> x PreSent
** <6> x IdleSent
** <5> x AbortSent
** <4> x EOF/EOM Sent
** <3> x CRC Sent
** <2> x All Sent
** <1> x TxUnder
** <0> x TxEmpty
**
** 0000 0000 0000 0000 = 0x0000
*/
info->tcsr_value = 0;
if ( !PreSL1660 )
info->tcsr_value |= TCSR_UNDERWAIT;
usc_OutReg( info, TCSR, info->tcsr_value );
/* Clock mode Control Register (CMCR)
*
* <15..14> 00 counter 1 Source = Disabled
* <13..12> 00 counter 0 Source = Disabled
* <11..10> 11 BRG1 Input is TxC Pin
* <9..8> 11 BRG0 Input is TxC Pin
* <7..6> 01 DPLL Input is BRG1 Output
* <5..3> XXX TxCLK comes from Port 0
* <2..0> XXX RxCLK comes from Port 1
*
* 0000 1111 0111 0111 = 0x0f77
*/
RegValue = 0x0f40;
if ( info->params.flags & HDLC_FLAG_RXC_DPLL )
RegValue |= 0x0003; /* RxCLK from DPLL */
else if ( info->params.flags & HDLC_FLAG_RXC_BRG )
RegValue |= 0x0004; /* RxCLK from BRG0 */
else if ( info->params.flags & HDLC_FLAG_RXC_TXCPIN)
RegValue |= 0x0006; /* RxCLK from TXC Input */
else
RegValue |= 0x0007; /* RxCLK from Port1 */
if ( info->params.flags & HDLC_FLAG_TXC_DPLL )
RegValue |= 0x0018; /* TxCLK from DPLL */
else if ( info->params.flags & HDLC_FLAG_TXC_BRG )
RegValue |= 0x0020; /* TxCLK from BRG0 */
else if ( info->params.flags & HDLC_FLAG_TXC_RXCPIN)
RegValue |= 0x0038; /* RxCLK from TXC Input */
else
RegValue |= 0x0030; /* TxCLK from Port0 */
usc_OutReg( info, CMCR, RegValue );
/* Hardware Configuration Register (HCR)
*
* <15..14> 00 CTR0 Divisor:00=32,01=16,10=8,11=4
* <13> 0 CTR1DSel:0=CTR0Div determines CTR0Div
* <12> 0 CVOK:0=report code violation in biphase
* <11..10> 00 DPLL Divisor:00=32,01=16,10=8,11=4
* <9..8> XX DPLL mode:00=disable,01=NRZ,10=Biphase,11=Biphase Level
* <7..6> 00 reserved
* <5> 0 BRG1 mode:0=continuous,1=single cycle
* <4> X BRG1 Enable
* <3..2> 00 reserved
* <1> 0 BRG0 mode:0=continuous,1=single cycle
* <0> 0 BRG0 Enable
*/
RegValue = 0x0000;
if ( info->params.flags & (HDLC_FLAG_RXC_DPLL | HDLC_FLAG_TXC_DPLL) ) {
u32 XtalSpeed;
u32 DpllDivisor;
u16 Tc;
/* DPLL is enabled. Use BRG1 to provide continuous reference clock */
/* for DPLL. DPLL mode in HCR is dependent on the encoding used. */
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
XtalSpeed = 11059200;
else
XtalSpeed = 14745600;
if ( info->params.flags & HDLC_FLAG_DPLL_DIV16 ) {
DpllDivisor = 16;
RegValue |= BIT10;
}
else if ( info->params.flags & HDLC_FLAG_DPLL_DIV8 ) {
DpllDivisor = 8;
RegValue |= BIT11;
}
else
DpllDivisor = 32;
/* Tc = (Xtal/Speed) - 1 */
/* If twice the remainder of (Xtal/Speed) is greater than Speed */
/* then rounding up gives a more precise time constant. Instead */
/* of rounding up and then subtracting 1 we just don't subtract */
/* the one in this case. */
/*--------------------------------------------------
* ejz: for DPLL mode, application should use the
* same clock speed as the partner system, even
* though clocking is derived from the input RxData.
* In case the user uses a 0 for the clock speed,
* default to 0xffffffff and don't try to divide by
* zero
*--------------------------------------------------*/
if ( info->params.clock_speed )
{
Tc = (u16)((XtalSpeed/DpllDivisor)/info->params.clock_speed);
if ( !((((XtalSpeed/DpllDivisor) % info->params.clock_speed) * 2)
/ info->params.clock_speed) )
Tc--;
}
else
Tc = -1;
/* Write 16-bit Time Constant for BRG1 */
usc_OutReg( info, TC1R, Tc );
RegValue |= BIT4; /* enable BRG1 */
switch ( info->params.encoding ) {
case HDLC_ENCODING_NRZ:
case HDLC_ENCODING_NRZB:
case HDLC_ENCODING_NRZI_MARK:
case HDLC_ENCODING_NRZI_SPACE: RegValue |= BIT8; break;
case HDLC_ENCODING_BIPHASE_MARK:
case HDLC_ENCODING_BIPHASE_SPACE: RegValue |= BIT9; break;
case HDLC_ENCODING_BIPHASE_LEVEL:
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: RegValue |= BIT9 | BIT8; break;
}
}
usc_OutReg( info, HCR, RegValue );
/* Channel Control/status Register (CCSR)
*
* <15> X RCC FIFO Overflow status (RO)
* <14> X RCC FIFO Not Empty status (RO)
* <13> 0 1 = Clear RCC FIFO (WO)
* <12> X DPLL Sync (RW)
* <11> X DPLL 2 Missed Clocks status (RO)
* <10> X DPLL 1 Missed Clock status (RO)
* <9..8> 00 DPLL Resync on rising and falling edges (RW)
* <7> X SDLC Loop On status (RO)
* <6> X SDLC Loop Send status (RO)
* <5> 1 Bypass counters for TxClk and RxClk (RW)
* <4..2> 000 Last Char of SDLC frame has 8 bits (RW)
* <1..0> 00 reserved
*
* 0000 0000 0010 0000 = 0x0020
*/
usc_OutReg( info, CCSR, 0x1020 );
if ( info->params.flags & HDLC_FLAG_AUTO_CTS ) {
usc_OutReg( info, SICR,
(u16)(usc_InReg(info,SICR) | SICR_CTS_INACTIVE) );
}
/* enable Master Interrupt Enable bit (MIE) */
usc_EnableMasterIrqBit( info );
usc_ClearIrqPendingBits( info, RECEIVE_STATUS | RECEIVE_DATA |
TRANSMIT_STATUS | TRANSMIT_DATA | MISC);
/* arm RCC underflow interrupt */
usc_OutReg(info, SICR, (u16)(usc_InReg(info,SICR) | BIT3));
usc_EnableInterrupts(info, MISC);
info->mbre_bit = 0;
outw( 0, info->io_base ); /* clear Master Bus Enable (DCAR) */
usc_DmaCmd( info, DmaCmd_ResetAllChannels ); /* disable both DMA channels */
info->mbre_bit = BIT8;
outw( BIT8, info->io_base ); /* set Master Bus Enable (DCAR) */
if (info->bus_type == MGSL_BUS_TYPE_ISA) {
/* Enable DMAEN (Port 7, Bit 14) */
/* This connects the DMA request signal to the ISA bus */
usc_OutReg(info, PCR, (u16)((usc_InReg(info, PCR) | BIT15) & ~BIT14));
}
/* DMA Control Register (DCR)
*
* <15..14> 10 Priority mode = Alternating Tx/Rx
* 01 Rx has priority
* 00 Tx has priority
*
* <13> 1 Enable Priority Preempt per DCR<15..14>
* (WARNING DCR<11..10> must be 00 when this is 1)
* 0 Choose activate channel per DCR<11..10>
*
* <12> 0 Little Endian for Array/List
* <11..10> 00 Both Channels can use each bus grant
* <9..6> 0000 reserved
* <5> 0 7 CLK - Minimum Bus Re-request Interval
* <4> 0 1 = drive D/C and S/D pins
* <3> 1 1 = Add one wait state to all DMA cycles.
* <2> 0 1 = Strobe /UAS on every transfer.
* <1..0> 11 Addr incrementing only affects LS24 bits
*
* 0110 0000 0000 1011 = 0x600b
*/
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
/* PCI adapter does not need DMA wait state */
usc_OutDmaReg( info, DCR, 0xa00b );
}
else
usc_OutDmaReg( info, DCR, 0x800b );
/* Receive DMA mode Register (RDMR)
*
* <15..14> 11 DMA mode = Linked List Buffer mode
* <13> 1 RSBinA/L = store Rx status Block in Arrary/List entry
* <12> 1 Clear count of List Entry after fetching
* <11..10> 00 Address mode = Increment
* <9> 1 Terminate Buffer on RxBound
* <8> 0 Bus Width = 16bits
* <7..0> ? status Bits (write as 0s)
*
* 1111 0010 0000 0000 = 0xf200
*/
usc_OutDmaReg( info, RDMR, 0xf200 );
/* Transmit DMA mode Register (TDMR)
*
* <15..14> 11 DMA mode = Linked List Buffer mode
* <13> 1 TCBinA/L = fetch Tx Control Block from List entry
* <12> 1 Clear count of List Entry after fetching
* <11..10> 00 Address mode = Increment
* <9> 1 Terminate Buffer on end of frame
* <8> 0 Bus Width = 16bits
* <7..0> ? status Bits (Read Only so write as 0)
*
* 1111 0010 0000 0000 = 0xf200
*/
usc_OutDmaReg( info, TDMR, 0xf200 );
/* DMA Interrupt Control Register (DICR)
*
* <15> 1 DMA Interrupt Enable
* <14> 0 1 = Disable IEO from USC
* <13> 0 1 = Don't provide vector during IntAck
* <12> 1 1 = Include status in Vector
* <10..2> 0 reserved, Must be 0s
* <1> 0 1 = Rx DMA Interrupt Enabled
* <0> 0 1 = Tx DMA Interrupt Enabled
*
* 1001 0000 0000 0000 = 0x9000
*/
usc_OutDmaReg( info, DICR, 0x9000 );
usc_InDmaReg( info, RDMR ); /* clear pending receive DMA IRQ bits */
usc_InDmaReg( info, TDMR ); /* clear pending transmit DMA IRQ bits */
usc_OutDmaReg( info, CDIR, 0x0303 ); /* clear IUS and Pending for Tx and Rx */
/* Channel Control Register (CCR)
*
* <15..14> 10 Use 32-bit Tx Control Blocks (TCBs)
* <13> 0 Trigger Tx on SW Command Disabled
* <12> 0 Flag Preamble Disabled
* <11..10> 00 Preamble Length
* <9..8> 00 Preamble Pattern
* <7..6> 10 Use 32-bit Rx status Blocks (RSBs)
* <5> 0 Trigger Rx on SW Command Disabled
* <4..0> 0 reserved
*
* 1000 0000 1000 0000 = 0x8080
*/
RegValue = 0x8080;
switch ( info->params.preamble_length ) {
case HDLC_PREAMBLE_LENGTH_16BITS: RegValue |= BIT10; break;
case HDLC_PREAMBLE_LENGTH_32BITS: RegValue |= BIT11; break;
case HDLC_PREAMBLE_LENGTH_64BITS: RegValue |= BIT11 | BIT10; break;
}
switch ( info->params.preamble ) {
case HDLC_PREAMBLE_PATTERN_FLAGS: RegValue |= BIT8 | BIT12; break;
case HDLC_PREAMBLE_PATTERN_ONES: RegValue |= BIT8; break;
case HDLC_PREAMBLE_PATTERN_10: RegValue |= BIT9; break;
case HDLC_PREAMBLE_PATTERN_01: RegValue |= BIT9 | BIT8; break;
}
usc_OutReg( info, CCR, RegValue );
/*
* Burst/Dwell Control Register
*
* <15..8> 0x20 Maximum number of transfers per bus grant
* <7..0> 0x00 Maximum number of clock cycles per bus grant
*/
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
/* don't limit bus occupancy on PCI adapter */
usc_OutDmaReg( info, BDCR, 0x0000 );
}
else
usc_OutDmaReg( info, BDCR, 0x2000 );
usc_stop_transmitter(info);
usc_stop_receiver(info);
} /* end of usc_set_sdlc_mode() */
/* usc_enable_loopback()
*
* Set the 16C32 for internal loopback mode.
* The TxCLK and RxCLK signals are generated from the BRG0 and
* the TxD is looped back to the RxD internally.
*
* Arguments: info pointer to device instance data
* enable 1 = enable loopback, 0 = disable
* Return Value: None
*/
static void usc_enable_loopback(struct mgsl_struct *info, int enable)
{
if (enable) {
/* blank external TXD output */
usc_OutReg(info,IOCR,usc_InReg(info,IOCR) | (BIT7 | BIT6));
/* Clock mode Control Register (CMCR)
*
* <15..14> 00 counter 1 Disabled
* <13..12> 00 counter 0 Disabled
* <11..10> 11 BRG1 Input is TxC Pin
* <9..8> 11 BRG0 Input is TxC Pin
* <7..6> 01 DPLL Input is BRG1 Output
* <5..3> 100 TxCLK comes from BRG0
* <2..0> 100 RxCLK comes from BRG0
*
* 0000 1111 0110 0100 = 0x0f64
*/
usc_OutReg( info, CMCR, 0x0f64 );
/* Write 16-bit Time Constant for BRG0 */
/* use clock speed if available, otherwise use 8 for diagnostics */
if (info->params.clock_speed) {
if (info->bus_type == MGSL_BUS_TYPE_PCI)
usc_OutReg(info, TC0R, (u16)((11059200/info->params.clock_speed)-1));
else
usc_OutReg(info, TC0R, (u16)((14745600/info->params.clock_speed)-1));
} else
usc_OutReg(info, TC0R, (u16)8);
/* Hardware Configuration Register (HCR) Clear Bit 1, BRG0
mode = Continuous Set Bit 0 to enable BRG0. */
usc_OutReg( info, HCR, (u16)((usc_InReg( info, HCR ) & ~BIT1) | BIT0) );
/* Input/Output Control Reg, <2..0> = 100, Drive RxC pin with BRG0 */
usc_OutReg(info, IOCR, (u16)((usc_InReg(info, IOCR) & 0xfff8) | 0x0004));
/* set Internal Data loopback mode */
info->loopback_bits = 0x300;
outw( 0x0300, info->io_base + CCAR );
} else {
/* enable external TXD output */
usc_OutReg(info,IOCR,usc_InReg(info,IOCR) & ~(BIT7 | BIT6));
/* clear Internal Data loopback mode */
info->loopback_bits = 0;
outw( 0,info->io_base + CCAR );
}
} /* end of usc_enable_loopback() */
/* usc_enable_aux_clock()
*
* Enabled the AUX clock output at the specified frequency.
*
* Arguments:
*
* info pointer to device extension
* data_rate data rate of clock in bits per second
* A data rate of 0 disables the AUX clock.
*
* Return Value: None
*/
static void usc_enable_aux_clock( struct mgsl_struct *info, u32 data_rate )
{
u32 XtalSpeed;
u16 Tc;
if ( data_rate ) {
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
XtalSpeed = 11059200;
else
XtalSpeed = 14745600;
/* Tc = (Xtal/Speed) - 1 */
/* If twice the remainder of (Xtal/Speed) is greater than Speed */
/* then rounding up gives a more precise time constant. Instead */
/* of rounding up and then subtracting 1 we just don't subtract */
/* the one in this case. */
Tc = (u16)(XtalSpeed/data_rate);
if ( !(((XtalSpeed % data_rate) * 2) / data_rate) )
Tc--;
/* Write 16-bit Time Constant for BRG0 */
usc_OutReg( info, TC0R, Tc );
/*
* Hardware Configuration Register (HCR)
* Clear Bit 1, BRG0 mode = Continuous
* Set Bit 0 to enable BRG0.
*/
usc_OutReg( info, HCR, (u16)((usc_InReg( info, HCR ) & ~BIT1) | BIT0) );
/* Input/Output Control Reg, <2..0> = 100, Drive RxC pin with BRG0 */
usc_OutReg( info, IOCR, (u16)((usc_InReg(info, IOCR) & 0xfff8) | 0x0004) );
} else {
/* data rate == 0 so turn off BRG0 */
usc_OutReg( info, HCR, (u16)(usc_InReg( info, HCR ) & ~BIT0) );
}
} /* end of usc_enable_aux_clock() */
/*
*
* usc_process_rxoverrun_sync()
*
* This function processes a receive overrun by resetting the
* receive DMA buffers and issuing a Purge Rx FIFO command
* to allow the receiver to continue receiving.
*
* Arguments:
*
* info pointer to device extension
*
* Return Value: None
*/
static void usc_process_rxoverrun_sync( struct mgsl_struct *info )
{
int start_index;
int end_index;
int frame_start_index;
bool start_of_frame_found = false;
bool end_of_frame_found = false;
bool reprogram_dma = false;
DMABUFFERENTRY *buffer_list = info->rx_buffer_list;
u32 phys_addr;
usc_DmaCmd( info, DmaCmd_PauseRxChannel );
usc_RCmd( info, RCmd_EnterHuntmode );
usc_RTCmd( info, RTCmd_PurgeRxFifo );
/* CurrentRxBuffer points to the 1st buffer of the next */
/* possibly available receive frame. */
frame_start_index = start_index = end_index = info->current_rx_buffer;
/* Search for an unfinished string of buffers. This means */
/* that a receive frame started (at least one buffer with */
/* count set to zero) but there is no terminiting buffer */
/* (status set to non-zero). */
while( !buffer_list[end_index].count )
{
/* Count field has been reset to zero by 16C32. */
/* This buffer is currently in use. */
if ( !start_of_frame_found )
{
start_of_frame_found = true;
frame_start_index = end_index;
end_of_frame_found = false;
}
if ( buffer_list[end_index].status )
{
/* Status field has been set by 16C32. */
/* This is the last buffer of a received frame. */
/* We want to leave the buffers for this frame intact. */
/* Move on to next possible frame. */
start_of_frame_found = false;
end_of_frame_found = true;
}
/* advance to next buffer entry in linked list */
end_index++;
if ( end_index == info->rx_buffer_count )
end_index = 0;
if ( start_index == end_index )
{
/* The entire list has been searched with all Counts == 0 and */
/* all Status == 0. The receive buffers are */
/* completely screwed, reset all receive buffers! */
mgsl_reset_rx_dma_buffers( info );
frame_start_index = 0;
start_of_frame_found = false;
reprogram_dma = true;
break;
}
}
if ( start_of_frame_found && !end_of_frame_found )
{
/* There is an unfinished string of receive DMA buffers */
/* as a result of the receiver overrun. */
/* Reset the buffers for the unfinished frame */
/* and reprogram the receive DMA controller to start */
/* at the 1st buffer of unfinished frame. */
start_index = frame_start_index;
do
{
*((unsigned long *)&(info->rx_buffer_list[start_index++].count)) = DMABUFFERSIZE;
/* Adjust index for wrap around. */
if ( start_index == info->rx_buffer_count )
start_index = 0;
} while( start_index != end_index );
reprogram_dma = true;
}
if ( reprogram_dma )
{
usc_UnlatchRxstatusBits(info,RXSTATUS_ALL);
usc_ClearIrqPendingBits(info, RECEIVE_DATA|RECEIVE_STATUS);
usc_UnlatchRxstatusBits(info, RECEIVE_DATA|RECEIVE_STATUS);
usc_EnableReceiver(info,DISABLE_UNCONDITIONAL);
/* This empties the receive FIFO and loads the RCC with RCLR */
usc_OutReg( info, CCSR, (u16)(usc_InReg(info,CCSR) | BIT13) );
/* program 16C32 with physical address of 1st DMA buffer entry */
phys_addr = info->rx_buffer_list[frame_start_index].phys_entry;
usc_OutDmaReg( info, NRARL, (u16)phys_addr );
usc_OutDmaReg( info, NRARU, (u16)(phys_addr >> 16) );
usc_UnlatchRxstatusBits( info, RXSTATUS_ALL );
usc_ClearIrqPendingBits( info, RECEIVE_DATA | RECEIVE_STATUS );
usc_EnableInterrupts( info, RECEIVE_STATUS );
/* 1. Arm End of Buffer (EOB) Receive DMA Interrupt (BIT2 of RDIAR) */
/* 2. Enable Receive DMA Interrupts (BIT1 of DICR) */
usc_OutDmaReg( info, RDIAR, BIT3 | BIT2 );
usc_OutDmaReg( info, DICR, (u16)(usc_InDmaReg(info,DICR) | BIT1) );
usc_DmaCmd( info, DmaCmd_InitRxChannel );
if ( info->params.flags & HDLC_FLAG_AUTO_DCD )
usc_EnableReceiver(info,ENABLE_AUTO_DCD);
else
usc_EnableReceiver(info,ENABLE_UNCONDITIONAL);
}
else
{
/* This empties the receive FIFO and loads the RCC with RCLR */
usc_OutReg( info, CCSR, (u16)(usc_InReg(info,CCSR) | BIT13) );
usc_RTCmd( info, RTCmd_PurgeRxFifo );
}
} /* end of usc_process_rxoverrun_sync() */
/* usc_stop_receiver()
*
* Disable USC receiver
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_stop_receiver( struct mgsl_struct *info )
{
if (debug_level >= DEBUG_LEVEL_ISR)
printk("%s(%d):usc_stop_receiver(%s)\n",
__FILE__,__LINE__, info->device_name );
/* Disable receive DMA channel. */
/* This also disables receive DMA channel interrupts */
usc_DmaCmd( info, DmaCmd_ResetRxChannel );
usc_UnlatchRxstatusBits( info, RXSTATUS_ALL );
usc_ClearIrqPendingBits( info, RECEIVE_DATA | RECEIVE_STATUS );
usc_DisableInterrupts( info, RECEIVE_DATA | RECEIVE_STATUS );
usc_EnableReceiver(info,DISABLE_UNCONDITIONAL);
/* This empties the receive FIFO and loads the RCC with RCLR */
usc_OutReg( info, CCSR, (u16)(usc_InReg(info,CCSR) | BIT13) );
usc_RTCmd( info, RTCmd_PurgeRxFifo );
info->rx_enabled = false;
info->rx_overflow = false;
info->rx_rcc_underrun = false;
} /* end of stop_receiver() */
/* usc_start_receiver()
*
* Enable the USC receiver
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_start_receiver( struct mgsl_struct *info )
{
u32 phys_addr;
if (debug_level >= DEBUG_LEVEL_ISR)
printk("%s(%d):usc_start_receiver(%s)\n",
__FILE__,__LINE__, info->device_name );
mgsl_reset_rx_dma_buffers( info );
usc_stop_receiver( info );
usc_OutReg( info, CCSR, (u16)(usc_InReg(info,CCSR) | BIT13) );
usc_RTCmd( info, RTCmd_PurgeRxFifo );
if ( info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW ) {
/* DMA mode Transfers */
/* Program the DMA controller. */
/* Enable the DMA controller end of buffer interrupt. */
/* program 16C32 with physical address of 1st DMA buffer entry */
phys_addr = info->rx_buffer_list[0].phys_entry;
usc_OutDmaReg( info, NRARL, (u16)phys_addr );
usc_OutDmaReg( info, NRARU, (u16)(phys_addr >> 16) );
usc_UnlatchRxstatusBits( info, RXSTATUS_ALL );
usc_ClearIrqPendingBits( info, RECEIVE_DATA | RECEIVE_STATUS );
usc_EnableInterrupts( info, RECEIVE_STATUS );
/* 1. Arm End of Buffer (EOB) Receive DMA Interrupt (BIT2 of RDIAR) */
/* 2. Enable Receive DMA Interrupts (BIT1 of DICR) */
usc_OutDmaReg( info, RDIAR, BIT3 | BIT2 );
usc_OutDmaReg( info, DICR, (u16)(usc_InDmaReg(info,DICR) | BIT1) );
usc_DmaCmd( info, DmaCmd_InitRxChannel );
if ( info->params.flags & HDLC_FLAG_AUTO_DCD )
usc_EnableReceiver(info,ENABLE_AUTO_DCD);
else
usc_EnableReceiver(info,ENABLE_UNCONDITIONAL);
} else {
usc_UnlatchRxstatusBits(info, RXSTATUS_ALL);
usc_ClearIrqPendingBits(info, RECEIVE_DATA | RECEIVE_STATUS);
usc_EnableInterrupts(info, RECEIVE_DATA);
usc_RTCmd( info, RTCmd_PurgeRxFifo );
usc_RCmd( info, RCmd_EnterHuntmode );
usc_EnableReceiver(info,ENABLE_UNCONDITIONAL);
}
usc_OutReg( info, CCSR, 0x1020 );
info->rx_enabled = true;
} /* end of usc_start_receiver() */
/* usc_start_transmitter()
*
* Enable the USC transmitter and send a transmit frame if
* one is loaded in the DMA buffers.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_start_transmitter( struct mgsl_struct *info )
{
u32 phys_addr;
unsigned int FrameSize;
if (debug_level >= DEBUG_LEVEL_ISR)
printk("%s(%d):usc_start_transmitter(%s)\n",
__FILE__,__LINE__, info->device_name );
if ( info->xmit_cnt ) {
/* If auto RTS enabled and RTS is inactive, then assert */
/* RTS and set a flag indicating that the driver should */
/* negate RTS when the transmission completes. */
info->drop_rts_on_tx_done = false;
if ( info->params.flags & HDLC_FLAG_AUTO_RTS ) {
usc_get_serial_signals( info );
if ( !(info->serial_signals & SerialSignal_RTS) ) {
info->serial_signals |= SerialSignal_RTS;
usc_set_serial_signals( info );
info->drop_rts_on_tx_done = true;
}
}
if ( info->params.mode == MGSL_MODE_ASYNC ) {
if ( !info->tx_active ) {
usc_UnlatchTxstatusBits(info, TXSTATUS_ALL);
usc_ClearIrqPendingBits(info, TRANSMIT_STATUS + TRANSMIT_DATA);
usc_EnableInterrupts(info, TRANSMIT_DATA);
usc_load_txfifo(info);
}
} else {
/* Disable transmit DMA controller while programming. */
usc_DmaCmd( info, DmaCmd_ResetTxChannel );
/* Transmit DMA buffer is loaded, so program USC */
/* to send the frame contained in the buffers. */
FrameSize = info->tx_buffer_list[info->start_tx_dma_buffer].rcc;
/* if operating in Raw sync mode, reset the rcc component
* of the tx dma buffer entry, otherwise, the serial controller
* will send a closing sync char after this count.
*/
if ( info->params.mode == MGSL_MODE_RAW )
info->tx_buffer_list[info->start_tx_dma_buffer].rcc = 0;
/* Program the Transmit Character Length Register (TCLR) */
/* and clear FIFO (TCC is loaded with TCLR on FIFO clear) */
usc_OutReg( info, TCLR, (u16)FrameSize );
usc_RTCmd( info, RTCmd_PurgeTxFifo );
/* Program the address of the 1st DMA Buffer Entry in linked list */
phys_addr = info->tx_buffer_list[info->start_tx_dma_buffer].phys_entry;
usc_OutDmaReg( info, NTARL, (u16)phys_addr );
usc_OutDmaReg( info, NTARU, (u16)(phys_addr >> 16) );
usc_UnlatchTxstatusBits( info, TXSTATUS_ALL );
usc_ClearIrqPendingBits( info, TRANSMIT_STATUS );
usc_EnableInterrupts( info, TRANSMIT_STATUS );
if ( info->params.mode == MGSL_MODE_RAW &&
info->num_tx_dma_buffers > 1 ) {
/* When running external sync mode, attempt to 'stream' transmit */
/* by filling tx dma buffers as they become available. To do this */
/* we need to enable Tx DMA EOB Status interrupts : */
/* */
/* 1. Arm End of Buffer (EOB) Transmit DMA Interrupt (BIT2 of TDIAR) */
/* 2. Enable Transmit DMA Interrupts (BIT0 of DICR) */
usc_OutDmaReg( info, TDIAR, BIT2|BIT3 );
usc_OutDmaReg( info, DICR, (u16)(usc_InDmaReg(info,DICR) | BIT0) );
}
/* Initialize Transmit DMA Channel */
usc_DmaCmd( info, DmaCmd_InitTxChannel );
usc_TCmd( info, TCmd_SendFrame );
mod_timer(&info->tx_timer, jiffies +
msecs_to_jiffies(5000));
}
info->tx_active = true;
}
if ( !info->tx_enabled ) {
info->tx_enabled = true;
if ( info->params.flags & HDLC_FLAG_AUTO_CTS )
usc_EnableTransmitter(info,ENABLE_AUTO_CTS);
else
usc_EnableTransmitter(info,ENABLE_UNCONDITIONAL);
}
} /* end of usc_start_transmitter() */
/* usc_stop_transmitter()
*
* Stops the transmitter and DMA
*
* Arguments: info pointer to device isntance data
* Return Value: None
*/
static void usc_stop_transmitter( struct mgsl_struct *info )
{
if (debug_level >= DEBUG_LEVEL_ISR)
printk("%s(%d):usc_stop_transmitter(%s)\n",
__FILE__,__LINE__, info->device_name );
del_timer(&info->tx_timer);
usc_UnlatchTxstatusBits( info, TXSTATUS_ALL );
usc_ClearIrqPendingBits( info, TRANSMIT_STATUS + TRANSMIT_DATA );
usc_DisableInterrupts( info, TRANSMIT_STATUS + TRANSMIT_DATA );
usc_EnableTransmitter(info,DISABLE_UNCONDITIONAL);
usc_DmaCmd( info, DmaCmd_ResetTxChannel );
usc_RTCmd( info, RTCmd_PurgeTxFifo );
info->tx_enabled = false;
info->tx_active = false;
} /* end of usc_stop_transmitter() */
/* usc_load_txfifo()
*
* Fill the transmit FIFO until the FIFO is full or
* there is no more data to load.
*
* Arguments: info pointer to device extension (instance data)
* Return Value: None
*/
static void usc_load_txfifo( struct mgsl_struct *info )
{
int Fifocount;
u8 TwoBytes[2];
if ( !info->xmit_cnt && !info->x_char )
return;
/* Select transmit FIFO status readback in TICR */
usc_TCmd( info, TCmd_SelectTicrTxFifostatus );
/* load the Transmit FIFO until FIFOs full or all data sent */
while( (Fifocount = usc_InReg(info, TICR) >> 8) && info->xmit_cnt ) {
/* there is more space in the transmit FIFO and */
/* there is more data in transmit buffer */
if ( (info->xmit_cnt > 1) && (Fifocount > 1) && !info->x_char ) {
/* write a 16-bit word from transmit buffer to 16C32 */
TwoBytes[0] = info->xmit_buf[info->xmit_tail++];
info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
TwoBytes[1] = info->xmit_buf[info->xmit_tail++];
info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
outw( *((u16 *)TwoBytes), info->io_base + DATAREG);
info->xmit_cnt -= 2;
info->icount.tx += 2;
} else {
/* only 1 byte left to transmit or 1 FIFO slot left */
outw( (inw( info->io_base + CCAR) & 0x0780) | (TDR+LSBONLY),
info->io_base + CCAR );
if (info->x_char) {
/* transmit pending high priority char */
outw( info->x_char,info->io_base + CCAR );
info->x_char = 0;
} else {
outw( info->xmit_buf[info->xmit_tail++],info->io_base + CCAR );
info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1);
info->xmit_cnt--;
}
info->icount.tx++;
}
}
} /* end of usc_load_txfifo() */
/* usc_reset()
*
* Reset the adapter to a known state and prepare it for further use.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_reset( struct mgsl_struct *info )
{
if ( info->bus_type == MGSL_BUS_TYPE_PCI ) {
int i;
u32 readval;
/* Set BIT30 of Misc Control Register */
/* (Local Control Register 0x50) to force reset of USC. */
volatile u32 *MiscCtrl = (u32 *)(info->lcr_base + 0x50);
u32 *LCR0BRDR = (u32 *)(info->lcr_base + 0x28);
info->misc_ctrl_value |= BIT30;
*MiscCtrl = info->misc_ctrl_value;
/*
* Force at least 170ns delay before clearing
* reset bit. Each read from LCR takes at least
* 30ns so 10 times for 300ns to be safe.
*/
for(i=0;i<10;i++)
readval = *MiscCtrl;
info->misc_ctrl_value &= ~BIT30;
*MiscCtrl = info->misc_ctrl_value;
*LCR0BRDR = BUS_DESCRIPTOR(
1, // Write Strobe Hold (0-3)
2, // Write Strobe Delay (0-3)
2, // Read Strobe Delay (0-3)
0, // NWDD (Write data-data) (0-3)
4, // NWAD (Write Addr-data) (0-31)
0, // NXDA (Read/Write Data-Addr) (0-3)
0, // NRDD (Read Data-Data) (0-3)
5 // NRAD (Read Addr-Data) (0-31)
);
} else {
/* do HW reset */
outb( 0,info->io_base + 8 );
}
info->mbre_bit = 0;
info->loopback_bits = 0;
info->usc_idle_mode = 0;
/*
* Program the Bus Configuration Register (BCR)
*
* <15> 0 Don't use separate address
* <14..6> 0 reserved
* <5..4> 00 IAckmode = Default, don't care
* <3> 1 Bus Request Totem Pole output
* <2> 1 Use 16 Bit data bus
* <1> 0 IRQ Totem Pole output
* <0> 0 Don't Shift Right Addr
*
* 0000 0000 0000 1100 = 0x000c
*
* By writing to io_base + SDPIN the Wait/Ack pin is
* programmed to work as a Wait pin.
*/
outw( 0x000c,info->io_base + SDPIN );
outw( 0,info->io_base );
outw( 0,info->io_base + CCAR );
/* select little endian byte ordering */
usc_RTCmd( info, RTCmd_SelectLittleEndian );
/* Port Control Register (PCR)
*
* <15..14> 11 Port 7 is Output (~DMAEN, Bit 14 : 0 = Enabled)
* <13..12> 11 Port 6 is Output (~INTEN, Bit 12 : 0 = Enabled)
* <11..10> 00 Port 5 is Input (No Connect, Don't Care)
* <9..8> 00 Port 4 is Input (No Connect, Don't Care)
* <7..6> 11 Port 3 is Output (~RTS, Bit 6 : 0 = Enabled )
* <5..4> 11 Port 2 is Output (~DTR, Bit 4 : 0 = Enabled )
* <3..2> 01 Port 1 is Input (Dedicated RxC)
* <1..0> 01 Port 0 is Input (Dedicated TxC)
*
* 1111 0000 1111 0101 = 0xf0f5
*/
usc_OutReg( info, PCR, 0xf0f5 );
/*
* Input/Output Control Register
*
* <15..14> 00 CTS is active low input
* <13..12> 00 DCD is active low input
* <11..10> 00 TxREQ pin is input (DSR)
* <9..8> 00 RxREQ pin is input (RI)
* <7..6> 00 TxD is output (Transmit Data)
* <5..3> 000 TxC Pin in Input (14.7456MHz Clock)
* <2..0> 100 RxC is Output (drive with BRG0)
*
* 0000 0000 0000 0100 = 0x0004
*/
usc_OutReg( info, IOCR, 0x0004 );
} /* end of usc_reset() */
/* usc_set_async_mode()
*
* Program adapter for asynchronous communications.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_set_async_mode( struct mgsl_struct *info )
{
u16 RegValue;
/* disable interrupts while programming USC */
usc_DisableMasterIrqBit( info );
outw( 0, info->io_base ); /* clear Master Bus Enable (DCAR) */
usc_DmaCmd( info, DmaCmd_ResetAllChannels ); /* disable both DMA channels */
usc_loopback_frame( info );
/* Channel mode Register (CMR)
*
* <15..14> 00 Tx Sub modes, 00 = 1 Stop Bit
* <13..12> 00 00 = 16X Clock
* <11..8> 0000 Transmitter mode = Asynchronous
* <7..6> 00 reserved?
* <5..4> 00 Rx Sub modes, 00 = 16X Clock
* <3..0> 0000 Receiver mode = Asynchronous
*
* 0000 0000 0000 0000 = 0x0
*/
RegValue = 0;
if ( info->params.stop_bits != 1 )
RegValue |= BIT14;
usc_OutReg( info, CMR, RegValue );
/* Receiver mode Register (RMR)
*
* <15..13> 000 encoding = None
* <12..08> 00000 reserved (Sync Only)
* <7..6> 00 Even parity
* <5> 0 parity disabled
* <4..2> 000 Receive Char Length = 8 bits
* <1..0> 00 Disable Receiver
*
* 0000 0000 0000 0000 = 0x0
*/
RegValue = 0;
if ( info->params.data_bits != 8 )
RegValue |= BIT4 | BIT3 | BIT2;
if ( info->params.parity != ASYNC_PARITY_NONE ) {
RegValue |= BIT5;
if ( info->params.parity != ASYNC_PARITY_ODD )
RegValue |= BIT6;
}
usc_OutReg( info, RMR, RegValue );
/* Set IRQ trigger level */
usc_RCmd( info, RCmd_SelectRicrIntLevel );
/* Receive Interrupt Control Register (RICR)
*
* <15..8> ? RxFIFO IRQ Request Level
*
* Note: For async mode the receive FIFO level must be set
* to 0 to avoid the situation where the FIFO contains fewer bytes
* than the trigger level and no more data is expected.
*
* <7> 0 Exited Hunt IA (Interrupt Arm)
* <6> 0 Idle Received IA
* <5> 0 Break/Abort IA
* <4> 0 Rx Bound IA
* <3> 0 Queued status reflects oldest byte in FIFO
* <2> 0 Abort/PE IA
* <1> 0 Rx Overrun IA
* <0> 0 Select TC0 value for readback
*
* 0000 0000 0100 0000 = 0x0000 + (FIFOLEVEL in MSB)
*/
usc_OutReg( info, RICR, 0x0000 );
usc_UnlatchRxstatusBits( info, RXSTATUS_ALL );
usc_ClearIrqPendingBits( info, RECEIVE_STATUS );
/* Transmit mode Register (TMR)
*
* <15..13> 000 encoding = None
* <12..08> 00000 reserved (Sync Only)
* <7..6> 00 Transmit parity Even
* <5> 0 Transmit parity Disabled
* <4..2> 000 Tx Char Length = 8 bits
* <1..0> 00 Disable Transmitter
*
* 0000 0000 0000 0000 = 0x0
*/
RegValue = 0;
if ( info->params.data_bits != 8 )
RegValue |= BIT4 | BIT3 | BIT2;
if ( info->params.parity != ASYNC_PARITY_NONE ) {
RegValue |= BIT5;
if ( info->params.parity != ASYNC_PARITY_ODD )
RegValue |= BIT6;
}
usc_OutReg( info, TMR, RegValue );
usc_set_txidle( info );
/* Set IRQ trigger level */
usc_TCmd( info, TCmd_SelectTicrIntLevel );
/* Transmit Interrupt Control Register (TICR)
*
* <15..8> ? Transmit FIFO IRQ Level
* <7> 0 Present IA (Interrupt Arm)
* <6> 1 Idle Sent IA
* <5> 0 Abort Sent IA
* <4> 0 EOF/EOM Sent IA
* <3> 0 CRC Sent IA
* <2> 0 1 = Wait for SW Trigger to Start Frame
* <1> 0 Tx Underrun IA
* <0> 0 TC0 constant on read back
*
* 0000 0000 0100 0000 = 0x0040
*/
usc_OutReg( info, TICR, 0x1f40 );
usc_UnlatchTxstatusBits( info, TXSTATUS_ALL );
usc_ClearIrqPendingBits( info, TRANSMIT_STATUS );
usc_enable_async_clock( info, info->params.data_rate );
/* Channel Control/status Register (CCSR)
*
* <15> X RCC FIFO Overflow status (RO)
* <14> X RCC FIFO Not Empty status (RO)
* <13> 0 1 = Clear RCC FIFO (WO)
* <12> X DPLL in Sync status (RO)
* <11> X DPLL 2 Missed Clocks status (RO)
* <10> X DPLL 1 Missed Clock status (RO)
* <9..8> 00 DPLL Resync on rising and falling edges (RW)
* <7> X SDLC Loop On status (RO)
* <6> X SDLC Loop Send status (RO)
* <5> 1 Bypass counters for TxClk and RxClk (RW)
* <4..2> 000 Last Char of SDLC frame has 8 bits (RW)
* <1..0> 00 reserved
*
* 0000 0000 0010 0000 = 0x0020
*/
usc_OutReg( info, CCSR, 0x0020 );
usc_DisableInterrupts( info, TRANSMIT_STATUS + TRANSMIT_DATA +
RECEIVE_DATA + RECEIVE_STATUS );
usc_ClearIrqPendingBits( info, TRANSMIT_STATUS + TRANSMIT_DATA +
RECEIVE_DATA + RECEIVE_STATUS );
usc_EnableMasterIrqBit( info );
if (info->bus_type == MGSL_BUS_TYPE_ISA) {
/* Enable INTEN (Port 6, Bit12) */
/* This connects the IRQ request signal to the ISA bus */
usc_OutReg(info, PCR, (u16)((usc_InReg(info, PCR) | BIT13) & ~BIT12));
}
if (info->params.loopback) {
info->loopback_bits = 0x300;
outw(0x0300, info->io_base + CCAR);
}
} /* end of usc_set_async_mode() */
/* usc_loopback_frame()
*
* Loop back a small (2 byte) dummy SDLC frame.
* Interrupts and DMA are NOT used. The purpose of this is to
* clear any 'stale' status info left over from running in async mode.
*
* The 16C32 shows the strange behaviour of marking the 1st
* received SDLC frame with a CRC error even when there is no
* CRC error. To get around this a small dummy from of 2 bytes
* is looped back when switching from async to sync mode.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_loopback_frame( struct mgsl_struct *info )
{
int i;
unsigned long oldmode = info->params.mode;
info->params.mode = MGSL_MODE_HDLC;
usc_DisableMasterIrqBit( info );
usc_set_sdlc_mode( info );
usc_enable_loopback( info, 1 );
/* Write 16-bit Time Constant for BRG0 */
usc_OutReg( info, TC0R, 0 );
/* Channel Control Register (CCR)
*
* <15..14> 00 Don't use 32-bit Tx Control Blocks (TCBs)
* <13> 0 Trigger Tx on SW Command Disabled
* <12> 0 Flag Preamble Disabled
* <11..10> 00 Preamble Length = 8-Bits
* <9..8> 01 Preamble Pattern = flags
* <7..6> 10 Don't use 32-bit Rx status Blocks (RSBs)
* <5> 0 Trigger Rx on SW Command Disabled
* <4..0> 0 reserved
*
* 0000 0001 0000 0000 = 0x0100
*/
usc_OutReg( info, CCR, 0x0100 );
/* SETUP RECEIVER */
usc_RTCmd( info, RTCmd_PurgeRxFifo );
usc_EnableReceiver(info,ENABLE_UNCONDITIONAL);
/* SETUP TRANSMITTER */
/* Program the Transmit Character Length Register (TCLR) */
/* and clear FIFO (TCC is loaded with TCLR on FIFO clear) */
usc_OutReg( info, TCLR, 2 );
usc_RTCmd( info, RTCmd_PurgeTxFifo );
/* unlatch Tx status bits, and start transmit channel. */
usc_UnlatchTxstatusBits(info,TXSTATUS_ALL);
outw(0,info->io_base + DATAREG);
/* ENABLE TRANSMITTER */
usc_TCmd( info, TCmd_SendFrame );
usc_EnableTransmitter(info,ENABLE_UNCONDITIONAL);
/* WAIT FOR RECEIVE COMPLETE */
for (i=0 ; i<1000 ; i++)
if (usc_InReg( info, RCSR ) & (BIT8 | BIT4 | BIT3 | BIT1))
break;
/* clear Internal Data loopback mode */
usc_enable_loopback(info, 0);
usc_EnableMasterIrqBit(info);
info->params.mode = oldmode;
} /* end of usc_loopback_frame() */
/* usc_set_sync_mode() Programs the USC for SDLC communications.
*
* Arguments: info pointer to adapter info structure
* Return Value: None
*/
static void usc_set_sync_mode( struct mgsl_struct *info )
{
usc_loopback_frame( info );
usc_set_sdlc_mode( info );
if (info->bus_type == MGSL_BUS_TYPE_ISA) {
/* Enable INTEN (Port 6, Bit12) */
/* This connects the IRQ request signal to the ISA bus */
usc_OutReg(info, PCR, (u16)((usc_InReg(info, PCR) | BIT13) & ~BIT12));
}
usc_enable_aux_clock(info, info->params.clock_speed);
if (info->params.loopback)
usc_enable_loopback(info,1);
} /* end of mgsl_set_sync_mode() */
/* usc_set_txidle() Set the HDLC idle mode for the transmitter.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_set_txidle( struct mgsl_struct *info )
{
u16 usc_idle_mode = IDLEMODE_FLAGS;
/* Map API idle mode to USC register bits */
switch( info->idle_mode ){
case HDLC_TXIDLE_FLAGS: usc_idle_mode = IDLEMODE_FLAGS; break;
case HDLC_TXIDLE_ALT_ZEROS_ONES: usc_idle_mode = IDLEMODE_ALT_ONE_ZERO; break;
case HDLC_TXIDLE_ZEROS: usc_idle_mode = IDLEMODE_ZERO; break;
case HDLC_TXIDLE_ONES: usc_idle_mode = IDLEMODE_ONE; break;
case HDLC_TXIDLE_ALT_MARK_SPACE: usc_idle_mode = IDLEMODE_ALT_MARK_SPACE; break;
case HDLC_TXIDLE_SPACE: usc_idle_mode = IDLEMODE_SPACE; break;
case HDLC_TXIDLE_MARK: usc_idle_mode = IDLEMODE_MARK; break;
}
info->usc_idle_mode = usc_idle_mode;
//usc_OutReg(info, TCSR, usc_idle_mode);
info->tcsr_value &= ~IDLEMODE_MASK; /* clear idle mode bits */
info->tcsr_value += usc_idle_mode;
usc_OutReg(info, TCSR, info->tcsr_value);
/*
* if SyncLink WAN adapter is running in external sync mode, the
* transmitter has been set to Monosync in order to try to mimic
* a true raw outbound bit stream. Monosync still sends an open/close
* sync char at the start/end of a frame. Try to match those sync
* patterns to the idle mode set here
*/
if ( info->params.mode == MGSL_MODE_RAW ) {
unsigned char syncpat = 0;
switch( info->idle_mode ) {
case HDLC_TXIDLE_FLAGS:
syncpat = 0x7e;
break;
case HDLC_TXIDLE_ALT_ZEROS_ONES:
syncpat = 0x55;
break;
case HDLC_TXIDLE_ZEROS:
case HDLC_TXIDLE_SPACE:
syncpat = 0x00;
break;
case HDLC_TXIDLE_ONES:
case HDLC_TXIDLE_MARK:
syncpat = 0xff;
break;
case HDLC_TXIDLE_ALT_MARK_SPACE:
syncpat = 0xaa;
break;
}
usc_SetTransmitSyncChars(info,syncpat,syncpat);
}
} /* end of usc_set_txidle() */
/* usc_get_serial_signals()
*
* Query the adapter for the state of the V24 status (input) signals.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_get_serial_signals( struct mgsl_struct *info )
{
u16 status;
/* clear all serial signals except RTS and DTR */
info->serial_signals &= SerialSignal_RTS | SerialSignal_DTR;
/* Read the Misc Interrupt status Register (MISR) to get */
/* the V24 status signals. */
status = usc_InReg( info, MISR );
/* set serial signal bits to reflect MISR */
if ( status & MISCSTATUS_CTS )
info->serial_signals |= SerialSignal_CTS;
if ( status & MISCSTATUS_DCD )
info->serial_signals |= SerialSignal_DCD;
if ( status & MISCSTATUS_RI )
info->serial_signals |= SerialSignal_RI;
if ( status & MISCSTATUS_DSR )
info->serial_signals |= SerialSignal_DSR;
} /* end of usc_get_serial_signals() */
/* usc_set_serial_signals()
*
* Set the state of RTS and DTR based on contents of
* serial_signals member of device extension.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void usc_set_serial_signals( struct mgsl_struct *info )
{
u16 Control;
unsigned char V24Out = info->serial_signals;
/* get the current value of the Port Control Register (PCR) */
Control = usc_InReg( info, PCR );
if ( V24Out & SerialSignal_RTS )
Control &= ~(BIT6);
else
Control |= BIT6;
if ( V24Out & SerialSignal_DTR )
Control &= ~(BIT4);
else
Control |= BIT4;
usc_OutReg( info, PCR, Control );
} /* end of usc_set_serial_signals() */
/* usc_enable_async_clock()
*
* Enable the async clock at the specified frequency.
*
* Arguments: info pointer to device instance data
* data_rate data rate of clock in bps
* 0 disables the AUX clock.
* Return Value: None
*/
static void usc_enable_async_clock( struct mgsl_struct *info, u32 data_rate )
{
if ( data_rate ) {
/*
* Clock mode Control Register (CMCR)
*
* <15..14> 00 counter 1 Disabled
* <13..12> 00 counter 0 Disabled
* <11..10> 11 BRG1 Input is TxC Pin
* <9..8> 11 BRG0 Input is TxC Pin
* <7..6> 01 DPLL Input is BRG1 Output
* <5..3> 100 TxCLK comes from BRG0
* <2..0> 100 RxCLK comes from BRG0
*
* 0000 1111 0110 0100 = 0x0f64
*/
usc_OutReg( info, CMCR, 0x0f64 );
/*
* Write 16-bit Time Constant for BRG0
* Time Constant = (ClkSpeed / data_rate) - 1
* ClkSpeed = 921600 (ISA), 691200 (PCI)
*/
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
usc_OutReg( info, TC0R, (u16)((691200/data_rate) - 1) );
else
usc_OutReg( info, TC0R, (u16)((921600/data_rate) - 1) );
/*
* Hardware Configuration Register (HCR)
* Clear Bit 1, BRG0 mode = Continuous
* Set Bit 0 to enable BRG0.
*/
usc_OutReg( info, HCR,
(u16)((usc_InReg( info, HCR ) & ~BIT1) | BIT0) );
/* Input/Output Control Reg, <2..0> = 100, Drive RxC pin with BRG0 */
usc_OutReg( info, IOCR,
(u16)((usc_InReg(info, IOCR) & 0xfff8) | 0x0004) );
} else {
/* data rate == 0 so turn off BRG0 */
usc_OutReg( info, HCR, (u16)(usc_InReg( info, HCR ) & ~BIT0) );
}
} /* end of usc_enable_async_clock() */
/*
* Buffer Structures:
*
* Normal memory access uses virtual addresses that can make discontiguous
* physical memory pages appear to be contiguous in the virtual address
* space (the processors memory mapping handles the conversions).
*
* DMA transfers require physically contiguous memory. This is because
* the DMA system controller and DMA bus masters deal with memory using
* only physical addresses.
*
* This causes a problem under Windows NT when large DMA buffers are
* needed. Fragmentation of the nonpaged pool prevents allocations of
* physically contiguous buffers larger than the PAGE_SIZE.
*
* However the 16C32 supports Bus Master Scatter/Gather DMA which
* allows DMA transfers to physically discontiguous buffers. Information
* about each data transfer buffer is contained in a memory structure
* called a 'buffer entry'. A list of buffer entries is maintained
* to track and control the use of the data transfer buffers.
*
* To support this strategy we will allocate sufficient PAGE_SIZE
* contiguous memory buffers to allow for the total required buffer
* space.
*
* The 16C32 accesses the list of buffer entries using Bus Master
* DMA. Control information is read from the buffer entries by the
* 16C32 to control data transfers. status information is written to
* the buffer entries by the 16C32 to indicate the status of completed
* transfers.
*
* The CPU writes control information to the buffer entries to control
* the 16C32 and reads status information from the buffer entries to
* determine information about received and transmitted frames.
*
* Because the CPU and 16C32 (adapter) both need simultaneous access
* to the buffer entries, the buffer entry memory is allocated with
* HalAllocateCommonBuffer(). This restricts the size of the buffer
* entry list to PAGE_SIZE.
*
* The actual data buffers on the other hand will only be accessed
* by the CPU or the adapter but not by both simultaneously. This allows
* Scatter/Gather packet based DMA procedures for using physically
* discontiguous pages.
*/
/*
* mgsl_reset_tx_dma_buffers()
*
* Set the count for all transmit buffers to 0 to indicate the
* buffer is available for use and set the current buffer to the
* first buffer. This effectively makes all buffers free and
* discards any data in buffers.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_reset_tx_dma_buffers( struct mgsl_struct *info )
{
unsigned int i;
for ( i = 0; i < info->tx_buffer_count; i++ ) {
*((unsigned long *)&(info->tx_buffer_list[i].count)) = 0;
}
info->current_tx_buffer = 0;
info->start_tx_dma_buffer = 0;
info->tx_dma_buffers_used = 0;
info->get_tx_holding_index = 0;
info->put_tx_holding_index = 0;
info->tx_holding_count = 0;
} /* end of mgsl_reset_tx_dma_buffers() */
/*
* num_free_tx_dma_buffers()
*
* returns the number of free tx dma buffers available
*
* Arguments: info pointer to device instance data
* Return Value: number of free tx dma buffers
*/
static int num_free_tx_dma_buffers(struct mgsl_struct *info)
{
return info->tx_buffer_count - info->tx_dma_buffers_used;
}
/*
* mgsl_reset_rx_dma_buffers()
*
* Set the count for all receive buffers to DMABUFFERSIZE
* and set the current buffer to the first buffer. This effectively
* makes all buffers free and discards any data in buffers.
*
* Arguments: info pointer to device instance data
* Return Value: None
*/
static void mgsl_reset_rx_dma_buffers( struct mgsl_struct *info )
{
unsigned int i;
for ( i = 0; i < info->rx_buffer_count; i++ ) {
*((unsigned long *)&(info->rx_buffer_list[i].count)) = DMABUFFERSIZE;
// info->rx_buffer_list[i].count = DMABUFFERSIZE;
// info->rx_buffer_list[i].status = 0;
}
info->current_rx_buffer = 0;
} /* end of mgsl_reset_rx_dma_buffers() */
/*
* mgsl_free_rx_frame_buffers()
*
* Free the receive buffers used by a received SDLC
* frame such that the buffers can be reused.
*
* Arguments:
*
* info pointer to device instance data
* StartIndex index of 1st receive buffer of frame
* EndIndex index of last receive buffer of frame
*
* Return Value: None
*/
static void mgsl_free_rx_frame_buffers( struct mgsl_struct *info, unsigned int StartIndex, unsigned int EndIndex )
{
bool Done = false;
DMABUFFERENTRY *pBufEntry;
unsigned int Index;
/* Starting with 1st buffer entry of the frame clear the status */
/* field and set the count field to DMA Buffer Size. */
Index = StartIndex;
while( !Done ) {
pBufEntry = &(info->rx_buffer_list[Index]);
if ( Index == EndIndex ) {
/* This is the last buffer of the frame! */
Done = true;
}
/* reset current buffer for reuse */
// pBufEntry->status = 0;
// pBufEntry->count = DMABUFFERSIZE;
*((unsigned long *)&(pBufEntry->count)) = DMABUFFERSIZE;
/* advance to next buffer entry in linked list */
Index++;
if ( Index == info->rx_buffer_count )
Index = 0;
}
/* set current buffer to next buffer after last buffer of frame */
info->current_rx_buffer = Index;
} /* end of free_rx_frame_buffers() */
/* mgsl_get_rx_frame()
*
* This function attempts to return a received SDLC frame from the
* receive DMA buffers. Only frames received without errors are returned.
*
* Arguments: info pointer to device extension
* Return Value: true if frame returned, otherwise false
*/
static bool mgsl_get_rx_frame(struct mgsl_struct *info)
{
unsigned int StartIndex, EndIndex; /* index of 1st and last buffers of Rx frame */
unsigned short status;
DMABUFFERENTRY *pBufEntry;
unsigned int framesize = 0;
bool ReturnCode = false;
unsigned long flags;
struct tty_struct *tty = info->port.tty;
bool return_frame = false;
/*
* current_rx_buffer points to the 1st buffer of the next available
* receive frame. To find the last buffer of the frame look for
* a non-zero status field in the buffer entries. (The status
* field is set by the 16C32 after completing a receive frame.
*/
StartIndex = EndIndex = info->current_rx_buffer;
while( !info->rx_buffer_list[EndIndex].status ) {
/*
* If the count field of the buffer entry is non-zero then
* this buffer has not been used. (The 16C32 clears the count
* field when it starts using the buffer.) If an unused buffer
* is encountered then there are no frames available.
*/
if ( info->rx_buffer_list[EndIndex].count )
goto Cleanup;
/* advance to next buffer entry in linked list */
EndIndex++;
if ( EndIndex == info->rx_buffer_count )
EndIndex = 0;
/* if entire list searched then no frame available */
if ( EndIndex == StartIndex ) {
/* If this occurs then something bad happened,
* all buffers have been 'used' but none mark
* the end of a frame. Reset buffers and receiver.
*/
if ( info->rx_enabled ){
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_start_receiver(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
goto Cleanup;
}
}
/* check status of receive frame */
status = info->rx_buffer_list[EndIndex].status;
if ( status & (RXSTATUS_SHORT_FRAME | RXSTATUS_OVERRUN |
RXSTATUS_CRC_ERROR | RXSTATUS_ABORT) ) {
if ( status & RXSTATUS_SHORT_FRAME )
info->icount.rxshort++;
else if ( status & RXSTATUS_ABORT )
info->icount.rxabort++;
else if ( status & RXSTATUS_OVERRUN )
info->icount.rxover++;
else {
info->icount.rxcrc++;
if ( info->params.crc_type & HDLC_CRC_RETURN_EX )
return_frame = true;
}
framesize = 0;
#if SYNCLINK_GENERIC_HDLC
{
info->netdev->stats.rx_errors++;
info->netdev->stats.rx_frame_errors++;
}
#endif
} else
return_frame = true;
if ( return_frame ) {
/* receive frame has no errors, get frame size.
* The frame size is the starting value of the RCC (which was
* set to 0xffff) minus the ending value of the RCC (decremented
* once for each receive character) minus 2 for the 16-bit CRC.
*/
framesize = RCLRVALUE - info->rx_buffer_list[EndIndex].rcc;
/* adjust frame size for CRC if any */
if ( info->params.crc_type == HDLC_CRC_16_CCITT )
framesize -= 2;
else if ( info->params.crc_type == HDLC_CRC_32_CCITT )
framesize -= 4;
}
if ( debug_level >= DEBUG_LEVEL_BH )
printk("%s(%d):mgsl_get_rx_frame(%s) status=%04X size=%d\n",
__FILE__,__LINE__,info->device_name,status,framesize);
if ( debug_level >= DEBUG_LEVEL_DATA )
mgsl_trace_block(info,info->rx_buffer_list[StartIndex].virt_addr,
min_t(int, framesize, DMABUFFERSIZE),0);
if (framesize) {
if ( ( (info->params.crc_type & HDLC_CRC_RETURN_EX) &&
((framesize+1) > info->max_frame_size) ) ||
(framesize > info->max_frame_size) )
info->icount.rxlong++;
else {
/* copy dma buffer(s) to contiguous intermediate buffer */
int copy_count = framesize;
int index = StartIndex;
unsigned char *ptmp = info->intermediate_rxbuffer;
if ( !(status & RXSTATUS_CRC_ERROR))
info->icount.rxok++;
while(copy_count) {
int partial_count;
if ( copy_count > DMABUFFERSIZE )
partial_count = DMABUFFERSIZE;
else
partial_count = copy_count;
pBufEntry = &(info->rx_buffer_list[index]);
memcpy( ptmp, pBufEntry->virt_addr, partial_count );
ptmp += partial_count;
copy_count -= partial_count;
if ( ++index == info->rx_buffer_count )
index = 0;
}
if ( info->params.crc_type & HDLC_CRC_RETURN_EX ) {
++framesize;
*ptmp = (status & RXSTATUS_CRC_ERROR ?
RX_CRC_ERROR :
RX_OK);
if ( debug_level >= DEBUG_LEVEL_DATA )
printk("%s(%d):mgsl_get_rx_frame(%s) rx frame status=%d\n",
__FILE__,__LINE__,info->device_name,
*ptmp);
}
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_rx(info,info->intermediate_rxbuffer,framesize);
else
#endif
ldisc_receive_buf(tty, info->intermediate_rxbuffer, info->flag_buf, framesize);
}
}
/* Free the buffers used by this frame. */
mgsl_free_rx_frame_buffers( info, StartIndex, EndIndex );
ReturnCode = true;
Cleanup:
if ( info->rx_enabled && info->rx_overflow ) {
/* The receiver needs to restarted because of
* a receive overflow (buffer or FIFO). If the
* receive buffers are now empty, then restart receiver.
*/
if ( !info->rx_buffer_list[EndIndex].status &&
info->rx_buffer_list[EndIndex].count ) {
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_start_receiver(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
}
return ReturnCode;
} /* end of mgsl_get_rx_frame() */
/* mgsl_get_raw_rx_frame()
*
* This function attempts to return a received frame from the
* receive DMA buffers when running in external loop mode. In this mode,
* we will return at most one DMABUFFERSIZE frame to the application.
* The USC receiver is triggering off of DCD going active to start a new
* frame, and DCD going inactive to terminate the frame (similar to
* processing a closing flag character).
*
* In this routine, we will return DMABUFFERSIZE "chunks" at a time.
* If DCD goes inactive, the last Rx DMA Buffer will have a non-zero
* status field and the RCC field will indicate the length of the
* entire received frame. We take this RCC field and get the modulus
* of RCC and DMABUFFERSIZE to determine if number of bytes in the
* last Rx DMA buffer and return that last portion of the frame.
*
* Arguments: info pointer to device extension
* Return Value: true if frame returned, otherwise false
*/
static bool mgsl_get_raw_rx_frame(struct mgsl_struct *info)
{
unsigned int CurrentIndex, NextIndex;
unsigned short status;
DMABUFFERENTRY *pBufEntry;
unsigned int framesize = 0;
bool ReturnCode = false;
unsigned long flags;
struct tty_struct *tty = info->port.tty;
/*
* current_rx_buffer points to the 1st buffer of the next available
* receive frame. The status field is set by the 16C32 after
* completing a receive frame. If the status field of this buffer
* is zero, either the USC is still filling this buffer or this
* is one of a series of buffers making up a received frame.
*
* If the count field of this buffer is zero, the USC is either
* using this buffer or has used this buffer. Look at the count
* field of the next buffer. If that next buffer's count is
* non-zero, the USC is still actively using the current buffer.
* Otherwise, if the next buffer's count field is zero, the
* current buffer is complete and the USC is using the next
* buffer.
*/
CurrentIndex = NextIndex = info->current_rx_buffer;
++NextIndex;
if ( NextIndex == info->rx_buffer_count )
NextIndex = 0;
if ( info->rx_buffer_list[CurrentIndex].status != 0 ||
(info->rx_buffer_list[CurrentIndex].count == 0 &&
info->rx_buffer_list[NextIndex].count == 0)) {
/*
* Either the status field of this dma buffer is non-zero
* (indicating the last buffer of a receive frame) or the next
* buffer is marked as in use -- implying this buffer is complete
* and an intermediate buffer for this received frame.
*/
status = info->rx_buffer_list[CurrentIndex].status;
if ( status & (RXSTATUS_SHORT_FRAME | RXSTATUS_OVERRUN |
RXSTATUS_CRC_ERROR | RXSTATUS_ABORT) ) {
if ( status & RXSTATUS_SHORT_FRAME )
info->icount.rxshort++;
else if ( status & RXSTATUS_ABORT )
info->icount.rxabort++;
else if ( status & RXSTATUS_OVERRUN )
info->icount.rxover++;
else
info->icount.rxcrc++;
framesize = 0;
} else {
/*
* A receive frame is available, get frame size and status.
*
* The frame size is the starting value of the RCC (which was
* set to 0xffff) minus the ending value of the RCC (decremented
* once for each receive character) minus 2 or 4 for the 16-bit
* or 32-bit CRC.
*
* If the status field is zero, this is an intermediate buffer.
* It's size is 4K.
*
* If the DMA Buffer Entry's Status field is non-zero, the
* receive operation completed normally (ie: DCD dropped). The
* RCC field is valid and holds the received frame size.
* It is possible that the RCC field will be zero on a DMA buffer
* entry with a non-zero status. This can occur if the total
* frame size (number of bytes between the time DCD goes active
* to the time DCD goes inactive) exceeds 65535 bytes. In this
* case the 16C32 has underrun on the RCC count and appears to
* stop updating this counter to let us know the actual received
* frame size. If this happens (non-zero status and zero RCC),
* simply return the entire RxDMA Buffer
*/
if ( status ) {
/*
* In the event that the final RxDMA Buffer is
* terminated with a non-zero status and the RCC
* field is zero, we interpret this as the RCC
* having underflowed (received frame > 65535 bytes).
*
* Signal the event to the user by passing back
* a status of RxStatus_CrcError returning the full
* buffer and let the app figure out what data is
* actually valid
*/
if ( info->rx_buffer_list[CurrentIndex].rcc )
framesize = RCLRVALUE - info->rx_buffer_list[CurrentIndex].rcc;
else
framesize = DMABUFFERSIZE;
}
else
framesize = DMABUFFERSIZE;
}
if ( framesize > DMABUFFERSIZE ) {
/*
* if running in raw sync mode, ISR handler for
* End Of Buffer events terminates all buffers at 4K.
* If this frame size is said to be >4K, get the
* actual number of bytes of the frame in this buffer.
*/
framesize = framesize % DMABUFFERSIZE;
}
if ( debug_level >= DEBUG_LEVEL_BH )
printk("%s(%d):mgsl_get_raw_rx_frame(%s) status=%04X size=%d\n",
__FILE__,__LINE__,info->device_name,status,framesize);
if ( debug_level >= DEBUG_LEVEL_DATA )
mgsl_trace_block(info,info->rx_buffer_list[CurrentIndex].virt_addr,
min_t(int, framesize, DMABUFFERSIZE),0);
if (framesize) {
/* copy dma buffer(s) to contiguous intermediate buffer */
/* NOTE: we never copy more than DMABUFFERSIZE bytes */
pBufEntry = &(info->rx_buffer_list[CurrentIndex]);
memcpy( info->intermediate_rxbuffer, pBufEntry->virt_addr, framesize);
info->icount.rxok++;
ldisc_receive_buf(tty, info->intermediate_rxbuffer, info->flag_buf, framesize);
}
/* Free the buffers used by this frame. */
mgsl_free_rx_frame_buffers( info, CurrentIndex, CurrentIndex );
ReturnCode = true;
}
if ( info->rx_enabled && info->rx_overflow ) {
/* The receiver needs to restarted because of
* a receive overflow (buffer or FIFO). If the
* receive buffers are now empty, then restart receiver.
*/
if ( !info->rx_buffer_list[CurrentIndex].status &&
info->rx_buffer_list[CurrentIndex].count ) {
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_start_receiver(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
}
return ReturnCode;
} /* end of mgsl_get_raw_rx_frame() */
/* mgsl_load_tx_dma_buffer()
*
* Load the transmit DMA buffer with the specified data.
*
* Arguments:
*
* info pointer to device extension
* Buffer pointer to buffer containing frame to load
* BufferSize size in bytes of frame in Buffer
*
* Return Value: None
*/
static void mgsl_load_tx_dma_buffer(struct mgsl_struct *info,
const char *Buffer, unsigned int BufferSize)
{
unsigned short Copycount;
unsigned int i = 0;
DMABUFFERENTRY *pBufEntry;
if ( debug_level >= DEBUG_LEVEL_DATA )
mgsl_trace_block(info,Buffer, min_t(int, BufferSize, DMABUFFERSIZE), 1);
if (info->params.flags & HDLC_FLAG_HDLC_LOOPMODE) {
/* set CMR:13 to start transmit when
* next GoAhead (abort) is received
*/
info->cmr_value |= BIT13;
}
/* begin loading the frame in the next available tx dma
* buffer, remember it's starting location for setting
* up tx dma operation
*/
i = info->current_tx_buffer;
info->start_tx_dma_buffer = i;
/* Setup the status and RCC (Frame Size) fields of the 1st */
/* buffer entry in the transmit DMA buffer list. */
info->tx_buffer_list[i].status = info->cmr_value & 0xf000;
info->tx_buffer_list[i].rcc = BufferSize;
info->tx_buffer_list[i].count = BufferSize;
/* Copy frame data from 1st source buffer to the DMA buffers. */
/* The frame data may span multiple DMA buffers. */
while( BufferSize ){
/* Get a pointer to next DMA buffer entry. */
pBufEntry = &info->tx_buffer_list[i++];
if ( i == info->tx_buffer_count )
i=0;
/* Calculate the number of bytes that can be copied from */
/* the source buffer to this DMA buffer. */
if ( BufferSize > DMABUFFERSIZE )
Copycount = DMABUFFERSIZE;
else
Copycount = BufferSize;
/* Actually copy data from source buffer to DMA buffer. */
/* Also set the data count for this individual DMA buffer. */
if ( info->bus_type == MGSL_BUS_TYPE_PCI )
mgsl_load_pci_memory(pBufEntry->virt_addr, Buffer,Copycount);
else
memcpy(pBufEntry->virt_addr, Buffer, Copycount);
pBufEntry->count = Copycount;
/* Advance source pointer and reduce remaining data count. */
Buffer += Copycount;
BufferSize -= Copycount;
++info->tx_dma_buffers_used;
}
/* remember next available tx dma buffer */
info->current_tx_buffer = i;
} /* end of mgsl_load_tx_dma_buffer() */
/*
* mgsl_register_test()
*
* Performs a register test of the 16C32.
*
* Arguments: info pointer to device instance data
* Return Value: true if test passed, otherwise false
*/
static bool mgsl_register_test( struct mgsl_struct *info )
{
static unsigned short BitPatterns[] =
{ 0x0000, 0xffff, 0xaaaa, 0x5555, 0x1234, 0x6969, 0x9696, 0x0f0f };
static unsigned int Patterncount = ARRAY_SIZE(BitPatterns);
unsigned int i;
bool rc = true;
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_reset(info);
/* Verify the reset state of some registers. */
if ( (usc_InReg( info, SICR ) != 0) ||
(usc_InReg( info, IVR ) != 0) ||
(usc_InDmaReg( info, DIVR ) != 0) ){
rc = false;
}
if ( rc ){
/* Write bit patterns to various registers but do it out of */
/* sync, then read back and verify values. */
for ( i = 0 ; i < Patterncount ; i++ ) {
usc_OutReg( info, TC0R, BitPatterns[i] );
usc_OutReg( info, TC1R, BitPatterns[(i+1)%Patterncount] );
usc_OutReg( info, TCLR, BitPatterns[(i+2)%Patterncount] );
usc_OutReg( info, RCLR, BitPatterns[(i+3)%Patterncount] );
usc_OutReg( info, RSR, BitPatterns[(i+4)%Patterncount] );
usc_OutDmaReg( info, TBCR, BitPatterns[(i+5)%Patterncount] );
if ( (usc_InReg( info, TC0R ) != BitPatterns[i]) ||
(usc_InReg( info, TC1R ) != BitPatterns[(i+1)%Patterncount]) ||
(usc_InReg( info, TCLR ) != BitPatterns[(i+2)%Patterncount]) ||
(usc_InReg( info, RCLR ) != BitPatterns[(i+3)%Patterncount]) ||
(usc_InReg( info, RSR ) != BitPatterns[(i+4)%Patterncount]) ||
(usc_InDmaReg( info, TBCR ) != BitPatterns[(i+5)%Patterncount]) ){
rc = false;
break;
}
}
}
usc_reset(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return rc;
} /* end of mgsl_register_test() */
/* mgsl_irq_test() Perform interrupt test of the 16C32.
*
* Arguments: info pointer to device instance data
* Return Value: true if test passed, otherwise false
*/
static bool mgsl_irq_test( struct mgsl_struct *info )
{
unsigned long EndTime;
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_reset(info);
/*
* Setup 16C32 to interrupt on TxC pin (14MHz clock) transition.
* The ISR sets irq_occurred to true.
*/
info->irq_occurred = false;
/* Enable INTEN gate for ISA adapter (Port 6, Bit12) */
/* Enable INTEN (Port 6, Bit12) */
/* This connects the IRQ request signal to the ISA bus */
/* on the ISA adapter. This has no effect for the PCI adapter */
usc_OutReg( info, PCR, (unsigned short)((usc_InReg(info, PCR) | BIT13) & ~BIT12) );
usc_EnableMasterIrqBit(info);
usc_EnableInterrupts(info, IO_PIN);
usc_ClearIrqPendingBits(info, IO_PIN);
usc_UnlatchIostatusBits(info, MISCSTATUS_TXC_LATCHED);
usc_EnableStatusIrqs(info, SICR_TXC_ACTIVE + SICR_TXC_INACTIVE);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
EndTime=100;
while( EndTime-- && !info->irq_occurred ) {
msleep_interruptible(10);
}
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_reset(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return info->irq_occurred;
} /* end of mgsl_irq_test() */
/* mgsl_dma_test()
*
* Perform a DMA test of the 16C32. A small frame is
* transmitted via DMA from a transmit buffer to a receive buffer
* using single buffer DMA mode.
*
* Arguments: info pointer to device instance data
* Return Value: true if test passed, otherwise false
*/
static bool mgsl_dma_test( struct mgsl_struct *info )
{
unsigned short FifoLevel;
unsigned long phys_addr;
unsigned int FrameSize;
unsigned int i;
char *TmpPtr;
bool rc = true;
unsigned short status=0;
unsigned long EndTime;
unsigned long flags;
MGSL_PARAMS tmp_params;
/* save current port options */
memcpy(&tmp_params,&info->params,sizeof(MGSL_PARAMS));
/* load default port options */
memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS));
#define TESTFRAMESIZE 40
spin_lock_irqsave(&info->irq_spinlock,flags);
/* setup 16C32 for SDLC DMA transfer mode */
usc_reset(info);
usc_set_sdlc_mode(info);
usc_enable_loopback(info,1);
/* Reprogram the RDMR so that the 16C32 does NOT clear the count
* field of the buffer entry after fetching buffer address. This
* way we can detect a DMA failure for a DMA read (which should be
* non-destructive to system memory) before we try and write to
* memory (where a failure could corrupt system memory).
*/
/* Receive DMA mode Register (RDMR)
*
* <15..14> 11 DMA mode = Linked List Buffer mode
* <13> 1 RSBinA/L = store Rx status Block in List entry
* <12> 0 1 = Clear count of List Entry after fetching
* <11..10> 00 Address mode = Increment
* <9> 1 Terminate Buffer on RxBound
* <8> 0 Bus Width = 16bits
* <7..0> ? status Bits (write as 0s)
*
* 1110 0010 0000 0000 = 0xe200
*/
usc_OutDmaReg( info, RDMR, 0xe200 );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/* SETUP TRANSMIT AND RECEIVE DMA BUFFERS */
FrameSize = TESTFRAMESIZE;
/* setup 1st transmit buffer entry: */
/* with frame size and transmit control word */
info->tx_buffer_list[0].count = FrameSize;
info->tx_buffer_list[0].rcc = FrameSize;
info->tx_buffer_list[0].status = 0x4000;
/* build a transmit frame in 1st transmit DMA buffer */
TmpPtr = info->tx_buffer_list[0].virt_addr;
for (i = 0; i < FrameSize; i++ )
*TmpPtr++ = i;
/* setup 1st receive buffer entry: */
/* clear status, set max receive buffer size */
info->rx_buffer_list[0].status = 0;
info->rx_buffer_list[0].count = FrameSize + 4;
/* zero out the 1st receive buffer */
memset( info->rx_buffer_list[0].virt_addr, 0, FrameSize + 4 );
/* Set count field of next buffer entries to prevent */
/* 16C32 from using buffers after the 1st one. */
info->tx_buffer_list[1].count = 0;
info->rx_buffer_list[1].count = 0;
/***************************/
/* Program 16C32 receiver. */
/***************************/
spin_lock_irqsave(&info->irq_spinlock,flags);
/* setup DMA transfers */
usc_RTCmd( info, RTCmd_PurgeRxFifo );
/* program 16C32 receiver with physical address of 1st DMA buffer entry */
phys_addr = info->rx_buffer_list[0].phys_entry;
usc_OutDmaReg( info, NRARL, (unsigned short)phys_addr );
usc_OutDmaReg( info, NRARU, (unsigned short)(phys_addr >> 16) );
/* Clear the Rx DMA status bits (read RDMR) and start channel */
usc_InDmaReg( info, RDMR );
usc_DmaCmd( info, DmaCmd_InitRxChannel );
/* Enable Receiver (RMR <1..0> = 10) */
usc_OutReg( info, RMR, (unsigned short)((usc_InReg(info, RMR) & 0xfffc) | 0x0002) );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/*************************************************************/
/* WAIT FOR RECEIVER TO DMA ALL PARAMETERS FROM BUFFER ENTRY */
/*************************************************************/
/* Wait 100ms for interrupt. */
EndTime = jiffies + msecs_to_jiffies(100);
for(;;) {
if (time_after(jiffies, EndTime)) {
rc = false;
break;
}
spin_lock_irqsave(&info->irq_spinlock,flags);
status = usc_InDmaReg( info, RDMR );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
if ( !(status & BIT4) && (status & BIT5) ) {
/* INITG (BIT 4) is inactive (no entry read in progress) AND */
/* BUSY (BIT 5) is active (channel still active). */
/* This means the buffer entry read has completed. */
break;
}
}
/******************************/
/* Program 16C32 transmitter. */
/******************************/
spin_lock_irqsave(&info->irq_spinlock,flags);
/* Program the Transmit Character Length Register (TCLR) */
/* and clear FIFO (TCC is loaded with TCLR on FIFO clear) */
usc_OutReg( info, TCLR, (unsigned short)info->tx_buffer_list[0].count );
usc_RTCmd( info, RTCmd_PurgeTxFifo );
/* Program the address of the 1st DMA Buffer Entry in linked list */
phys_addr = info->tx_buffer_list[0].phys_entry;
usc_OutDmaReg( info, NTARL, (unsigned short)phys_addr );
usc_OutDmaReg( info, NTARU, (unsigned short)(phys_addr >> 16) );
/* unlatch Tx status bits, and start transmit channel. */
usc_OutReg( info, TCSR, (unsigned short)(( usc_InReg(info, TCSR) & 0x0f00) | 0xfa) );
usc_DmaCmd( info, DmaCmd_InitTxChannel );
/* wait for DMA controller to fill transmit FIFO */
usc_TCmd( info, TCmd_SelectTicrTxFifostatus );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/**********************************/
/* WAIT FOR TRANSMIT FIFO TO FILL */
/**********************************/
/* Wait 100ms */
EndTime = jiffies + msecs_to_jiffies(100);
for(;;) {
if (time_after(jiffies, EndTime)) {
rc = false;
break;
}
spin_lock_irqsave(&info->irq_spinlock,flags);
FifoLevel = usc_InReg(info, TICR) >> 8;
spin_unlock_irqrestore(&info->irq_spinlock,flags);
if ( FifoLevel < 16 )
break;
else
if ( FrameSize < 32 ) {
/* This frame is smaller than the entire transmit FIFO */
/* so wait for the entire frame to be loaded. */
if ( FifoLevel <= (32 - FrameSize) )
break;
}
}
if ( rc )
{
/* Enable 16C32 transmitter. */
spin_lock_irqsave(&info->irq_spinlock,flags);
/* Transmit mode Register (TMR), <1..0> = 10, Enable Transmitter */
usc_TCmd( info, TCmd_SendFrame );
usc_OutReg( info, TMR, (unsigned short)((usc_InReg(info, TMR) & 0xfffc) | 0x0002) );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/******************************/
/* WAIT FOR TRANSMIT COMPLETE */
/******************************/
/* Wait 100ms */
EndTime = jiffies + msecs_to_jiffies(100);
/* While timer not expired wait for transmit complete */
spin_lock_irqsave(&info->irq_spinlock,flags);
status = usc_InReg( info, TCSR );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
while ( !(status & (BIT6 | BIT5 | BIT4 | BIT2 | BIT1)) ) {
if (time_after(jiffies, EndTime)) {
rc = false;
break;
}
spin_lock_irqsave(&info->irq_spinlock,flags);
status = usc_InReg( info, TCSR );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
}
}
if ( rc ){
/* CHECK FOR TRANSMIT ERRORS */
if ( status & (BIT5 | BIT1) )
rc = false;
}
if ( rc ) {
/* WAIT FOR RECEIVE COMPLETE */
/* Wait 100ms */
EndTime = jiffies + msecs_to_jiffies(100);
/* Wait for 16C32 to write receive status to buffer entry. */
status=info->rx_buffer_list[0].status;
while ( status == 0 ) {
if (time_after(jiffies, EndTime)) {
rc = false;
break;
}
status=info->rx_buffer_list[0].status;
}
}
if ( rc ) {
/* CHECK FOR RECEIVE ERRORS */
status = info->rx_buffer_list[0].status;
if ( status & (BIT8 | BIT3 | BIT1) ) {
/* receive error has occurred */
rc = false;
} else {
if ( memcmp( info->tx_buffer_list[0].virt_addr ,
info->rx_buffer_list[0].virt_addr, FrameSize ) ){
rc = false;
}
}
}
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_reset( info );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
/* restore current port options */
memcpy(&info->params,&tmp_params,sizeof(MGSL_PARAMS));
return rc;
} /* end of mgsl_dma_test() */
/* mgsl_adapter_test()
*
* Perform the register, IRQ, and DMA tests for the 16C32.
*
* Arguments: info pointer to device instance data
* Return Value: 0 if success, otherwise -ENODEV
*/
static int mgsl_adapter_test( struct mgsl_struct *info )
{
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):Testing device %s\n",
__FILE__,__LINE__,info->device_name );
if ( !mgsl_register_test( info ) ) {
info->init_error = DiagStatus_AddressFailure;
printk( "%s(%d):Register test failure for device %s Addr=%04X\n",
__FILE__,__LINE__,info->device_name, (unsigned short)(info->io_base) );
return -ENODEV;
}
if ( !mgsl_irq_test( info ) ) {
info->init_error = DiagStatus_IrqFailure;
printk( "%s(%d):Interrupt test failure for device %s IRQ=%d\n",
__FILE__,__LINE__,info->device_name, (unsigned short)(info->irq_level) );
return -ENODEV;
}
if ( !mgsl_dma_test( info ) ) {
info->init_error = DiagStatus_DmaFailure;
printk( "%s(%d):DMA test failure for device %s DMA=%d\n",
__FILE__,__LINE__,info->device_name, (unsigned short)(info->dma_level) );
return -ENODEV;
}
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):device %s passed diagnostics\n",
__FILE__,__LINE__,info->device_name );
return 0;
} /* end of mgsl_adapter_test() */
/* mgsl_memory_test()
*
* Test the shared memory on a PCI adapter.
*
* Arguments: info pointer to device instance data
* Return Value: true if test passed, otherwise false
*/
static bool mgsl_memory_test( struct mgsl_struct *info )
{
static unsigned long BitPatterns[] =
{ 0x0, 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999, 0xffffffff, 0x12345678 };
unsigned long Patterncount = ARRAY_SIZE(BitPatterns);
unsigned long i;
unsigned long TestLimit = SHARED_MEM_ADDRESS_SIZE/sizeof(unsigned long);
unsigned long * TestAddr;
if ( info->bus_type != MGSL_BUS_TYPE_PCI )
return true;
TestAddr = (unsigned long *)info->memory_base;
/* Test data lines with test pattern at one location. */
for ( i = 0 ; i < Patterncount ; i++ ) {
*TestAddr = BitPatterns[i];
if ( *TestAddr != BitPatterns[i] )
return false;
}
/* Test address lines with incrementing pattern over */
/* entire address range. */
for ( i = 0 ; i < TestLimit ; i++ ) {
*TestAddr = i * 4;
TestAddr++;
}
TestAddr = (unsigned long *)info->memory_base;
for ( i = 0 ; i < TestLimit ; i++ ) {
if ( *TestAddr != i * 4 )
return false;
TestAddr++;
}
memset( info->memory_base, 0, SHARED_MEM_ADDRESS_SIZE );
return true;
} /* End Of mgsl_memory_test() */
/* mgsl_load_pci_memory()
*
* Load a large block of data into the PCI shared memory.
* Use this instead of memcpy() or memmove() to move data
* into the PCI shared memory.
*
* Notes:
*
* This function prevents the PCI9050 interface chip from hogging
* the adapter local bus, which can starve the 16C32 by preventing
* 16C32 bus master cycles.
*
* The PCI9050 documentation says that the 9050 will always release
* control of the local bus after completing the current read
* or write operation.
*
* It appears that as long as the PCI9050 write FIFO is full, the
* PCI9050 treats all of the writes as a single burst transaction
* and will not release the bus. This causes DMA latency problems
* at high speeds when copying large data blocks to the shared
* memory.
*
* This function in effect, breaks the a large shared memory write
* into multiple transations by interleaving a shared memory read
* which will flush the write FIFO and 'complete' the write
* transation. This allows any pending DMA request to gain control
* of the local bus in a timely fasion.
*
* Arguments:
*
* TargetPtr pointer to target address in PCI shared memory
* SourcePtr pointer to source buffer for data
* count count in bytes of data to copy
*
* Return Value: None
*/
static void mgsl_load_pci_memory( char* TargetPtr, const char* SourcePtr,
unsigned short count )
{
/* 16 32-bit writes @ 60ns each = 960ns max latency on local bus */
#define PCI_LOAD_INTERVAL 64
unsigned short Intervalcount = count / PCI_LOAD_INTERVAL;
unsigned short Index;
unsigned long Dummy;
for ( Index = 0 ; Index < Intervalcount ; Index++ )
{
memcpy(TargetPtr, SourcePtr, PCI_LOAD_INTERVAL);
Dummy = *((volatile unsigned long *)TargetPtr);
TargetPtr += PCI_LOAD_INTERVAL;
SourcePtr += PCI_LOAD_INTERVAL;
}
memcpy( TargetPtr, SourcePtr, count % PCI_LOAD_INTERVAL );
} /* End Of mgsl_load_pci_memory() */
static void mgsl_trace_block(struct mgsl_struct *info,const char* data, int count, int xmit)
{
int i;
int linecount;
if (xmit)
printk("%s tx data:\n",info->device_name);
else
printk("%s rx data:\n",info->device_name);
while(count) {
if (count > 16)
linecount = 16;
else
linecount = count;
for(i=0;i<linecount;i++)
printk("%02X ",(unsigned char)data[i]);
for(;i<17;i++)
printk(" ");
for(i=0;i<linecount;i++) {
if (data[i]>=040 && data[i]<=0176)
printk("%c",data[i]);
else
printk(".");
}
printk("\n");
data += linecount;
count -= linecount;
}
} /* end of mgsl_trace_block() */
/* mgsl_tx_timeout()
*
* called when HDLC frame times out
* update stats and do tx completion processing
*
* Arguments: context pointer to device instance data
* Return Value: None
*/
static void mgsl_tx_timeout(unsigned long context)
{
struct mgsl_struct *info = (struct mgsl_struct*)context;
unsigned long flags;
if ( debug_level >= DEBUG_LEVEL_INFO )
printk( "%s(%d):mgsl_tx_timeout(%s)\n",
__FILE__,__LINE__,info->device_name);
if(info->tx_active &&
(info->params.mode == MGSL_MODE_HDLC ||
info->params.mode == MGSL_MODE_RAW) ) {
info->icount.txtimeout++;
}
spin_lock_irqsave(&info->irq_spinlock,flags);
info->tx_active = false;
info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
if ( info->params.flags & HDLC_FLAG_HDLC_LOOPMODE )
usc_loopmode_cancel_transmit( info );
spin_unlock_irqrestore(&info->irq_spinlock,flags);
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_tx_done(info);
else
#endif
mgsl_bh_transmit(info);
} /* end of mgsl_tx_timeout() */
/* signal that there are no more frames to send, so that
* line is 'released' by echoing RxD to TxD when current
* transmission is complete (or immediately if no tx in progress).
*/
static int mgsl_loopmode_send_done( struct mgsl_struct * info )
{
unsigned long flags;
spin_lock_irqsave(&info->irq_spinlock,flags);
if (info->params.flags & HDLC_FLAG_HDLC_LOOPMODE) {
if (info->tx_active)
info->loopmode_send_done_requested = true;
else
usc_loopmode_send_done(info);
}
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return 0;
}
/* release the line by echoing RxD to TxD
* upon completion of a transmit frame
*/
static void usc_loopmode_send_done( struct mgsl_struct * info )
{
info->loopmode_send_done_requested = false;
/* clear CMR:13 to 0 to start echoing RxData to TxData */
info->cmr_value &= ~BIT13;
usc_OutReg(info, CMR, info->cmr_value);
}
/* abort a transmit in progress while in HDLC LoopMode
*/
static void usc_loopmode_cancel_transmit( struct mgsl_struct * info )
{
/* reset tx dma channel and purge TxFifo */
usc_RTCmd( info, RTCmd_PurgeTxFifo );
usc_DmaCmd( info, DmaCmd_ResetTxChannel );
usc_loopmode_send_done( info );
}
/* for HDLC/SDLC LoopMode, setting CMR:13 after the transmitter is enabled
* is an Insert Into Loop action. Upon receipt of a GoAhead sequence (RxAbort)
* we must clear CMR:13 to begin repeating TxData to RxData
*/
static void usc_loopmode_insert_request( struct mgsl_struct * info )
{
info->loopmode_insert_requested = true;
/* enable RxAbort irq. On next RxAbort, clear CMR:13 to
* begin repeating TxData on RxData (complete insertion)
*/
usc_OutReg( info, RICR,
(usc_InReg( info, RICR ) | RXSTATUS_ABORT_RECEIVED ) );
/* set CMR:13 to insert into loop on next GoAhead (RxAbort) */
info->cmr_value |= BIT13;
usc_OutReg(info, CMR, info->cmr_value);
}
/* return 1 if station is inserted into the loop, otherwise 0
*/
static int usc_loopmode_active( struct mgsl_struct * info)
{
return usc_InReg( info, CCSR ) & BIT7 ? 1 : 0 ;
}
#if SYNCLINK_GENERIC_HDLC
/**
* called by generic HDLC layer when protocol selected (PPP, frame relay, etc.)
* set encoding and frame check sequence (FCS) options
*
* dev pointer to network device structure
* encoding serial encoding setting
* parity FCS setting
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct mgsl_struct *info = dev_to_port(dev);
unsigned char new_encoding;
unsigned short new_crctype;
/* return error if TTY interface open */
if (info->port.count)
return -EBUSY;
switch (encoding)
{
case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break;
case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break;
case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break;
case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break;
case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break;
default: return -EINVAL;
}
switch (parity)
{
case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break;
case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break;
case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break;
default: return -EINVAL;
}
info->params.encoding = new_encoding;
info->params.crc_type = new_crctype;
/* if network interface up, reprogram hardware */
if (info->netcount)
mgsl_program_hw(info);
return 0;
}
/**
* called by generic HDLC layer to send frame
*
* skb socket buffer containing HDLC frame
* dev pointer to network device structure
*/
static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct mgsl_struct *info = dev_to_port(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk(KERN_INFO "%s:hdlc_xmit(%s)\n",__FILE__,dev->name);
/* stop sending until this frame completes */
netif_stop_queue(dev);
/* copy data to device buffers */
info->xmit_cnt = skb->len;
mgsl_load_tx_dma_buffer(info, skb->data, skb->len);
/* update network statistics */
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
/* save start time for transmit timeout detection */
dev->trans_start = jiffies;
/* start hardware transmitter if necessary */
spin_lock_irqsave(&info->irq_spinlock,flags);
if (!info->tx_active)
usc_start_transmitter(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
return NETDEV_TX_OK;
}
/**
* called by network layer when interface enabled
* claim resources and initialize hardware
*
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_open(struct net_device *dev)
{
struct mgsl_struct *info = dev_to_port(dev);
int rc;
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s:hdlcdev_open(%s)\n",__FILE__,dev->name);
/* generic HDLC layer open processing */
if ((rc = hdlc_open(dev)))
return rc;
/* arbitrate between network and tty opens */
spin_lock_irqsave(&info->netlock, flags);
if (info->port.count != 0 || info->netcount != 0) {
printk(KERN_WARNING "%s: hdlc_open returning busy\n", dev->name);
spin_unlock_irqrestore(&info->netlock, flags);
return -EBUSY;
}
info->netcount=1;
spin_unlock_irqrestore(&info->netlock, flags);
/* claim resources and init adapter */
if ((rc = startup(info)) != 0) {
spin_lock_irqsave(&info->netlock, flags);
info->netcount=0;
spin_unlock_irqrestore(&info->netlock, flags);
return rc;
}
/* assert RTS and DTR, apply hardware settings */
info->serial_signals |= SerialSignal_RTS | SerialSignal_DTR;
mgsl_program_hw(info);
/* enable network layer transmit */
dev->trans_start = jiffies;
netif_start_queue(dev);
/* inform generic HDLC layer of current DCD status */
spin_lock_irqsave(&info->irq_spinlock, flags);
usc_get_serial_signals(info);
spin_unlock_irqrestore(&info->irq_spinlock, flags);
if (info->serial_signals & SerialSignal_DCD)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
return 0;
}
/**
* called by network layer when interface is disabled
* shutdown hardware and release resources
*
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_close(struct net_device *dev)
{
struct mgsl_struct *info = dev_to_port(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s:hdlcdev_close(%s)\n",__FILE__,dev->name);
netif_stop_queue(dev);
/* shutdown adapter and release resources */
shutdown(info);
hdlc_close(dev);
spin_lock_irqsave(&info->netlock, flags);
info->netcount=0;
spin_unlock_irqrestore(&info->netlock, flags);
return 0;
}
/**
* called by network layer to process IOCTL call to network device
*
* dev pointer to network device structure
* ifr pointer to network interface request structure
* cmd IOCTL command code
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
const size_t size = sizeof(sync_serial_settings);
sync_serial_settings new_line;
sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
struct mgsl_struct *info = dev_to_port(dev);
unsigned int flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("%s:hdlcdev_ioctl(%s)\n",__FILE__,dev->name);
/* return error if TTY interface open */
if (info->port.count)
return -EBUSY;
if (cmd != SIOCWANDEV)
return hdlc_ioctl(dev, ifr, cmd);
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE: /* return current sync_serial_settings */
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
memset(&new_line, 0, sizeof(new_line));
switch (flags){
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break;
case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break;
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break;
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break;
default: new_line.clock_type = CLOCK_DEFAULT;
}
new_line.clock_rate = info->params.clock_speed;
new_line.loopback = info->params.loopback ? 1:0;
if (copy_to_user(line, &new_line, size))
return -EFAULT;
return 0;
case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&new_line, line, size))
return -EFAULT;
switch (new_line.clock_type)
{
case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break;
case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break;
case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break;
case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break;
case CLOCK_DEFAULT: flags = info->params.flags &
(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break;
default: return -EINVAL;
}
if (new_line.loopback != 0 && new_line.loopback != 1)
return -EINVAL;
info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
info->params.flags |= flags;
info->params.loopback = new_line.loopback;
if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG))
info->params.clock_speed = new_line.clock_rate;
else
info->params.clock_speed = 0;
/* if network interface up, reprogram hardware */
if (info->netcount)
mgsl_program_hw(info);
return 0;
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
/**
* called by network layer when transmit timeout is detected
*
* dev pointer to network device structure
*/
static void hdlcdev_tx_timeout(struct net_device *dev)
{
struct mgsl_struct *info = dev_to_port(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_tx_timeout(%s)\n",dev->name);
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_stop_transmitter(info);
spin_unlock_irqrestore(&info->irq_spinlock,flags);
netif_wake_queue(dev);
}
/**
* called by device driver when transmit completes
* reenable network layer transmit if stopped
*
* info pointer to device instance information
*/
static void hdlcdev_tx_done(struct mgsl_struct *info)
{
if (netif_queue_stopped(info->netdev))
netif_wake_queue(info->netdev);
}
/**
* called by device driver when frame received
* pass frame to network layer
*
* info pointer to device instance information
* buf pointer to buffer contianing frame data
* size count of data bytes in buf
*/
static void hdlcdev_rx(struct mgsl_struct *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_rx(%s)\n", dev->name);
if (skb == NULL) {
printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
memcpy(skb_put(skb, size), buf, size);
skb->protocol = hdlc_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_rx(skb);
}
static const struct net_device_ops hdlcdev_ops = {
.ndo_open = hdlcdev_open,
.ndo_stop = hdlcdev_close,
.ndo_change_mtu = hdlc_change_mtu,
.ndo_start_xmit = hdlc_start_xmit,
.ndo_do_ioctl = hdlcdev_ioctl,
.ndo_tx_timeout = hdlcdev_tx_timeout,
};
/**
* called by device driver when adding device instance
* do generic HDLC initialization
*
* info pointer to device instance information
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_init(struct mgsl_struct *info)
{
int rc;
struct net_device *dev;
hdlc_device *hdlc;
/* allocate and initialize network and HDLC layer objects */
if (!(dev = alloc_hdlcdev(info))) {
printk(KERN_ERR "%s:hdlc device allocation failure\n",__FILE__);
return -ENOMEM;
}
/* for network layer reporting purposes only */
dev->base_addr = info->io_base;
dev->irq = info->irq_level;
dev->dma = info->dma_level;
/* network layer callbacks and settings */
dev->netdev_ops = &hdlcdev_ops;
dev->watchdog_timeo = 10 * HZ;
dev->tx_queue_len = 50;
/* generic HDLC layer callbacks and settings */
hdlc = dev_to_hdlc(dev);
hdlc->attach = hdlcdev_attach;
hdlc->xmit = hdlcdev_xmit;
/* register objects with HDLC layer */
if ((rc = register_hdlc_device(dev))) {
printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__);
free_netdev(dev);
return rc;
}
info->netdev = dev;
return 0;
}
/**
* called by device driver when removing device instance
* do generic HDLC cleanup
*
* info pointer to device instance information
*/
static void hdlcdev_exit(struct mgsl_struct *info)
{
unregister_hdlc_device(info->netdev);
free_netdev(info->netdev);
info->netdev = NULL;
}
#endif /* CONFIG_HDLC */
static int synclink_init_one (struct pci_dev *dev,
const struct pci_device_id *ent)
{
struct mgsl_struct *info;
if (pci_enable_device(dev)) {
printk("error enabling pci device %p\n", dev);
return -EIO;
}
if (!(info = mgsl_allocate_device())) {
printk("can't allocate device instance data.\n");
return -EIO;
}
/* Copy user configuration info to device instance data */
info->io_base = pci_resource_start(dev, 2);
info->irq_level = dev->irq;
info->phys_memory_base = pci_resource_start(dev, 3);
/* Because veremap only works on page boundaries we must map
* a larger area than is actually implemented for the LCR
* memory range. We map a full page starting at the page boundary.
*/
info->phys_lcr_base = pci_resource_start(dev, 0);
info->lcr_offset = info->phys_lcr_base & (PAGE_SIZE-1);
info->phys_lcr_base &= ~(PAGE_SIZE-1);
info->bus_type = MGSL_BUS_TYPE_PCI;
info->io_addr_size = 8;
info->irq_flags = IRQF_SHARED;
if (dev->device == 0x0210) {
/* Version 1 PCI9030 based universal PCI adapter */
info->misc_ctrl_value = 0x007c4080;
info->hw_version = 1;
} else {
/* Version 0 PCI9050 based 5V PCI adapter
* A PCI9050 bug prevents reading LCR registers if
* LCR base address bit 7 is set. Maintain shadow
* value so we can write to LCR misc control reg.
*/
info->misc_ctrl_value = 0x087e4546;
info->hw_version = 0;
}
mgsl_add_device(info);
return 0;
}
static void synclink_remove_one (struct pci_dev *dev)
{
}