OpenCloudOS-Kernel/include/linux/if_tap.h

86 lines
2.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_IF_TAP_H_
#define _LINUX_IF_TAP_H_
#if IS_ENABLED(CONFIG_TAP)
struct socket *tap_get_socket(struct file *);
struct ptr_ring *tap_get_ptr_ring(struct file *file);
#else
#include <linux/err.h>
#include <linux/errno.h>
struct file;
struct socket;
static inline struct socket *tap_get_socket(struct file *f)
{
return ERR_PTR(-EINVAL);
}
static inline struct ptr_ring *tap_get_ptr_ring(struct file *f)
{
return ERR_PTR(-EINVAL);
}
#endif /* CONFIG_TAP */
#include <net/sock.h>
#include <linux/skb_array.h>
/*
* Maximum times a tap device can be opened. This can be used to
* configure the number of receive queue, e.g. for multiqueue virtio.
*/
#define MAX_TAP_QUEUES 256
struct tap_queue;
struct tap_dev {
struct net_device *dev;
u16 flags;
/* This array tracks active taps. */
struct tap_queue __rcu *taps[MAX_TAP_QUEUES];
/* This list tracks all taps (both enabled and disabled) */
struct list_head queue_list;
int numvtaps;
int numqueues;
netdev_features_t tap_features;
int minor;
void (*update_features)(struct tap_dev *tap, netdev_features_t features);
void (*count_tx_dropped)(struct tap_dev *tap);
void (*count_rx_dropped)(struct tap_dev *tap);
};
/*
* A tap queue is the central object of tap module, it connects
* an open character device to virtual interface. There can be
* multiple queues on one interface, which map back to queues
* implemented in hardware on the underlying device.
*
* tap_proto is used to allocate queues through the sock allocation
* mechanism.
*
*/
struct tap_queue {
struct sock sk;
struct socket sock;
struct socket_wq wq;
int vnet_hdr_sz;
struct tap_dev __rcu *tap;
struct file *file;
unsigned int flags;
u16 queue_index;
bool enabled;
struct list_head next;
struct ptr_ring ring;
};
rx_handler_result_t tap_handle_frame(struct sk_buff **pskb);
void tap_del_queues(struct tap_dev *tap);
int tap_get_minor(dev_t major, struct tap_dev *tap);
void tap_free_minor(dev_t major, struct tap_dev *tap);
int tap_queue_resize(struct tap_dev *tap);
tap: reference to KVA of an unloaded module causes kernel panic The commit 9a393b5d5988 ("tap: tap as an independent module") created a separate tap module that implements tap functionality and exports interfaces that will be used by macvtap and ipvtap modules to create create respective tap devices. However, that patch introduced a regression wherein the modules macvtap and ipvtap can be removed (through modprobe -r) while there are applications using the respective /dev/tapX devices. These applications cause kernel to hold reference to /dev/tapX through 'struct cdev macvtap_cdev' and 'struct cdev ipvtap_dev' defined in macvtap and ipvtap modules respectively. So, when the application is later closed the kernel panics because we are referencing KVA that is present in the unloaded modules. ----------8<------- Example ----------8<---------- $ sudo ip li add name mv0 link enp7s0 type macvtap $ sudo ip li show mv0 |grep mv0| awk -e '{print $1 $2}' 14:mv0@enp7s0: $ cat /dev/tap14 & $ lsmod |egrep -i 'tap|vlan' macvtap 16384 0 macvlan 24576 1 macvtap tap 24576 3 macvtap $ sudo modprobe -r macvtap $ fg cat /dev/tap14 ^C <...system panics...> BUG: unable to handle kernel paging request at ffffffffa038c500 IP: cdev_put+0xf/0x30 ----------8<-----------------8<---------- The fix is to set cdev.owner to the module that creates the tap device (either macvtap or ipvtap). With this set, the operations (in fs/char_dev.c) on char device holds and releases the module through cdev_get() and cdev_put() and will not allow the module to unload prematurely. Fixes: 9a393b5d5988ea4e (tap: tap as an independent module) Signed-off-by: Girish Moodalbail <girish.moodalbail@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 15:00:16 +08:00
int tap_create_cdev(struct cdev *tap_cdev, dev_t *tap_major,
const char *device_name, struct module *module);
void tap_destroy_cdev(dev_t major, struct cdev *tap_cdev);
#endif /*_LINUX_IF_TAP_H_*/